1
|
Novikova EM, Vodeneev VA, Sukhov VS. Mathematical model of action potential in higher plants with account for the involvement of vacuole in the electrical signal generation. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817010068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Jezek M, Blatt MR. The Membrane Transport System of the Guard Cell and Its Integration for Stomatal Dynamics. PLANT PHYSIOLOGY 2017; 174:487-519. [PMID: 28408539 PMCID: PMC5462021 DOI: 10.1104/pp.16.01949] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/11/2017] [Indexed: 05/17/2023]
Abstract
Stomatal guard cells are widely recognized as the premier plant cell model for membrane transport, signaling, and homeostasis. This recognition is rooted in half a century of research into ion transport across the plasma and vacuolar membranes of guard cells that drive stomatal movements and the signaling mechanisms that regulate them. Stomatal guard cells surround pores in the epidermis of plant leaves, controlling the aperture of the pore to balance CO2 entry into the leaf for photosynthesis with water loss via transpiration. The position of guard cells in the epidermis is ideally suited for cellular and subcellular research, and their sensitivity to endogenous signals and environmental stimuli makes them a primary target for physiological studies. Stomata underpin the challenges of water availability and crop production that are expected to unfold over the next 20 to 30 years. A quantitative understanding of how ion transport is integrated and controlled is key to meeting these challenges and to engineering guard cells for improved water use efficiency and agricultural yields.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
3
|
Sze H, Liang F, Hwang I, Curran AC, Harper JF. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 51:433-62. [PMID: 11543429 DOI: 10.1146/annurev.arplant.51.1.433] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The spatial and temporal regulation of calcium concentration in plant cells depends on the coordinate activities of channels and active transporters located on different organelles and membranes. Several Ca2+ pumps have been identified and characterized by functional expression of plant genes in a yeast mutant (K616). This expression system has opened the way to a genetic and biochemical characterization of the regulatory and catalytic features of diverse Ca2+ pumps. Plant Ca(2+)-ATPases fall into two major types: AtECA1 represents one of four or more members of the type IIA (ER-type) Ca(2+)-ATPases in Arabidopsis, and AtACA2 is one of seven or more members of the type IIB (PM-type) Ca(2+)-ATPases that are regulated by a novel amino terminal domain. Type IIB pumps are widely distributed on membranes, including the PM (plasma membrane), vacuole, and ER (endoplasmic reticulum). The regulatory domain serves multiple functions, including autoinhibition, calmodulin binding, and sites for modification by phosphorylation. This domain, however, is considerably diverse among several type IIB ATPases, suggesting that the pumps are differentially regulated. Understanding of Ca2+ transporters at the molecular level is providing insights into their roles in signaling networks and in regulating fundamental processes of cell biology.
Collapse
Affiliation(s)
- H Sze
- Department of Cell Biology and Molecular Genetics, and Maryland Agricultural Experiment Station, University of Maryland, College Park 20742, USA.
| | | | | | | | | |
Collapse
|
4
|
Luoni L, Bonza MC, De Michelis MI. H(+)/Ca(2+) exchange driven by the plasma membrane Ca(2+)-ATPase of Arabidopsis thaliana reconstituted in proteoliposomes after calmodulin-affinity purification. FEBS Lett 2000; 482:225-30. [PMID: 11024465 DOI: 10.1016/s0014-5793(00)02065-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plasma membrane Ca(2+)-ATPase was purified from Arabidopsis thaliana cultured cells by calmodulin (CaM)-affinity chromatography and reconstituted in proteoliposomes by the freeze-thaw sonication procedure. The reconstituted enzyme catalyzed CaM-stimulated 45Ca(2+) accumulation and H(+) ejection, monitored by the increase of fluorescence of the pH probe pyranine entrapped in the liposomal lumen during reconstitution. Proton ejection was immediately reversed by the protonophore FCCP, indicating that it is not electrically coupled to Ca(2+) uptake, but it is a primary event linked to Ca(2+) uptake in the form of countertransport.
Collapse
Affiliation(s)
- L Luoni
- Dipartimento di Biologia 'L. Gorini', Università di Milano, Centro di Studio del CNR per la Biologia Cellulare e Molecolare delle Piante, via G. Celoria 26, 20133, Milan, Italy
| | | | | |
Collapse
|
5
|
Navazio L, Bewell MA, Siddiqua A, Dickinson GD, Galione A, Sanders D. Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc Natl Acad Sci U S A 2000; 97:8693-8. [PMID: 10890899 PMCID: PMC27010 DOI: 10.1073/pnas.140217897] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1999] [Accepted: 05/15/2000] [Indexed: 11/18/2022] Open
Abstract
Higher plants share with animals a responsiveness to the Ca(2+) mobilizing agents inositol 1,4,5-trisphosphate (InsP(3)) and cyclic ADP-ribose (cADPR). In this study, by using a vesicular (45)Ca(2+) flux assay, we demonstrate that microsomal vesicles from red beet and cauliflower also respond to nicotinic acid adenine dinucleotide phosphate (NAADP), a Ca(2+)-releasing molecule recently described in marine invertebrates. NAADP potently mobilizes Ca(2+) with a K(1/2) = 96 nM from microsomes of nonvacuolar origin in red beet. Analysis of sucrose gradient-separated cauliflower microsomes revealed that the NAADP-sensitive Ca(2+) pool was derived from the endoplasmic reticulum. This exclusively nonvacuolar location of the NAADP-sensitive Ca(2+) pathway distinguishes it from the InsP(3)- and cADPR-gated pathways. Desensitization experiments revealed that homogenates derived from cauliflower tissue contained low levels of NAADP (125 pmol/mg) and were competent in NAADP synthesis when provided with the substrates NADP and nicotinic acid. NAADP-induced Ca(2+) release is insensitive to heparin and 8-NH(2)-cADPR, specific inhibitors of the InsP(3)- and cADPR-controlled mechanisms, respectively. However, NAADP-induced Ca(2+) release could be blocked by pretreatment with a subthreshold dose of NAADP, as previously observed in sea urchin eggs. Furthermore, the NAADP-gated Ca(2+) release pathway is independent of cytosolic free Ca(2+) and therefore incapable of operating Ca(2+)-induced Ca(2+) release. In contrast to the sea urchin system, the NAADP-gated Ca(2+) release pathway in plants is not blocked by L-type channel antagonists. The existence of multiple Ca(2+) mobilization pathways and Ca(2+) release sites might contribute to the generation of stimulus-specific Ca(2+) signals in plant cells.
