1
|
Yamuna KT, Hamza Areekan A, Shah JM. Identification of a suitable method of inoculation for reducing background effect in mock-inoculated controls during gene expression studies in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1619-1632. [PMID: 38162917 PMCID: PMC10754790 DOI: 10.1007/s12298-023-01381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
The recent advancement in the field of transcriptome and methylome sequencing helped scientists to analyse the gene expression and epigenetic status of different genes. Several genes and their regulatory pathways have been discovered due to research into plant-microbe interactions. Previous research on plant-Agrobacterium interactions found that the method of inoculation (wounding using a syringe), resulted in altered DNA methylation of the host DNA repair gene promoters. The expression study of host defence genes revealed that the method of inoculation masked the host response to bacteria. It could be possible that these method-induced changes could interfere with various defence regulatory pathways, which otherwise would not be triggered by the bacteria alone. Hence, it would be critical to identify an appropriate method of inoculation that could provide more unambiguous interpretation of studies involving gene expression and regulation in plants under bacterial stress. The expression dynamics of two defence genes, PR1 and NPR1, under various combinations of parameters such as three different methods of inoculation, treatment with five different bacterial re-suspending solutions, and at three different post-inoculation time intervals were examined in the model plant Arabidopsis thaliana. The H2O2 and superoxide (O2-) production due to various inoculation methods and re-suspending solutions on the host was also studied. The flood inoculation method, which used sterile deionized water (SDW) to re-suspend bacteria, elicited the slightest response in mock-inoculated plants. Under this method, Agrobacterium strains carrying the GUS reporter gene were used to test bacterial infectivity. Blue sectors were found in plants infected for 24 and 48 h. PR1 and NPR1 expression were significantly altered at various time intervals after inoculation. So, for experiments involving Arabidopsis-Agrobacterium interaction with minimal background influences, such as gene expression and epigenetic analyses, the flood inoculation method using SDW as the resuspension liquid is proposed. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01381-x.
Collapse
Affiliation(s)
- K. T. Yamuna
- Department of Plant Science, Central University of Kerala, Periya, Kasaragod, Kerala 671320 India
| | - A. Hamza Areekan
- Department of Plant Science, Central University of Kerala, Periya, Kasaragod, Kerala 671320 India
| | - Jasmine M. Shah
- Department of Plant Science, Central University of Kerala, Periya, Kasaragod, Kerala 671320 India
| |
Collapse
|
2
|
Jat SK, Bhattacharya J, Sharma MK. Nanomaterial based gene delivery: a promising method for plant genome engineering. J Mater Chem B 2020; 8:4165-4175. [PMID: 32285905 DOI: 10.1039/d0tb00217h] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials have attracted considerable attention from researchers in recent years due to their unique architecture and small dimensions. Significant progress has been made in the therapeutics, diagnostics, and delivery of biomolecules in animal cells. However, nanotechnology is still in its infancy in plant science. Nanotechnology offers tremendous opportunities for crop improvement and would make significant contributions to increase agricultural productivity. There are several reports where nanomaterial-induced improvement of the agronomic traits has been successfully achieved. However, very little is known about the interactions of nanomaterials with plant cells and the mechanism of internalization and delivery of biomolecules using nanoparticles as a carrier. Due to the presence of the cell wall, the delivery of biomolecules such as nucleic acids is a major challenge, which limits the application of nanomaterials in genetic engineering-mediated crop improvement. However, in recent years, the use of various nanomaterials like carbon nanotubes, magnetic nanoparticles, mesoporous silica nanoparticles, etc. for nucleic acid delivery in plant cells has been reported as proof of concept. Here, we intend to update researchers about the use of various nanomaterials as a novel gene delivery tool for plant genetic engineering. This review also explores the progress made in nanoparticle-mediated nucleic acid delivery in plant cells and their role in plant genome engineering.
