1
|
Yang R, Yang T, Zhang H, Qi Y, Xing Y, Zhang N, Li R, Weeda S, Ren S, Ouyang B, Guo YD. Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 77:23-34. [PMID: 24531233 DOI: 10.1016/j.plaphy.2014.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/25/2014] [Indexed: 05/24/2023]
Abstract
The response and adaptation of plants to different environmental stresses are of great interest as they provide the key to understanding the mechanisms underlying stress tolerance. In this study, the changing patterns of four endogenous hormones and various physiological and biochemical parameters of both a salt-tolerant (LA2711) and a salt-sensitive (ZS-5) tomato cultivar were examined under salt stress and non-stress conditions. Additionally, the transcription of key genes in the abscisic acid (ABA) biosynthesis and metabolism were analyzed at different time points. The results indicated that gene expression responsible for ABA biosynthesis and metabolism coincided with the hormone level, and SlNCED1 and SlCYP707A3 may play major roles in the process. LA2711 performed superior to ZS-5 on various parameters, including seed germination, Na(+) compartmentation, selective absorption of K(+), and antioxidant enzymes activity. The difference in salt tolerance between the two genotypes could be attributed to the different levels of ABA due to differences in gene expression of key genes in ABA biosynthesis and metabolism. Although gibberellin, cytokinin and auxin were involved, our results indicated that ABA signaling plays a major role in tomato salt tolerance. As compared to ZS-5, LA2711 had a higher capability to selectively absorb and redistribute K(+) and a higher tolerance to Na(+) in young leaves, which may be the main physiological mechanisms of salt tolerance.
Collapse
Affiliation(s)
- Rongchao Yang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Ting Yang
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haijun Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Yan Qi
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Yanxia Xing
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Na Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Ren Li
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Sarah Weeda
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA 23806, USA
| | - Shuxin Ren
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA 23806, USA
| | - Bo Ouyang
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yang-Dong Guo
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
2
|
Huertas R, Rubio L, Cagnac O, García-Sánchez MJ, Alché JDD, Venema K, Fernández JA, Rodríguez-Rosales MP. The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. PLANT, CELL & ENVIRONMENT 2013; 36:2135-49. [PMID: 23550888 DOI: 10.1111/pce.12109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 05/18/2023]
Abstract
The endosomal LeNHX2 ion transporter exchanges H(+) with K(+) and, to lesser extent, Na(+) . Here, we investigated the response to NaCl supply and K(+) deprivation in transgenic tomato (Solanum lycopersicum L.) overexpressing LeNHX2 and show that transformed tomato plants grew better in saline conditions than untransformed controls, whereas in the absence of K(+) the opposite was found. Analysis of mineral composition showed a higher K(+) content in roots, shoots and xylem sap of transgenic plants and no differences in Na(+) content between transgenic and untransformed plants grown either in the presence or the absence of 120 mm NaCl. Transgenic plants showed higher Na(+)/H(+) and, above all, K(+)/H(+) transport activity in root intracellular membrane vesicles. Under K(+) limiting conditions, transgenic plants enhanced root expression of the high-affinity K(+) uptake system HAK5 compared to untransformed controls. Furthermore, tomato overexpressing LeNHX2 showed twofold higher K(+) depletion rates and half cytosolic K(+) activity than untransformed controls. Under NaCl stress, transgenic plants showed higher uptake velocity for K(+) and lower cytosolic K(+) activity than untransformed plants. These results indicate the fundamental role of K(+) homeostasis in the better performance of LeNHX2 overexpressing tomato under NaCl stress.