Collapse
Affiliation(s)
- L Navazio
- The Plant Laboratory, Biology Department, University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| | | | | | | | | | | |
Collapse
|
6
|
Geisler M, Axelsen KB, Harper JF, Palmgren MG. Molecular aspects of higher plant P-type Ca(2+)-ATPases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:52-78. [PMID: 10748247 DOI: 10.1016/s0005-2736(00)00131-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent genomic data in the model plant Arabidopsis thaliana reveal the existence of at least 11 Ca(2+)-ATPase genes, and an analysis of expressed sequence tags suggests that the number of calcium pumps in this organism might be even higher. A phylogenetic analysis shows that 11 Ca(2+)-ATPases clearly form distinct groups, type IIA (or ECA for ER-type Ca(2+)-ATPase) and type IIB (ACA for autoinhibited Ca(2+)-ATPase). While plant IIB calcium pumps characterized so far are localized to internal membranes, their animal homologues are exclusively found in the plasma membrane. However, Arabidopsis type IIB calcium pump isoforms ACA8, ACA9 and ACA10 form a separate outgroup and, based on the high molecular masses of the encoded proteins, are good candidates for plasma membrane bound Ca(2+)-ATPases. All known plant type IIB calcium ATPases seem to employ an N-terminal calmodulin-binding autoinhibitor. Therefore it appears that the activity of type IIB Ca(2+)-ATPases in plants and animals is controlled by N-terminal and C-terminal autoinhibitory domains, respectively. Possible functions of plant calcium pumps are described and - beside second messenger functions directly linked to calcium homeostasis - new data on a putative involvement in secretory and salt stress functions are discussed.
Collapse
Affiliation(s)
- M Geisler
- Department of Plant Biology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
7
|
Malmström S, Akerlund HE, Askerlund P. Regulatory role of the N terminus of the vacuolar calcium-ATPase in cauliflower. PLANT PHYSIOLOGY 2000; 122:517-526. [PMID: 10677444 PMCID: PMC58888 DOI: 10.1104/pp.122.2.517] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/1999] [Accepted: 10/20/1999] [Indexed: 05/23/2023]
Abstract
The vacuolar calmodulin (CaM)-stimulated Ca(2+)-ATPase, BCA1p, in cauliflower (Brassica oleracea) has an extended N terminus, which was suggested to contain a CaM-binding domain (S. Malmström, P. Askerlund, M.G. Palmgren [1997] FEBS Lett 400: 324-328). The goal of the present study was to determine the role of the N terminus in regulating BCA1p. Western analysis using three different antisera showed that the N terminus of BCA1p is cleaved off by trypsin and that the N terminus contains the CaM-binding domain. Furthermore, the expressed N terminus binds CaM in a Ca(2+)-dependent manner. A synthetic peptide corresponding to the CaM-binding domain of BCA1p (Ala-19 to Leu-43) strongly inhibited ATP-dependent Ca(2+) pumping by BCA1p in cauliflower low-density membranes, indicating that the CaM-binding region of BCA1p also has an autoinhibitory function. The expressed N terminus of BCA1p and a synthetic peptide (Ala-19 to Met-39) were good substrates for phosphorylation by protein kinase C. Sequencing of the phosphorylated fusion protein and peptide suggested serine-16 and/or serine-28 as likely targets for phosphorylation. Phosphorylation of serine-28 had no effect on CaM binding to the alanine-19 to methionine-39 peptide. Our results demonstrate the regulatory importance of the N terminus of BCA1p as a target for CaM binding, trypsin cleavage, and phosphorylation, as well as its importance as an autoinhibitory domain.
