1
|
Lu H, Wu HQ, Chen BB, Sun K, Yang Meng Z. From fractional quantum anomalous Hall smectics to polar smectic metals: nontrivial interplay between electronic liquid crystal order and topological order in correlated topological flat bands. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:108003. [PMID: 39222655 DOI: 10.1088/1361-6633/ad7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Symmetry-breaking orders can not only compete with each other, but also be intertwined, and the intertwined topological and symmetry-breaking orders make the situation more intriguing. This work examines the archetypal correlated flat band model on a checkerboard lattice at fillingν=2/3and we find that the unique interplay between smectic charge order and topological order gives rise to two novel quantum states. As the interaction strength increases, the system first transitions from a Fermi liquid (FL) into FQAH smectic (FQAHS) state, where the topological order coexists cooperatively with smectic charge order with enlarged ground-state degeneracy and interestingly, the Hall conductivity isσxy=ν=2/3, different from the band-folding or doping scenarios. Further increasing the interaction strength, the system undergoes another quantum phase transition and evolves into a polar smectic metal (PSM) state. This emergent PSM is an anisotropic non-Fermi liquid, whose interstripe tunneling is irrelevant while it is metallic inside each stripe. Different from the FQAHS and conventional smectic orders, this PSM spontaneously breaks the two-fold rotational symmetry, resulting in a nonzero electric dipole moment and ferroelectric order. In addition to the exotic ground states, large-scale numerical simulations are also used to study low-energy excitations and thermodynamic characteristics. We find that the onset temperature of the incompressible FQAHS state, which also coincides with the onset of non-polar smectic order, is dictated by the magneto-roton modes. Above this onset temperature, the PSM state exists at an intermediate-temperature regime. Although theT = 0 quantum phase transition between PSM and FQAHS is first order, the thermal FQAHS-PSM transition could be continuous. We expect the features of the exotic states and thermal phase transitions could be accessed in future experiments.
Collapse
Affiliation(s)
- Hongyu Lu
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Han-Qing Wu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Bin-Bin Chen
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Zi Yang Meng
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| |
Collapse
|
2
|
Tarabunga PS, Tirrito E, Bañuls MC, Dalmonte M. Nonstabilizerness via Matrix Product States in the Pauli Basis. PHYSICAL REVIEW LETTERS 2024; 133:010601. [PMID: 39042797 DOI: 10.1103/physrevlett.133.010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/17/2024] [Accepted: 05/22/2024] [Indexed: 07/25/2024]
Abstract
Nonstabilizerness, also known as "magic," stands as a crucial resource for achieving a potential advantage in quantum computing. Its connection to many-body physical phenomena is poorly understood at present, mostly due to a lack of practical methods to compute it at large scales. We present a novel approach for the evaluation of nonstabilizerness within the framework of matrix product states (MPSs), based on expressing the MPS directly in the Pauli basis. Our framework provides a powerful tool for efficiently calculating various measures of nonstabilizerness, including stabilizer Rényi entropies, stabilizer nullity, and Bell magic, and enables the learning of the stabilizer group of an MPS. We showcase the efficacy and versatility of our method in the ground states of Ising and XXZ spin chains, as well as in circuits dynamics that has recently been realized in Rydberg atom arrays, where we provide concrete benchmarks for future experiments on logical qubits up to twice the sizes already realized.