Collapse
Affiliation(s)
- Sanjeev K Jat
- Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | |
Collapse
|
3
|
Knight CJ, Bailey AM, Foster GD. Investigating Agrobacterium-mediated transformation of Verticillium albo-atrum on plant surfaces. PLoS One 2010; 5:e13684. [PMID: 21060684 PMCID: PMC2965119 DOI: 10.1371/journal.pone.0013684] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/05/2010] [Indexed: 11/18/2022] Open
Abstract
Background Agrobacterium tumefaciens has long been known to transform plant tissue in nature as part of its infection process. This natural mechanism has been utilised over the last few decades in laboratories world wide to genetically manipulate many species of plants. More recently this technology has been successfully applied to non-plant organisms in the laboratory, including fungi, where the plant wound hormone acetosyringone, an inducer of transformation, is supplied exogenously. In the natural environment it is possible that Agrobacterium and fungi may encounter each other at plant wound sites, where acetosyringone would be present, raising the possibility of natural gene transfer from bacterium to fungus. Methodology/Principal Findings We investigate this hypothesis through the development of experiments designed to replicate such a situation at a plant wound site. A. tumefaciens harbouring the plasmid pCAMDsRed was co-cultivated with the common plant pathogenic fungus Verticillium albo-atrum on a range of wounded plant tissues. Fungal transformants were obtained from co-cultivation on a range of plant tissue types, demonstrating that plant tissue provides sufficient vir gene inducers to allow A. tumefaciens to transform fungi in planta. Conclusions/Significance This work raises interesting questions about whether A. tumefaciens may be able to transform organisms other than plants in nature, or indeed should be considered during GM risk assessments, with further investigations required to determine whether this phenomenon has already occurred in nature.
Collapse
Affiliation(s)
- Claire J. Knight
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Tenea GN, Spantzel J, Lee LY, Zhu Y, Lin K, Johnson SJ, Gelvin SB. Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants. THE PLANT CELL 2009; 21:3350-67. [PMID: 19820187 PMCID: PMC2782275 DOI: 10.1105/tpc.109.070607] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 08/10/2009] [Accepted: 09/25/2009] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana histone H2A-1 is important for Agrobacterium tumefaciens-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, results in decreased T-DNA integration into the genome of Arabidopsis roots, whereas overexpression of HTA1 increases transformation frequency. To understand the mechanism by which HTA1 enhances transformation, we investigated the effects of overexpression of numerous Arabidopsis histones on transformation and transgene expression. Transgenic Arabidopsis containing cDNAs encoding histone H2A (HTA), histone H4 (HFO), and histone H3-11 (HTR11) displayed increased transformation susceptibility, whereas histone H2B (HTB) and most histone H3 (HTR) cDNAs did not increase transformation. A parallel increase in transient gene expression was observed when histone HTA, HFO, or HTR11 overexpression constructs were cotransfected with double- or single-stranded forms of a gusA gene into tobacco (Nicotiana tabacum) protoplasts. However, these cDNAs did not increase expression of a previously integrated transgene. We identified the N-terminal 39 amino acids of H2A-1 as sufficient to increase transient transgene expression in plants. After transfection, transgene DNA accumulates more rapidly in the presence of HTA1 than with a control construction. Our results suggest that certain histones enhance transgene expression, protect incoming transgene DNA during the initial stages of transformation, and subsequently increase the efficiency of Agrobacterium-mediated transformation.