Collapse
Affiliation(s)
- S Malmström
- Department of Plant Biochemistry, Lund University, P.O. Box 117, SE-221 00 Lund, Sweden.
| | | | | |
Collapse
|
8
|
Evans DE, Williams LE. P-type calcium ATPases in higher plants - biochemical, molecular and functional properties. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:1-25. [PMID: 9666057 DOI: 10.1016/s0304-4157(97)00009-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D E Evans
- School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy lane, Headington, Oxford OX3 0BP, UK.
| | | |
Collapse
|
9
|
Abstract
Calmodulin is a small Ca2+-binding protein that acts to transduce second messenger signals into a wide array of cellular responses. Plant calmodulins share many structural and functional features with their homologs from animals and yeast, but the expression of multiple protein isoforms appears to be a distinctive feature of higher plants. Calmodulin acts by binding to short peptide sequences within target proteins, thereby inducing structural changes, which alters their activities in response to changes in intracellular Ca2+ concentration. The spectrum of plant calmodulin-binding proteins shares some overlap with that found in animals, but a growing number of calmodulin-regulated proteins in plants appear to be unique. Ca2+-binding and enzymatic activation properties of calmodulin are discussed emphasizing the functional linkages between these processes and the diverse pathways that are dependent on Ca2+ signaling.
Collapse
Affiliation(s)
- Raymond E. Zielinski
- Department of Plant Biology and the Physiological and Molecular Plant Biology Program, University of Illinois, 1201 W. Gregory Drive, Urbana, Illinois 61801; e-mail:
| |
Collapse
|
10
|
Bonza, Carnelli, Ida De Michelis M, Rasi-Caldogno. Purification of the Plasma Membrane Ca2+-ATPase from Radish Seedlings by Calmodulin-Agarose Affinity Chromatography. PLANT PHYSIOLOGY 1998; 116:845-51. [PMID: 9490776 PMCID: PMC35144 DOI: 10.1104/pp.116.2.845] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/1997] [Accepted: 10/27/1997] [Indexed: 05/22/2023]
Abstract
The Ca2+-ATPase of the plasma membrane (PM) of germinating radish (Raphanus sativus L.) seeds was purified by calmodulin (CaM)-affinity chromatography using a batch procedure. PM purified by aqueous two-phase partitioning was solubilized with n-dodecyl beta-d-maltoside and applied to a CaM-agarose matrix. After various washings with decreasing Ca2+ concentrations, the Ca2+-ATPase was eluted with 5 mm ethylenediaminetetraacetate (EDTA). The EDTA-eluted fraction contained about 25% of the loaded Ca2+-ATPase activity, with a specific activity 70-fold higher than that of the starting PM fraction. The EDTA-eluted fraction was highly enriched in a 133-kD polypeptide, which was identified as the PM Ca2+-ATPase by 125I-CaM overlay and fluorescein-isothiocyanate labeling. The PM Ca2+-ATPase cross-reacted with an antiserum against a putative Ca2+-ATPase of the Arabidopsis thaliana chloroplast envelope.
Collapse
Affiliation(s)
- Bonza
- Dipartimento di Biologia L. Gorini, Università di Milano, via G. Celoria 26, 20133 Milano, Italy (C.B., A.C., F.R.-C.)
| | | | | | | |
Collapse
|
11
|
Harper JF, Hong B, Hwang I, Guo HQ, Stoddard R, Huang JF, Palmgren MG, Sze H. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain. J Biol Chem 1998; 273:1099-106. [PMID: 9422775 DOI: 10.1074/jbc.273.2.1099] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.
Collapse
Affiliation(s)
- J F Harper
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Stangeland B, Fuglsang AT, Malmström S, Axelsen KB, Baunsgaard L, Lanfermeijer FC, Venema K, Okkels FT, Askerlund P, Palmgren MG. P-type H(+)- and Ca(2+)-ATPases in plant cells. Ann N Y Acad Sci 1997; 834:77-87. [PMID: 9405787 DOI: 10.1111/j.1749-6632.1997.tb52227.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- B Stangeland
- Molecular Biology Institute, Copenhagen University, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Muir SR, Sanders D. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release across nonvacuolar membranes in cauliflower. PLANT PHYSIOLOGY 1997; 114:1511-21. [PMID: 9276959 PMCID: PMC158445 DOI: 10.1104/pp.114.4.1511] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous studies have indicated that the vacuole represents the major inositol 1,4,5-trisphosphate (InsP3)-mobilizable Ca2+ pool in higher plants. This findings is in contrast to animal cells, in which the endoplasmic reticulum and plasma membrane constitute the dominant InsP3-sensitive membranes. We used membrane vesicles prepared from cauliflower (Brassica oleracae L.) inflorescences that were separated on continuous sucrose gradients to demonstrate that cauliflower possesses at least two distinct membrane populations that are sensitive to InsP3. One of these membrane populations in nonvacuolar in origin and relies upon a Ca(2+)-ATPase to accumulate Ca2+. In addition, we have shown that two polyclonal antibodies, raised against peptides corresponding to the animal type 1 InsP3 receptor, recognize immunologically related proteins in cauliflower, and that the distribution of immunoreactive proteins on a linear sucrose gradient reinforces the notion that cauliflower contains more than one membrane subtype that is sensitive to InsP3. To our knowledge, this is the first report describing an InsP3-sensitive Ca2+ store other than the vacuole in higher plant cells.