Collapse
Affiliation(s)
- Poetri Sonya Tarabunga
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
- SISSA, Via Bonomea 265, 34136 Trieste, Italy
- INFN, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
| | | | | | | |
Collapse
|
3
|
Lu H, Chen BB, Wu HQ, Sun K, Meng ZY. Thermodynamic Response and Neutral Excitations in Integer and Fractional Quantum Anomalous Hall States Emerging from Correlated Flat Bands. PHYSICAL REVIEW LETTERS 2024; 132:236502. [PMID: 38905653 DOI: 10.1103/physrevlett.132.236502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Integer and fractional Chern insulators have been extensively explored in correlated flat band models. Recently, the prediction and experimental observation of fractional quantum anomalous Hall (FQAH) states with spontaneous time-reversal symmetry breaking have garnered attention. While the thermodynamics of integer quantum anomalous Hall (IQAH) states have been systematically studied, our theoretical knowledge on thermodynamic properties of FQAH states has been severely limited. Here, we delve into the general thermodynamic response and collective excitations of both IQAH and FQAH states within the paradigmatic flat Chern-band model with remote band considered. Our key findings include (i) in both ν=1 IQAH and ν=1/3 FQAH states, even without spin fluctuations, the charge-neutral collective excitations would lower the onset temperature of these topological states, to a value significantly smaller than the charge gap, due to band mixing and multiparticle scattering; (ii) by employing large-scale thermodynamic simulations in FQAH states in the presence of strong interband mixing between C=±1 bands, we find that the lowest collective excitations manifest as the zero-momentum excitons in the IQAH state, whereas in the FQAH state, they take the form of magnetorotons with finite momentum; (iii) the unique charge oscillations in FQAH states are exhibited with distinct experimental signatures, which we propose to detect in future experiments.
Collapse
|
4
|
Qu XZ, Qu DW, Chen J, Wu C, Yang F, Li W, Su G. Bilayer t-J-J_{⊥} Model and Magnetically Mediated Pairing in the Pressurized Nickelate La_{3}Ni_{2}O_{7}. PHYSICAL REVIEW LETTERS 2024; 132:036502. [PMID: 38307085 DOI: 10.1103/physrevlett.132.036502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
The recently discovered nickelate superconductor La_{3}Ni_{2}O_{7} has a high transition temperature near 80 K under pressure, providing an additional avenue for exploring unconventional superconductivity. Here, with state-of-the-art tensor-network methods, we study a bilayer t-J-J_{⊥} model for La_{3}Ni_{2}O_{7} and find a robust s-wave superconductive (SC) order mediated by interlayer magnetic couplings. Large-scale density matrix renormalization group calculations find algebraic pairing correlations with Luttinger parameter K_{SC}≲1. Infinite projected entangled-pair state method obtains a nonzero SC order directly in the thermodynamic limit, and estimates a strong pairing strength Δ[over ¯]_{z}∼O(0.1). Tangent-space tensor renormalization group simulations elucidate the temperature evolution of SC pairing and further determine a high SC temperature T_{c}^{*}/J∼O(0.1). Because of the intriguing orbital selective behaviors and strong Hund's rule coupling in the compound, t-J-J_{⊥} model has strong interlayer spin exchange (while negligible interlayer hopping), which greatly enhances the SC pairing in the bilayer system. Such a magnetically mediated pairing has also been observed recently in the optical lattice of ultracold atoms. Our accurate and comprehensive tensor-network calculations reveal a robust SC order in the bilayer t-J-J_{⊥} model and shed light on the pairing mechanism of the high-T_{c} nickelate superconductor.
Collapse
Affiliation(s)
- Xing-Zhou Qu
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dai-Wei Qu
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jialin Chen
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- Hefei National Laboratory, Hefei 230088, China
| | - Congjun Wu
- New Cornerstone Science Laboratory, Department of Physics, School of Science, Westlake University, 310024 Hangzhou, China
- Institute for Theoretical Sciences, Westlake University, 310024 Hangzhou, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024 Hangzhou, China
| | - Fan Yang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Li
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- Hefei National Laboratory, Hefei 230088, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Su
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Wang J, Li H, Xi N, Gao Y, Yan QB, Li W, Su G. Plaquette Singlet Transition, Magnetic Barocaloric Effect, and Spin Supersolidity in the Shastry-Sutherland Model. PHYSICAL REVIEW LETTERS 2023; 131:116702. [PMID: 37774260 DOI: 10.1103/physrevlett.131.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/16/2023] [Indexed: 10/01/2023]
Abstract
Inspired by recent experimental measurements [Guo et al., Phys. Rev. Lett. 124, 206602 (2020PRLTAO0031-900710.1103/PhysRevLett.124.206602); Jiménez et al., Nature (London) 592, 370 (2021)NATUAS0028-083610.1038/s41586-021-03411-8] on frustrated quantum magnet SrCu_{2}(BO_{3})_{2} under combined pressure and magnetic fields, we study the related spin-1/2 Shastry-Sutherland model using state-of-the-art tensor network methods. By calculating thermodynamics, correlations, and susceptibilities, we find, in zero magnetic field, not only a line of first-order dimer-singlet to plaquette-singlet phase transition ending with a critical point, but also signatures of the ordered plaquette-singlet transition with its critical end point terminating on this first-order line. Moreover, we uncover prominent magnetic barocaloric responses, a novel type of quantum correlation induced cooling effect, in the strongly fluctuating supercritical regime. Under finite fields, we identify a quantum phase transition from the plaquette-singlet phase to the spin supersolid phase that breaks simultaneously lattice translational and spin rotational symmetries. The present findings on the Shastry-Sutherland model are accessible in current experiments and would shed new light on the critical and supercritical phenomena in the archetypal frustrated quantum magnet SrCu_{2}(BO_{3})_{2}.