Collapse
Affiliation(s)
- Raúl Huertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda, 1, 18008, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Simaei M, Khavari-Nejad RA, Bernard F. Exogenous Application of Salicylic Acid and Nitric Oxide on the Ionic Contents and Enzymatic Activities in NaCl-Stressed Soybean Plants. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajps.2012.310180] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Leidi EO, Barragán V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernández JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM. The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:495-506. [PMID: 19912566 DOI: 10.1111/j.1365-313x.2009.04073.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
NHX-type antiporters in the tonoplast have been reported to increase the salt tolerance of various plants species, and are thought to mediate the compartmentation of Na(+) in vacuoles. However, all isoforms characterized so far catalyze both Na(+)/H(+) and K(+)/H(+) exchange. Here, we show that AtNHX1 has a critical involvement in the subcellular partitioning of K(+), which in turn affects plant K(+) nutrition and Na(+) tolerance. Transgenic tomato plants overexpressing AtNHX1 had larger K(+) vacuolar pools in all growth conditions tested, but no consistent enhancement of Na(+) accumulation was observed under salt stress. Plants overexpressing AtNHX1 have a greater capacity to retain intracellular K(+) and to withstand salt-shock. Under K(+)-limiting conditions, greater K(+) compartmentation in the vacuole occurred at the expense of the cytosolic K(+) pool, which was lower in transgenic plants. This caused the early activation of the high-affinity K(+) uptake system, enhanced K(+) uptake by roots, and increased the K(+) content in plant tissues and the xylem sap of transformed plants. Our results strongly suggest that NHX proteins are likely candidates for the H(+)-linked K(+) transport that is thought to facilitate active K(+) uptake at the tonoplast, and the partitioning of K(+) between vacuole and cytosol.
Collapse
Affiliation(s)
- Eduardo O Leidi
- Instituto de Recursos Naturales y Agrobiología (IRNASE), Consejo Superior de Investigaciones Científicas, Reina Mercedes, 10, Sevilla - 41012, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Schapire AL, Valpuesta V, Botella MA. Plasma membrane repair in plants. TRENDS IN PLANT SCIENCE 2009; 14:645-652. [PMID: 19819752 DOI: 10.1016/j.tplants.2009.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/01/2009] [Accepted: 09/09/2009] [Indexed: 05/28/2023]
Abstract
Resealing is the membrane-repair process that enables cells to survive disruption, preventing the loss of irreplaceable cell types and eliminating the cost of replacing injured cells. Given that failure in the resealing process in animal cells causes diverse types of muscular dystrophy, plasma membrane repair has been extensively studied in these systems. Animal proteins with Ca(2+)-binding domains such as synaptotagmins and dysferlin mediate Ca(2+)-dependent exocytosis to repair plasma membranes after mechanical damage. Until recently, no components or proof for membrane repair mechanisms have been discovered in plants. However, Arabidopsis SYT1 is now the first plant synaptotagmin demonstrated to participate in Ca(2+)-dependent repair of membranes. This suggests a conservation of membrane repair mechanisms between animal and plant cells.
Collapse
Affiliation(s)
- Arnaldo L Schapire
- Laboratorio de Bioquímica y Biotecnología Vegetal, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, Spain
| | | | | |
Collapse
|
6
|
Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. THE PLANT CELL 2008; 20:3374-88. [PMID: 19088329 PMCID: PMC2630439 DOI: 10.1105/tpc.108.063859] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/06/2008] [Accepted: 11/30/2008] [Indexed: 05/18/2023]
Abstract
Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca(2+)-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca(2+)-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness.