Collapse
Affiliation(s)
- S R Muir
- Plant Laboratory, University of York, United Kingdom
| | | |
Collapse
|
14
|
Askerlund P. Calmodulin-stimulated Ca(2+)-ATPases in the vacuolar and plasma membranes in cauliflower. PLANT PHYSIOLOGY 1997; 114:999-1007. [PMID: 9232880 PMCID: PMC158388 DOI: 10.1104/pp.114.3.999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The subcellular locations of Ca(2+)-ATPases in the membranes of cauliflower (Brassica oleracea L.) inflorescences were investigated. After continuous sucrose gradient centrifugation a 111-kD calmodulin (CaM)-stimulated and caM-binding Ca(2+)-ATPase (BCA1; P. Askerlund [1996] Plant Physiol 110: 913-922; S. Malmström, P. Askerlund, M.G. Plamgren [1997] FEBS Lett 400: 324-328) comigrated with vacuolar membrane markers, whereas a 116-kD caM-binding Ca(2+)-ATPase co-migrated with a marker for the plasma membrane. The 116 kD Ca(2+)-ATPase was enriched in plasma membranes obtained by aqueous two-phase partitioning, which is in agreement with a plasma membrane location of this Ca(2+)-ATPase. Countercurrent distribution of a low-density intracellular membrane fraction in an aqueous two-phase system resulted in the separation of the endoplasmic reticulum and vacuolar membranes. The 111-kD Ca(2+)-ATPase co-migrated with a vacuolar membrane marker after countercurrent distribution but not with markers for the endoplasmic reticulum. A vacuolar membrane location of the 111-kD Ca(2+)-AtPase was further supported by experiments with isolated vacuoles from cauliflower: (a) Immunoblotting with an antibody against the 111-kD Ca(2+)-ATPase showed that it was associated with the vacuoles, and (b) ATP-dependent Ca2+ uptake by the intact vacuoles was found to be CaM stimulated and partly protonophore insensitive.
Collapse
Affiliation(s)
- P Askerlund
- Department of Plant Biochemistry, Lund University, Sweden.
| |
Collapse
|
15
|
Dainese P, James P, Baldan B, Carafoli E. Subcellular and tissue distribution, partial purification, and sequencing of calmodulin-stimulated Ca2+-transporting ATPases from barley (Hordeum vulgare L.) and tobacco (Nicotiana tabacum). EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:31-8. [PMID: 9063442 DOI: 10.1111/j.1432-1033.1997.00031.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The subcellular distribution of plasma-membrane-type Ca2+-transporting ATPases was studied in barley leaves (Hordeum vulgare L.). A highly enriched plasma membrane (PM) fraction was analysed for Ca2+ pumps and compared with several inner-membrane preparations, including the tonoplast, the envelope of the chloroplast, and an endoplasmic reticulum (ER)-enriched fraction. The enzymes were identified and characterised with regard to the phosphointermediate formation, their nucleotide specificity and their binding to calmodulin. A Ca2+-transporting ATPase (molecular mass approximately 130 kDa), which showed high specificity for ATP and high affinity for calmodulin, was localised in the PM. A 116-kDa Ca2+-transporting ATPase, probably located in the ER, showed lower nucleotide specificity and weaker affinity for calmodulin. A comparison of the distribution of the pumps in leaves and roots indicated that the ratio of expression of the two enzymes changed in a tissue-specific manner: the PM pump was dominant in leaves, while the inner-membrane pump was expressed at a higher level in the roots. For the purification of calmodulin-binding proteins (Ca2+ pumps), microsomes isolated from tobacco cell cultures were used. Two active Ca2+ pumps were identified, and the one at 116 kDa was partially sequenced.
Collapse
Affiliation(s)
- P Dainese
- Department of Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | |
Collapse
|
16
|
Hwang I, Ratterman DM, Sze H. Distinction between Endoplasmic Reticulum-Type and Plasma Membrane-Type Ca2+ Pumps (Partial Purification of a 120-Kilodalton Ca2+-ATPase from Endomembranes). PLANT PHYSIOLOGY 1997; 113:535-548. [PMID: 12223624 PMCID: PMC158170 DOI: 10.1104/pp.113.2.535] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two biochemical types of Ca2+-pumping ATPases were distinguished in membranes that were isolated from carrot (Daucus carota) suspension-cultured cells. One type hydrolyzed GTP nearly as well as ATP, was stimulated by calmodulin, and was resistant to cyclopiazonic acid. This plasma membrane (PM)-type pump was associated with PMs and endomembranes, including vacuolar membranes and the endoplasmic reticulum (ER). Another pump ("ER-type") that was associated mainly with the ER hydrolyzed ATP preferentially, was insensitive to calmodulin, and was inhibited partially by cyclopiazonic acid, a blocker of the animal sarcoplasmic/ER Ca2+ pump. Oxalate stimulation of Ca2+ accumulation by ER-type, but not PM-type, pump(s) indicated a separation of the two types on distinct compartments. An endomembrane 120-kD Ca2+ pump was partially purified by calmodulin-affinity chromatography. The purified polypeptide bound calmodulin reacted with antibodies to a calmodulin-stimulated Ca2+ pump from cauliflower and displayed [32P]phosphoenzyme properties that are characteristic of PM-type Ca2+ pumps. The purified ATPase corresponded to a phosphoenzyme and a 120-kD calmodulin-binding protein on endomembranes. Another PM-type pump was suggested by a 127-kD PM-associated protein that bound calmodulin. Thus, both ER- and PM-type Ca2+ pumps coexist in most plant tissues, and each type can be distinguished from another by a set of traits, even in partially purified membranes.