Collapse
Affiliation(s)
- Junsen Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Han Li
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ning Xi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Gao
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, Beihang University, Beijing 100191, China
| | - Qing-Bo Yan
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Gang Su
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Li Q, Gao Y, He YY, Qi Y, Chen BB, Li W. Tangent Space Approach for Thermal Tensor Network Simulations of the 2D Hubbard Model. PHYSICAL REVIEW LETTERS 2023; 130:226502. [PMID: 37327445 DOI: 10.1103/physrevlett.130.226502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 06/18/2023]
Abstract
Accurate simulations of the two-dimensional (2D) Hubbard model constitute one of the most challenging problems in condensed matter and quantum physics. Here we develop a tangent space tensor renormalization group (tanTRG) approach for the calculations of the 2D Hubbard model at finite temperature. An optimal evolution of the density operator is achieved in tanTRG with a mild O(D^{3}) complexity, where the bond dimension D controls the accuracy. With the tanTRG approach we boost the low-temperature calculations of large-scale 2D Hubbard systems on up to a width-8 cylinder and 10×10 square lattice. For the half-filled Hubbard model, the obtained results are in excellent agreement with those of determinant quantum Monte Carlo (DQMC). Moreover, tanTRG can be used to explore the low-temperature, finite-doping regime inaccessible for DQMC. The calculated charge compressibility and Matsubara Green's function are found to reflect the strange metal and pseudogap behaviors, respectively. The superconductive pairing susceptibility is computed down to a low temperature of approximately 1/24 of the hopping energy, where we find d-wave pairing responses are most significant near the optimal doping. Equipped with the tangent-space technique, tanTRG constitutes a well-controlled, highly efficient and accurate tensor network method for strongly correlated 2D lattice models at finite temperature.
Collapse
Affiliation(s)
- Qiaoyi Li
- School of Physics, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yuan Gao
- School of Physics, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan-Yao He
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Institute of Modern Physics, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
| | - Yang Qi
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Bin-Bin Chen
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wei Li
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijng 100190, China
| |
Collapse
|
7
|
Lin X, Chen BB, Li W, Meng ZY, Shi T. Exciton Proliferation and Fate of the Topological Mott Insulator in a Twisted Bilayer Graphene Lattice Model. PHYSICAL REVIEW LETTERS 2022; 128:157201. [PMID: 35499872 DOI: 10.1103/physrevlett.128.157201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/03/2022] [Accepted: 03/20/2022] [Indexed: 05/10/2023]
Abstract
A topological Mott insulator (TMI) with spontaneous time-reversal symmetry breaking and nonzero Chern number has been discovered in a real-space effective model for twisted bilayer graphene (TBG) at 3/4 filling in the strong coupling limit [1]. However, the finite temperature properties of such a TMI state remain illusive. In this work, employing the state-of-the-art thermal tensor network and the perturbative field-theoretical approaches, we obtain the finite-T phase diagram and the dynamical properties of the TBG model. The phase diagram includes the quantum anomalous Hall and charge density wave phases at low T, and an Ising transition separating them from the high-T symmetric phases. Because of the proliferation of excitons-particle-hole bound states-the transitions take place at a significantly reduced temperature than the mean-field estimation. The exciton phase is accompanied with distinctive experimental signatures in such as in charge compressibilities and optical conductivities close to the transition. Our work explains the smearing of the many-electron state topology by proliferating excitons and opens an avenue for controlled many-body investigations on finite-temperature states in the TBG and other quantum moiré systems.