Collapse
|
5
|
Gelvin SB. Agrobacterium in the genomics age. PLANT PHYSIOLOGY 2009; 150:1665-76. [PMID: 19439569 PMCID: PMC2719113 DOI: 10.1104/pp.109.139873] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 05/06/2009] [Indexed: 05/18/2023]
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
6
|
Kovalchuk I, Boyko A. Improvement of Plant Transformation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2009. [DOI: 10.1201/9781420077070.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Gelvin SB, Kim SI. Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. ACTA ACUST UNITED AC 2007; 1769:410-21. [PMID: 17544520 DOI: 10.1016/j.bbaexp.2007.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/09/2007] [Accepted: 04/12/2007] [Indexed: 11/22/2022]
Abstract
Agrobacterium tumefaciens transfers DNA (T-DNA) to plant cells, where it integrates into the plant genome. Little is known about how T-DNA chooses sites within the plant chromosome for integration. Previous studies indicated that T-DNA preferentially integrates into transcriptionally active regions of the genome, especially in 5'-promoter regions. This would make sense, considering that chromatin structure surrounding active promoters may be more "open" and accessible to foreign DNA. However, recent results suggest that this seemingly non-random pattern of integration may be an artifact of selection bias, and that T-DNA may integrate more randomly than previously thought. In this chapter, I discuss the history of these observations and the role chromatin proteins may play in T-DNA integration and transgene expression. Understanding how chromatin conformation may influence T-DNA integration will be important in developing strategies for reproducible and stable transgene expression, and for gene targeting.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA.
| | | |
Collapse
|
8
|
Georgiev MI, Pavlov AI, Bley T. Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 2007; 74:1175-85. [PMID: 17294182 DOI: 10.1007/s00253-007-0856-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/15/2007] [Accepted: 01/21/2007] [Indexed: 10/23/2022]
Abstract
"Hairy root" systems, obtained by transforming plant tissues with the "natural genetic engineer" Agrobacterium rhizogenes, have been known for more than three decades. To date, hairy root cultures have been obtained from more than 100 plant species, including several endangered medicinal plants, affording opportunities to produce important phytochemicals and proteins in eco-friendly conditions. Diverse strategies can be applied to improve the yields of desired metabolites and to produce recombinant proteins. Furthermore, recent advances in bioreactor design and construction allow hairy root-based technologies to be scaled up while maintaining their biosynthetic potential. This review highlights recent progress in the field and outlines future prospects for exploiting the potential utility of hairy root cultures as "chemical factories" for producing bioactive substances.
Collapse
Affiliation(s)
- Milen I Georgiev
- Institute of Food Technology and Bioprocess Engineering, Dresden University of Technology, 01069 Dresden, Germany.
| | | | | |
Collapse
|
9
|
|
10
|
Shrawat AK, Lörz H. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:575-603. [PMID: 17309731 DOI: 10.1111/j.1467-7652.2006.00209.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cereal crops have been the primary targets for improvement by genetic transformation because of their worldwide importance for human consumption. For a long time, many of these important cereals were difficult to genetically engineer, mainly as a result of their inherent limitations associated with the resistance to Agrobacterium infection and their recalcitrance to in vitro regeneration. The delivery of foreign genes to rice plants via Agrobacterium tumefaciens has now become a routine technique. However, there are still serious handicaps with Agrobacterium-mediated transformation of other major cereals. In this paper, we review the pioneering efforts, existing problems and future prospects of Agrobacterium-mediated genetic transformation of major cereal crops, such as rice, maize, wheat, barley, sorghum and sugarcane.
Collapse
Affiliation(s)
- Ashok Kumar Shrawat
- Centre for Applied Plant Molecular Biology (AMP II), University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| | | |
Collapse
|
11
|
Frenkiel-Krispin D, Wolf SG, Albeck S, Unger T, Peleg Y, Jacobovitch J, Michael Y, Daube S, Sharon M, Robinson CV, Svergun DI, Fass D, Tzfira T, Elbaum M. Plant transformation by Agrobacterium tumefaciens: modulation of single-stranded DNA-VirE2 complex assembly by VirE1. J Biol Chem 2006; 282:3458-64. [PMID: 17060320 DOI: 10.1074/jbc.m605270200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agrobacterium tumefaciens infects plant cells by the transfer of DNA. A key factor in this process is the bacterial virulence protein VirE2, which associates stoichiometrically with the transported single-stranded (ss) DNA molecule (T-strand). As observed in vitro by transmission electron microscopy, VirE2-ssDNA readily forms an extended helical complex with a structure well suited to the tasks of DNA protection and nuclear import. Here we have elucidated the role of the specific molecular chaperone VirE1 in regulating VireE2-VirE2 and VirE2-ssDNA interactions. VirE2 alone formed functional filamentous aggregates capable of ssDNA binding. In contrast, co-expression with VirE1 yielded monodisperse VirE1-VirE2 complexes. Cooperative binding of VirE2 to ssDNA released VirE1, resulting in a controlled formation mechanism for the helical complex that is further promoted by macromolecular crowding. Based on this in vitro evidence, we suggest that the constrained volume of the VirB channel provides a natural site for the exchange of VirE2 binding from VirE1 to the T-strand.