Collapse
Affiliation(s)
- I. Hwang
- Department of Plant Biology, and Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | | | | |
Collapse
|
17
|
Ferrol N, Bennett AB. A Single Gene May Encode Differentially Localized Ca2+-ATPases in Tomato. THE PLANT CELL 1996; 8:1159-1169. [PMID: 12239413 PMCID: PMC161195 DOI: 10.1105/tpc.8.7.1159] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previously, a partial-length cDNA and a complete genomic clone encoding a putative sarcoplasmic reticulum-type Ca2+-ATPase (LCA, Lycopersicon Ca2+-ATPase) were isolated from tomato. To determine the subcellular localization of this Ca2+-ATPase, specific polyclonal antibodies raised against a fusion protein encoding a portion of the LCA polypeptide were generated. Based on hybridization of the LCA cDNA and of the nucleotide sequence encoding the fusion protein to genomic DNA, it appears that LCA and the fusion protein domain are encoded by a single gene in tomato. Antibodies raised against the LCA domain fusion protein reacted specifically with two polypeptides of 116 and 120 kD that are localized in the vacuolar and plasma membranes, respectively. The distribution of vanadate-sensitive ATP-dependent Ca2+ transport activities in sucrose gradients coincided with the distribution of the immunodetected proteins. The ATP-dependent Ca2+ transport activities associated with tonoplast and plasma membrane fractions shared similar properties, because both fractions were inhibited by vanadate but insensitive to carbonyl cyanide m-chlorophenylhydrazone, nitrate, and calmodulin. Moreover, antibodies raised against the LCA domain fusion protein inhibited ATP-dependent Ca2+ uptake activity associated with both the tonoplast and plasma membrane fractions. These data suggest that a single gene (LCA) may encode two P-type Ca2+-ATPase isoforms that are differentially localized in the tonoplast and plasma membrane of tomato roots.
Collapse
Affiliation(s)
- N. Ferrol
- Mann Laboratory, Department of Vegetable Crops, University of California at Davis, Davis, California 95616
| | | |
Collapse
|
18
|
Barkla BJ, Pantoja O. PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS. ACTA ACUST UNITED AC 1996; 47:159-184. [PMID: 15012286 DOI: 10.1146/annurev.arplant.47.1.159] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.
Collapse
Affiliation(s)
- Bronwyn J. Barkla
- Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, UNAM, Cuernavaca, Morelos, Mexico, 62271
| | | |
Collapse
|
19
|
Askerlund P. Modulation of an Intracellular Calmodulin-Stimulated Ca2+-Pumping ATPase in Cauliflower by Trypsin (The Use of Calcium Green-5N to Measure Ca2+ Transport in Membrane Vesicles). PLANT PHYSIOLOGY 1996; 110:913-922. [PMID: 12226230 PMCID: PMC157791 DOI: 10.1104/pp.110.3.913] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effect of controlled trypsin digestion of a calmodulin-stimulated Ca2+-ATPase in low-density intracellular membranes from cauliflower (Brassica oleracea L.) inflorescences was investigated. Ca2+ uptake into vesicles was measured either continuously with the fluorescent Ca2+ indicator Calcium Green-5N or with a radio-active filter technique. Trypsin treatment of vesicles resulted in a 3-fold activation of Ca2+ uptake and loss of calmodulin sensitivity. Immunoblotting experiments with an antiserum raised against the Ca2+-ATPase showed that the trypsin activation was accompanied by a decrease in the amount of intact Ca2+-ATPase (111 kD) and by successive appearances of polypeptides of 102 and 99 to 84 kD. 125I-Calmodulin overlays showed that only the intact Ca2+-ATPase bound calmodulin. Removal of the calmodulin-binding domain (about 9 kD) was not enough to obtain full activation. Trypsin proteolysis resulted in a Ca2+ concentration necessary for half-maximal activity of 0.5 [mu]M, whereas a value of about 2 [mu]M was obtained with untreated membranes in the presence of calmodulin. Without trypsin treatment or calmodulin the activity was not saturated even at 57 [mu]M free Ca2+. The data suggest that trypsin digestion and calmodulin activate the cauliflower Ca2+-ATPase by at least partly different mechanisms.
Collapse
Affiliation(s)
- P. Askerlund
- Department of Plant Biochemistry, Lund University, P.O. Box 117, S-221 00 Lund, Sweden
| |
Collapse
|
20
|
Snedden WA, Arazi T, Fromm H, Shelp BJ. Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase. PLANT PHYSIOLOGY 1995; 108:543-549. [PMID: 12228492 PMCID: PMC157373 DOI: 10.1104/pp.108.2.543] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recently, we provided preliminary evidence for calcium (Ca2+)/calmodulin (CaM) stimulation of plant glutamate decarboxylase (GAD; EC 4.1.1.15). In the present study, a detailed characterization of the phenomenon is described. GAD was partially purified from various soybean (Glycine max L. Merr.) tissues (developing seed coat and cotyledons, leaf, and root) in the presence of EDTA by a combination of ammonium sulfate precipitation and anion-exchange fast protein liquid chromatography. GAD activity showed a sharp optimum at pH 5.8, with about 12% of maximal activity at pH 7. It was stimulated 2- to 8-fold (depending on the tissue source) in the presence of Ca2+/CaM at pH 7 but not at pH 5.8. Furthermore, when the protease inhibitor phenylmethylsulfonyl fluoride was omitted from the purification procedure, GAD activity was insensitive to Ca2+/CaM but was similar in magnitude to CaM-stimulated activity. The stimulation by Ca2+/CaM was fully inhibited by the CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfon-amide and trifluoperazine. With saturating CaM or Ca2+, the concentrations of Ca2+ and CaM required for half-maximal stimulation were about 7 to 11 [mu]M and 25 nM, respectively. The effect of Ca2+ and CaM appeared to be through a 2.4-fold stimulation of Vmax and a 55% reduction in Km. The results suggested that GAD is activated via Ca2+ signal transduction.