Collapse
Affiliation(s)
- Arnaldo L Schapire
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang SM, Zhang JL, Flowers TJ. Low-affinity Na+ uptake in the halophyte Suaeda maritima. PLANT PHYSIOLOGY 2007; 145:559-71. [PMID: 17766398 PMCID: PMC2048717 DOI: 10.1104/pp.107.104315] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/23/2007] [Indexed: 05/17/2023]
Abstract
Na(+) uptake by plant roots has largely been explored using species that accumulate little Na(+) into their shoots. By way of contrast, the halophyte Suaeda maritima accumulates, without injury, concentrations of the order of 400 mM NaCl in its leaves. Here we report that cAMP and Ca(2+) (blockers of nonselective cation channels) and Li(+) (a competitive inhibitor of Na(+) uptake) did not have any significant effect on the uptake of Na(+) by the halophyte S. maritima when plants were in 25 or 150 mM NaCl (150 mM NaCl is near optimal for growth). However, the inhibitors of K(+) channels, TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (5 mM), significantly reduced the net uptake of Na(+) from 150 mM NaCl over 48 h, by 54%, 24%, and 29%, respectively. TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (1 mm) also significantly reduced (22)Na(+) influx (measured over 2 min in 150 mM external NaCl) by 47%, 30%, and 31%, respectively. In contrast to the situation in 150 mm NaCl, neither TEA(+) (1-10 mM) nor Cs(+) (0.5-10 mM) significantly reduced net Na(+) uptake or (22)Na(+) influx in 25 mM NaCl. Ba(2+) (at 5 mm) did significantly decrease net Na(+) uptake (by 47%) and (22)Na(+) influx (by 36% with 1 mM Ba(2+)) in 25 mM NaCl. K(+) (10 or 50 mM) had no effect on (22)Na(+) influx at concentrations below 75 mM NaCl, but the influx of (22)Na(+) was inhibited by 50 mM K(+) when the external concentration of NaCl was above 75 mM. The data suggest that neither nonselective cation channels nor a low-affinity cation transporter are major pathways for Na(+) entry into root cells. We propose that two distinct low-affinity Na(+) uptake pathways exist in S. maritima: Pathway 1 is insensitive to TEA(+) or Cs(+), but sensitive to Ba(2+) and mediates Na(+) uptake under low salinities (25 mM NaCl); pathway 2 is sensitive to TEA(+), Cs(+), and Ba(2+) and mediates Na(+) uptake under higher external salt concentrations (150 mM NaCl). Pathway 1 might be mediated by a high-affinity K transporter-type transporter and pathway 2 by an AKT1-type channel.
Collapse
Affiliation(s)
- Suo-Min Wang
- School of Pastoral Agriculture Science and Technology, Key Laboratory of Grassland Agro-ecosystem, Ministry of Agriculture, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | |
Collapse
|
8
|
Rosado A, Schapire AL, Bressan RA, Harfouche AL, Hasegawa PM, Valpuesta V, Botella MA. The Arabidopsis tetratricopeptide repeat-containing protein TTL1 is required for osmotic stress responses and abscisic acid sensitivity. PLANT PHYSIOLOGY 2006; 142:1113-26. [PMID: 16998088 PMCID: PMC1630727 DOI: 10.1104/pp.106.085191] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the Arabidopsis (Arabidopsis thaliana) TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 1 (TTL1) cause reduced tolerance to NaCl and osmotic stress that is characterized by reduced root elongation, disorganization of the root meristem, and impaired osmotic responses during germination and seedling development. Expression analyses of genes involved in abscisic acid (ABA) biosynthesis and catabolism suggest that TTL1 is not involved in the regulation of ABA levels but is required for ABA-regulated responses. TTL1 regulates the transcript levels of several dehydration-responsive genes, such as the transcription factor DREB2A, and genes encoding dehydration response proteins, such as ERD1 (early response to dehydration 1), ERD3, and COR15a. The TTL1 gene encodes a novel plant protein with tetratricopeptide repeats and a region with homology to thioredoxin proteins. Based on homology searches, there are four TTL members in the Arabidopsis genome with similar intron-exon structure and conserved amino acid domains. Proteins containing tetratricopeptide repeat motifs act as scaffold-forming multiprotein complexes and are emerging as essential elements for plant hormonal responses (such as gibberellin responses and ethylene biosynthesis). In this report, we identify TTL1 as a positive regulator of ABA signaling during germination and seedling development under stress.
Collapse
Affiliation(s)
- Abel Rosado
- Departamento de Biología Molecular y Bioquímica Universidad de Málaga, 29010 Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|