Collapse
Affiliation(s)
- Daphna Frenkiel-Krispin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Charity JA, Klimaszewska K. Persistence of Agrobacterium tumefaciens in transformed conifers. ACTA ACUST UNITED AC 2006; 4:167-77. [PMID: 16634222 DOI: 10.1051/ebr:2006001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Previous studies have shown that the widely used plant transformation vector Agrobacterium tumefaciens can persist in genetically engineered plants in vitro and in transgenic greenhouse-grown plants, despite the use of counter-selective antibiotics. However, little is known regarding Agrobacterium persistence in tree species. To understand the kinetics of A. tumefaciens decline and persistence in transformation experiments, we assayed for the presence of A. tumefaciens in spruce and pine embryogenic tissue for up to 10 weeks post-transformation. The A. tumefaciens populations declined rapidly in the first five days post-cocultivation but generally declined more slowly in pine, relative to spruce. No bacteria were detected in spruce embryogenic tissue beyond four weeks after cocultivation, however in pine there were -100 colony forming units per g tissue at 10 weeks post-cocultivation. We present evidence that the detection limit for PCR using virD2 primers to detect A. tumefaciens in a background of pine needle DNA was approximately 10(9)-10(10) A. tumefaciens cells per g of tissue. We also assayed for A. tumefaciens in transgenic pine and spruce embryogenic tissue and from needles, branches, stems and roots of transformed plants, up to four years post-inoculation. Occasionally A. tumefaciens was detected in embryogenic tissue up to 12 months post-inoculation. A. tumefaciens was never detected in cultured embryogenic tissue more than twelve months after inoculation, nor in developing somatic embryos or germinating plantlets, nor any of the parts of greenhouse-grown plants. From these data we conclude that if A. tumefaciens persists in transgenic conifers, it does so beneath our ability to detect it.
Collapse
Affiliation(s)
- Julia A Charity
- Cellwall Biotechnology Centre, Scion Group (formerly Forest Research), Private Bag 3020, Rotorua, New Zealand.
| | | |
Collapse
|
13
|
Cubero J, Lastra B, Salcedo CI, Piquer J, López MM. Systemic movement of Agrobacterium tumefaciens in several plant species. J Appl Microbiol 2006; 101:412-21. [PMID: 16882149 DOI: 10.1111/j.1365-2672.2006.02938.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The systemic movement of Agrobacterium spp. inside plants of different species was studied to determine the most valuable diagnostic methodology for their detection. METHODS AND RESULTS Pathogenic agrobacteria were detected by isolation and PCR in tissue away from primary tumours in tomato plants grown in the presence of Agrobacterium spp. Moreover, this bacterium was also able to induce secondary tumours beyond the inoculation site. In addition, the capacity of agrobacteria to translocate and induce secondary tumours was analysed in rose, grapevine, chrysanthemum, cherry and peach x almond hybrid GF677. No differences among strains of Agrobacterium spp. were detected in secondary tumour development, although some of them induced a significantly higher number of primary tumours in some species. Movement of inoculated pathogenic cells of four strains was also demonstrated in symptomless portions of the plant stems by isolation and PCR. Finally, pathogenic agrobacteria were detected in root, crown and stem portions of naturally infected walnuts. In all assays, PCR was the most efficient technique for detecting the movement of Agrobacterium spp. within the plants. CONCLUSIONS Migration of agrobacteria inside plants is a complex phenomenon and more extensive than previously reported. Therefore, efficient and sensitive detection methods such as PCR must be used to select clean plants to avoid latent infections of Agrobacterium spp. SIGNIFICANCE AND IMPACT OF THE STUDY The results show that migration of Agrobacterium spp. could be relatively frequent in several cultivated fruit trees, and systemic infections should be taken into account when designing strategies for controlling crown gall disease.