Collapse
Affiliation(s)
- W. A. Snedden
- Department of Horticultural Science and Interdepartmental Plant Physiology Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (W.A.S., B.J.S.)
| | | | | | | |
Collapse
|
21
|
Rasi-Caldogno F, Carnelli A, De Michelis MI. Identification of the Plasma Membrane Ca2+-ATPase and of Its Autoinhibitory Domain. PLANT PHYSIOLOGY 1995; 108:105-113. [PMID: 12228456 PMCID: PMC157310 DOI: 10.1104/pp.108.1.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effect of controlled proteolysis on the plasma membrane (PM)Ca2+-ATPase was studied at the molecular level in PM purified from radish (Raphanus sativus L.) seedlings. Two new methods for labeling the PM Ca2+-ATPase are described. The PM Ca2+-ATPase can be selectively labeled by treatment with micromolar fluorescein isothiocyanate (FITC), a strong inhibitor of enzyme activity. Both inhibition of activity and FITC binding to the PM Ca2+-ATPase are suppressed by millimolar MgITP. The PM Ca2+-ATPase maintains the capability to bind calmodulin also after sodium dodecyl sulfate gel electrophoresis and blotting; therefore, it can be conveniently identified by 125l-calmodulin overlay in the presence of calcium. With both methods a molecular mass of 133 kD can be calculated for the PM Ca2+-ATPase. FITC-labeled PM Ca2+-ATPase co-migrates with the phosphorylated intermediate of the enzyme[mdash]labeled by incubation with [[gamma]-32P]GTP in the presence of calcium[mdash]on acidic sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Controlled trypsin treatment of purified PM determines a reduction of the molecular mass of the PM Ca2+-ATPase from 133 to 118 kD parallel to the increase of enzyme activity. Only the 133-kD but not the 118-kD PM Ca2+-ATPase binds calmodulin. These results indicate that trypsin removes from the PM Ca2+-ATPase an autoinhibitory domain that contains the calmodulin-binding domain of the enzyme.
Collapse
Affiliation(s)
- F. Rasi-Caldogno
- Centro di Studio del Consiglio Nazionale delle Ricerche per la Biologia Cellulare e Molecolare delle Piante, Dipartimento di Biologia, Universita di Milano, via G. Celoria, 26, 20133 Milano, Italy (F.R.-C., A.C.)
| | | | | |
Collapse
|
22
|
Kanamaru K, Kashiwagi S, Mizuno T. A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Mol Microbiol 1994; 13:369-77. [PMID: 7984114 DOI: 10.1111/j.1365-2958.1994.tb00430.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
P-type ATPases constitute a large family of cation pumps that play crucial physiological roles in many organisms, including bacteria, plants and mammals. They are postulated to play important roles in a variety of environmental adaptation systems. Recently, we cloned two distinct putative P-type ATPase genes (pacS and pacL) from a photosynthetic cyanobacterium, Synechococcus species PCC7942. In this study, one of the gene products (named PacS) was found to possess a putative metal-binding motif (Gly-Met-X-Cys-X-X-Cys) in its N-terminal portion. Thus we supposed that this ATPase may function as a metal pump. Indeed, the results of Northern blotting analysis showed that pacS-mRNA specifically increases upon addition of copper or silver to the growth medium. The results of Western blotting analysis confirmed the view that PacS accumulates in copper-treated Synechococcus cells. Thus we concluded that the expression of PacS ATPase is regulated in response to the change in concentration of external metals, namely copper and silver. Consistent with this, an insertional inactivation mutant of pacS exhibited hypersensitivity in terms of growth to these potentially toxic metals. It was also revealed that PacS was mainly located in the thylakoid membrane, in which the photosynthetic reactions take place. This P-type ATPase in the thylakoid membrane is implicated as a copper-transporting system that may be involved in copper-homeostasis crucial to the photosynthetic thylakoid function.