Collapse
Affiliation(s)
- Xiyue Lin
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijng 100049, China
| | - Bin-Bin Chen
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wei Li
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, Beihang University, Beijing 100191, China
| | - Zi Yang Meng
- Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tao Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Yu S, Gao Y, Chen BB, Li W. Learning the Effective Spin Hamiltonian of a Quantum Magnet. CHINESE PHYSICS LETTERS 2021; 38:097502. [DOI: 10.1088/0256-307x/38/9/097502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
To understand the intriguing many-body states and effects in the correlated quantum materials, inference of the microscopic effective Hamiltonian from experiments constitutes an important yet very challenging inverse problem. Here we propose an unbiased and efficient approach learning the effective Hamiltonian through the many-body analysis of the measured thermal data. Our approach combines the strategies including the automatic gradient and Bayesian optimization with the thermodynamics many-body solvers including the exact diagonalization and the tensor renormalization group methods. We showcase the accuracy and powerfulness of the Hamiltonian learning by applying it firstly to the thermal data generated from a given spin model, and then to realistic experimental data measured in the spin-chain compound copper nitrate and triangular-lattice magnet TmMgGaO4. The present automatic approach constitutes a unified framework of many-body thermal data analysis in the studies of quantum magnets and strongly correlated materials in general.
Collapse
|
9
|
Tang W, Tu HH, Wang L. Continuous Matrix Product Operator Approach to Finite Temperature Quantum States. PHYSICAL REVIEW LETTERS 2020; 125:170604. [PMID: 33156680 DOI: 10.1103/physrevlett.125.170604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
We present an algorithm for studying quantum systems at finite temperature using continuous matrix product operator representation. The approach handles both short-range and long-range interactions in the thermodynamic limit without incurring any time discretization error. Moreover, the approach provides direct access to physical observables including the specific heat, local susceptibility, and local spectral functions. After verifying the method using the prototypical quantum XXZ chains, we apply it to quantum Ising models with power-law decaying interactions and on the infinite cylinder, respectively. The approach offers predictions that are relevant to experiments in quantum simulators and the nuclear magnetic resonance spin-lattice relaxation rate.
Collapse
Affiliation(s)
- Wei Tang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Hong-Hao Tu
- Institute of Theoretical Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lei Wang
- Beijing National Lab for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
10
|
Kshetrimayum A, Rizzi M, Eisert J, Orús R. Tensor Network Annealing Algorithm for Two-Dimensional Thermal States. PHYSICAL REVIEW LETTERS 2019; 122:070502. [PMID: 30848636 DOI: 10.1103/physrevlett.122.070502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Tensor network methods have become a powerful class of tools to capture strongly correlated matter, but methods to capture the experimentally ubiquitous family of models at finite temperature beyond one spatial dimension are largely lacking. We introduce a tensor network algorithm able to simulate thermal states of two-dimensional quantum lattice systems in the thermodynamic limit. The method develops instances of projected entangled pair states and projected entangled pair operators for this purpose. It is the key feature of this algorithm to resemble the cooling down of the system from an infinite temperature state until it reaches the desired finite-temperature regime. As a benchmark, we study the finite-temperature phase transition of the Ising model on an infinite square lattice, for which we obtain remarkable agreement with the exact solution. We then turn to study the finite-temperature Bose-Hubbard model in the limits of two (hard-core) and three bosonic modes per site. Our technique can be used to support the experimental study of actual effectively two-dimensional materials in the laboratory, as well as to benchmark optical lattice quantum simulators with ultracold atoms.
Collapse
Affiliation(s)
- A Kshetrimayum
- Dahlem Center for Complex Quantum Systems, Physics Department, Freie Universität Berlin, 14195 Berlin, Germany
- Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany
| | - M Rizzi
- Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany
| | - J Eisert
- Dahlem Center for Complex Quantum Systems, Physics Department, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - R Orús
- Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
- Ikerbasque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|