Collapse
Affiliation(s)
- J Cubero
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain.
| | | | | | | | | |
Collapse
|
14
|
Komarova TV, Skulachev MV, Zvereva AS, Schwartz AM, Dorokhov YL, Atabekov JG. New viral vector for efficient production of target proteins in plants. BIOCHEMISTRY. BIOKHIMIIA 2006; 71:846-50. [PMID: 16978146 DOI: 10.1134/s0006297906080049] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new potato virus X (PVX)-based viral vector for superproduction of target proteins in plants has been constructed. The triple gene block and coat protein gene of PVX were substituted by green fluorescent protein. This reduced viral vector was delivered into plant cells by agroinjection (injection of Agrobacterium tumefaciens cells, carrying viral vector cDNA within T-DNA, into plant leaves), and this approach allowed to dramatically reduce the size of the vector genome. The novel vector can be used for production of different proteins including pharmaceuticals in plants.
Collapse
Affiliation(s)
- T V Komarova
- Faculty of Biology and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
15
|
Cotsaftis O, Guiderdoni E. Enhancing gene targeting efficiency in higher plants: rice is on the move. Transgenic Res 2005; 14:1-14. [PMID: 15865044 DOI: 10.1007/s11248-004-4066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Meeting the challenge of routine gene targeting (GT) in higher plants is of crucial interest to researchers and plant breeders who are currently in need of a powerful tool to specifically modify a given locus in a genome. Higher plants have long been considered the last lineage resistant to targeting technology. However, a recent report described an efficient method of T-DNA-mediated targeted disruption of a non-selectable locus in rice [Terada et al., Nat Biotechnol 20: 1030-1034 (2002)]. Though this study was an obvious breakthrough, further improvement of GT frequencies may derive from a better understanding of the natural mechanisms that control homologous recombination (HR) processes. In this review, we will focus on what is known about HR and the factors which may hamper the development of routine GT by HR in higher plants. We will also present the current strategies envisaged to overcome these limitations, such as expression of recombination proteins and refinements in the design of the transformation vector.
Collapse
Affiliation(s)
- Olivier Cotsaftis
- UMR1096 PIA, Biotrop Program, Cirad-Amis, Avenue Agropolis, F-34398 Montpellier Cedex 5, France.
| | | |
Collapse
|
16
|
Batut J, Andersson SGE, O'Callaghan D. The evolution of chronic infection strategies in the alpha-proteobacteria. Nat Rev Microbiol 2004; 2:933-45. [PMID: 15550939 DOI: 10.1038/nrmicro1044] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many of the alpha-proteobacteria establish long-term, often chronic, interactions with higher eukaryotes. These interactions range from pericellular colonization through facultative intracellular multiplication to obligate intracellular lifestyles. A common feature in this wide range of interactions is modulation of host-cell proliferation, which sometimes leads to the formation of tumour-like structures in which the bacteria can grow. Comparative genome analyses reveal genome reduction by gene loss in the intracellular alpha-proteobacterial lineages, and genome expansion by gene duplication and horizontal gene transfer in the free-living species. In this review, we discuss alpha-proteobacterial genome evolution and highlight strategies and mechanisms used by these bacteria to infect and multiply in eukaryotic cells.
Collapse
Affiliation(s)
- Jacques Batut
- Laboratory of Plant Microbe Interactions, CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | | | | |
Collapse
|