Collapse
Affiliation(s)
- K Kanamaru
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|
23
|
Thomson LJ, Hall JL, Williams LE. A Study of the Effect of Inhibitors of the Animal Sarcoplasmic/Endoplasmic Reticulum-Type Calcium Pumps on the Primary Ca2+-ATPases of Red Beet. PLANT PHYSIOLOGY 1994; 104:1295-1300. [PMID: 12232168 PMCID: PMC159293 DOI: 10.1104/pp.104.4.1295] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The inhibitor sensitivity of the endoplasmic reticulum (ER) and plasma membrane (PM) calcium pumps of red beet (Beta vulgaris L.) were studied by measuring the ATP-driven accumulation of 45Ca2+ into isolated membrane vesicles. Both transporters were strongly inhibited by 50 [mu]mol m-3 erythrosin B, but only by 50% in the presence of 100 mmol m-3 vanadate. A number of inhibitors considered to be specific for the sarcoplasmic reticulum (SR)/ER-type calcium pump in animal cells were used to further characterize the PM and ER Ca2+-ATPases in red beet and were compared with their effect on the transport and hydrolytic activities of the PM and tonoplast H+-ATPases. The hydroquinones 2,5-di(tert-butyl)-1,4-benzohydroquinone and 2,5-di(tert-amyl)-1,4-benzohydroquinone produced around 20 and 40% inhibition of activity, respectively, of the PM and ER calcium pumps and the PM H+-ATPase when present at concentrations of 30 mmol m-3. In contrast, the vacuolar proton pump displayed a much higher sensitivity to these two compounds. Nonylphenol appeared to have a general inhibitory effect on all four membrane transport proteins and gave almost complete inhibition when present at a concentration of 100 mmol m-3. Thapsigargin and the structurally related compound trilobolide produced 50% inhibition of both the ER and PM calcium pumps at concentrations of 12.5 and 24 mmol m-3, respectively. The PM and tonoplast proton pumps were also sensitive to these compounds. The ER and PM calcium pumps were almost completely insensitive to cyclopiazonic acid (CPA) up to a concentration of 20 mmol m-3. When present at 100 mmol m-3 CPA caused 30% inhibition of the transport properties of all four ATPases. The high concentrations of all of the inhibitors of the SR/ER Ca-ATPase required to inhibit the red beet ER calcium pump, together with the similar effects on the PM calcium pump and the PM and tonoplast proton pumps, suggests that these hydrophobic compounds have a general nonselective action in red beet, possibly through disruption of membrane lipid-protein interactions.
Collapse
Affiliation(s)
- L. J. Thomson
- Department of Biology, Biomedical Sciences Building, University of Southampton, Southampton, SO9 3TU, United Kingdom
| | | | | |
Collapse
|
24
|
Abstract
The supposition that all eukaryotic cell types contain a plasma membrane (PM)-type Ca pump (i.e. a Ca pump which is directly-stimulated by calmodulin and located exclusively at the PM) has been questioned by recent data from higher plant cells. These studies suggest the presence of Ca pumps directly stimulated by calmodulin associated with an intracellular membrane (probably the endoplasmic reticulum, ER) in a variety of monocotelydonous and dicotelydonous species. Thus plants have a 'PM-type' Ca pump at an intracellular membrane. The evidence for this includes studies on isolated membranes, purification and functional reconstitution and phosphorylated intermediate formation. Plant cells also contain a homologue of the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) Ca pump, probably located at the ER. The implications of these new data for our appreciation of the structure, function and location of eukaryotic Ca pumps are discussed, together with recent data from the use of inhibitors specific to mammalian ER/SR Ca pumps.
Collapse
Affiliation(s)
- D E Evans
- School of Biological and Molecular Sciences, Oxford Brookes University, UK
| |
Collapse
|
25
|
Rasi-Caldogno F, Carnelli A, De Michelis MI. Controlled Proteolysis Activates the Plasma Membrane Ca2+ Pump of Higher Plants (A Comparison with the Effect of Calmodulin in Plasma Membrane from Radish Seedlings). PLANT PHYSIOLOGY 1993; 103:385-390. [PMID: 12231945 PMCID: PMC158994 DOI: 10.1104/pp.103.2.385] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effects of calmodulin and of controlled trypsin treatments on the activity of the Ca2+ pump were investigated in plasma membrane purified from radish (Raphanus sativus L.) seedlings. Treatment of the plasma membrane with ethylenediaminetetra-acetate (EDTA), which removed about two-thirds of the plasma membrane-associated calmodulin, markedly increased the stimulation of the Ca2+ pump by calmodulin. In EDTA-treated plasma membrane, stimulation by calmodulin of the Ca2+ pump activity was maximal at low free Ca2+ (2-5 [mu]M) and decreased with the increase of free Ca2+ concentration. The Ca2+ pump activity was stimulated also by a controlled treatment of the plasma membrane with trypsin: the effect of trypsin treatment depended on the concentration of both trypsin and plasma membrane proteins and on the duration of incubation. Stimulation of the Ca2+ pump activity by trypsin treatment of the plasma membrane was similar to that induced by calmodulin both in extent and in dependence on the free Ca2+ concentration in the assay medium. Moreover, the Ca2+ pump of trypsin-treated plasma membrane was insensitive to further stimulation by calmodulin, suggesting that limited proteolysis preferentially cleaves a regulatory domain of the enzyme that is involved in its activation by calmodulin.
Collapse
Affiliation(s)
- F. Rasi-Caldogno
- Centro di Studio del Consiglio Nazionale delle Ricerche per la Biologia Cellulare e Molecolare delle Piante, Dipartimento di Biologia, Universita di Milano, via G. Celoria 26, 20133 Milano, Italy (F.R.-C., A.C.)
| | | | | |
Collapse
|
26
|
Thomson LJ, Xing T, Hall JL, Williams LE. Investigation of the Calcium-Transporting ATPases at the Endoplasmic Reticulum and Plasma Membrane of Red Beet (Beta vulgaris). PLANT PHYSIOLOGY 1993; 102:553-564. [PMID: 12231844 PMCID: PMC158812 DOI: 10.1104/pp.102.2.553] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Calcium-transporting ATPases were compared in endoplasmic reticulum (ER)- and plasma membrane-enriched fractions of red beet (Beta vulgaris L.) storage tissue by measuring 45Ca uptake and calcium-dependent phosphoenzyme formation. The plasma membrane fraction was prepared by aqueous two-phase partitioning of a microsomal fraction and collecting the upper phase. The ER-enriched fraction was obtained by submitting a sucrose-gradient ER-enriched fraction to aqueous two-phase partitioning and collecting the lower phase; this reduced contaminating plasma membrane, which partitioned into the upper phase. The ATP-dependent calcium uptake observed in both fractions was released by the calcium ionophore A23187. Calcium uptake showed saturation kinetics for calcium with Km values of 0.92 mmol m-3 for the ER fraction and 1.24 mmol m-3 for the plasma membrane fraction. Uptake into both fractions was inhibited by vanadate and erythrosin B, although the plasma membrane system was slightly more sensitive to both inhibitors. Cyclopiazonic acid and thapsigargin, at low concentrations, had no marked effect on uptake. The plasma membrane system was less substrate-specific for ATP than the ER system, since it was able to use GTP and ITP to drive calcium transport at up to 50% of the level obtained with ATP. Following phosphorylation with [[gamma]-32P]ATP, two high molecular mass, calcium-dependent phosphoproteins (119 and 124 kD) and a low molecular mass, calcium-independent phosphoprotein (17 kD) were observed in the plasma membrane fraction. The ER fraction showed one high molecular mass phosphoprotein (119 kD) in the presence of calcium and two low molecular mass phosphoproteins (17 and 20 kD) that showed no calcium dependence. The low molecular mass phosphoproteins were insensitive to hydroxyl-amine, but they did show turnover. The identity of these proteins is unknown, but they do not have the properties of phosphorylated intermediates of calcium-ATPases. In contrast, the high molecular mass phosphoproteins displayed properties consistent with their representing phosphorylated intermediates of E1E2-type ATPases; they were hydroxylamine-sensitive, showed rapid turnover, and were inhibited by vanadate. Because they showed calcium-dependent phosphorylation and were sensitive to erythrosin B, the 119- and 124-kD phosphoproteins may be phosphorylated intermediates of the ER and plasma membrane calcium ATPases. These phosphoproteins were characterized further with respect to inhibitor sensitivity, responses to ions, and substrate specificity.
Collapse
Affiliation(s)
- L. J. Thomson
- Department of Biology, Biomedical Sciences Building, University of Southampton, Southampton, SO9 3TU United Kingdom
| | | | | | | |
Collapse
|
27
|
Chen FH, Ratterman DM, Sze H. A Plasma Membrane-Type Ca2+-ATPase of 120 Kilodaltons on the Endoplasmic Reticulum from Carrot (Daucus carota) Cells (Properties of the Phosphorylated Intermediate). PLANT PHYSIOLOGY 1993; 102:651-661. [PMID: 12231855 PMCID: PMC158825 DOI: 10.1104/pp.102.2.651] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cytosolic Ca2+ levels are regulated in part by Ca2+-pumping ATPases that export Ca2+ from the cytoplasm; however, the types and properties of Ca2+ pumps in plants are not well understood. We have characterized the kinetic properties of a 120-kD phosphoenzyme (PE) intermediate formed during the reaction cycle of a Ca2+-ATPase from suspension-cultured carrot (Daucus carota) cells. Only one Ca2+-dependent phosphoprotein was formed when carrot membrane vesicles were incubated with [[gamma]-32P]ATP (W.L. Hsieh, W.S. Pierce, and H. Sze [1991] Plant Physiol 97: 1535-1544). Formation of this 120-kD phosphoprotein was inhibited by vanadate, enhanced by La3+, and decreased by hydroxylamine, confirming its identification as an intermediate of a phosphorylated-type Ca2+-translocating ATPase. The 120-kD Ca2+-ATPase was most abundant in endoplasmic reticulum-enriched fractions, in which the Ca2+-ATPase was estimated to be 0.1% of membrane protein. Direct quantitation of Ca2+-dependent phosphoprotein was used to examine the kinetics of PE formation. PE formation exhibited a Km for Ca2+ of 1 to 2 [mu]M and a Km for ATP of 67 nM. Relative affinities of substrates, determined by competition experiments, were 0.075 [mu]M for ATP, 1 [mu]M for ADP, 100 [mu]M for ITP, and 250 [mu]M for GTP. Thapsigargin and cyclopiazonic acid, specific inhibitors of animal sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, had no effect on PE formation; erythrosin B inhibited with 50% inhibition at <0.1 [mu]M. Calmodulin (1 [mu]M) stimulated PE formation by 25%. The results indicate that the carrot 120-kD Ca2+-ATPase is similar but not identical to animal plasma membrane-type Ca2+- ATPase and yet is located on endomembranes, such as the endoplasmic reticulum. This type of Ca2+ pump may reside on the cortical endoplasmic reticulum, which is thought to play a major role in anchoring the cytoskeleton and in facilitating secretion.
Collapse
Affiliation(s)
- F. H. Chen
- Department of Botany and The Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | | | | |
Collapse
|