1
|
Borba AR, Reyna-Llorens I, Dickinson PJ, Steed G, Gouveia P, Górska AM, Gomes C, Kromdijk J, Webb AAR, Saibo NJM, Hibberd JM. Compartmentation of photosynthesis gene expression in C4 maize depends on time of day. PLANT PHYSIOLOGY 2023; 193:2306-2320. [PMID: 37555432 PMCID: PMC10663113 DOI: 10.1093/plphys/kiad447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Compared with the ancestral C3 state, C4 photosynthesis occurs at higher rates with improved water and nitrogen use efficiencies. In both C3 and C4 plants, rates of photosynthesis increase with light intensity and are maximal around midday. We determined that in the absence of light or temperature fluctuations, photosynthesis in maize (Zea mays) peaks in the middle of the subjective photoperiod. To investigate the molecular processes associated with these temporal changes, we performed RNA sequencing of maize mesophyll and bundle sheath strands over a 24-h time course. Preferential expression of C4 cycle genes in these cell types was strongest between 6 and 10 h after dawn when rates of photosynthesis were highest. For the bundle sheath, DNA motif enrichment and gene coexpression analyses suggested members of the DNA binding with one finger (DOF) and MADS (MINICHROMOSOME MAINTENANCE FACTOR 1/AGAMOUS/DEFICIENS/Serum Response Factor)-domain transcription factor families mediate diurnal fluctuations in C4 gene expression, while trans-activation assays in planta confirmed their ability to activate promoter fragments from bundle sheath expressed genes. The work thus identifies transcriptional regulators and peaks in cell-specific C4 gene expression coincident with maximum rates of photosynthesis in the maize leaf at midday.
Collapse
Affiliation(s)
- Ana Rita Borba
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Patrick J Dickinson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Paulo Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Alicja M Górska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Celia Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras 2780-157, Portugal
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
2
|
Burgess SJ, Reyna-Llorens I, Stevenson SR, Singh P, Jaeger K, Hibberd JM. Genome-Wide Transcription Factor Binding in Leaves from C 3 and C 4 Grasses. THE PLANT CELL 2019; 31:2297-2314. [PMID: 31427470 PMCID: PMC6790085 DOI: 10.1105/tpc.19.00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/06/2019] [Accepted: 08/14/2019] [Indexed: 05/19/2023]
Abstract
The majority of plants use C3 photosynthesis, but over 60 independent lineages of angiosperms have evolved the C4 pathway. In most C4 species, photosynthesis gene expression is compartmented between mesophyll and bundle-sheath cells. We performed DNaseI sequencing to identify genome-wide profiles of transcription factor binding in leaves of the C4 grasses Zea mays, Sorghum bicolor, and Setaria italica as well as C3 Brachypodium distachyon In C4 species, while bundle-sheath strands and whole leaves shared similarity in the broad regions of DNA accessible to transcription factors, the short sequences bound varied. Transcription factor binding was prevalent in gene bodies as well as promoters, and many of these sites could represent duons that influence gene regulation in addition to amino acid sequence. Although globally there was little correlation between any individual DNaseI footprint and cell-specific gene expression, within individual species transcription factor binding to the same motifs in multiple genes provided evidence for shared mechanisms governing C4 photosynthesis gene expression. Furthermore, interspecific comparisons identified a small number of highly conserved transcription factor binding sites associated with leaves from species that diverged around 60 million years ago. These data therefore provide insight into the architecture associated with C4 photosynthesis gene expression in particular and characteristics of transcription factor binding in cereal crops in general.
Collapse
Affiliation(s)
- Steven J Burgess
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Sean R Stevenson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Pallavi Singh
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Katja Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
3
|
Reeves G, Grangé-Guermente MJ, Hibberd JM. Regulatory gateways for cell-specific gene expression in C4 leaves with Kranz anatomy. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:107-116. [PMID: 27940469 DOI: 10.1093/jxb/erw438] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
C4 photosynthesis is a carbon-concentrating mechanism that increases delivery of carbon dioxide to RuBisCO and as a consequence reduces photorespiration. The C4 pathway is therefore beneficial in environments that promote high photorespiration. This pathway has evolved many times, and involves restricting gene expression to either mesophyll or bundle sheath cells. Here we review the regulatory mechanisms that control cell-preferential expression of genes in the C4 cycle. From this analysis, it is clear that the C4 pathway has a complex regulatory framework, with control operating at epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels. Some genes of the C4 pathway are regulated at multiple levels, and we propose that this ensures robust expression in each cell type. Accumulating evidence suggests that multiple genes of the C4 pathway may share the same regulatory mechanism. The control systems for C4 photosynthesis gene expression appear to operate in C3 plants, and so it appears that pre-existing mechanisms form the basis of C4 photosynthesis gene expression.
Collapse
Affiliation(s)
- Gregory Reeves
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
4
|
Xu J, Bräutigam A, Weber APM, Zhu XG. Systems analysis of cis-regulatory motifs in C4 photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5105-17. [PMID: 27436282 PMCID: PMC5014158 DOI: 10.1093/jxb/erw275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Identification of potential cis-regulatory motifs controlling the development of C4 photosynthesis is a major focus of current research. In this study, we used time-series RNA-seq data collected from etiolated maize and rice leaf tissues sampled during a de-etiolation process to systematically characterize the expression patterns of C4-related genes and to further identify potential cis elements in five different genomic regions (i.e. promoter, 5'UTR, 3'UTR, intron, and coding sequence) of C4 orthologous genes. The results demonstrate that although most of the C4 genes show similar expression patterns, a number of them, including chloroplast dicarboxylate transporter 1, aspartate aminotransferase, and triose phosphate transporter, show shifted expression patterns compared with their C3 counterparts. A number of conserved short DNA motifs between maize C4 genes and their rice orthologous genes were identified not only in the promoter, 5'UTR, 3'UTR, and coding sequences, but also in the introns of core C4 genes. We also identified cis-regulatory motifs that exist in maize C4 genes and also in genes showing similar expression patterns as maize C4 genes but that do not exist in rice C3 orthologs, suggesting a possible recruitment of pre-existing cis-elements from genes unrelated to C4 photosynthesis into C4 photosynthesis genes during C4 evolution.
Collapse
Affiliation(s)
- Jiajia Xu
- CAS Key Laboratory of Computational Biology and State Key Laboratory for Hybrid Rice, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, 40225 Düsseldorf, Germany Network Analysis and Modeling, IPK Gatersleben, Correnstrasse 3, D-06466 Stadt Seeland, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Xin-Guang Zhu
- CAS Key Laboratory of Computational Biology and State Key Laboratory for Hybrid Rice, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
5
|
Mishra RC, Richa, Singh A, Tiwari LD, Grover A. Characterization of 5'UTR of rice ClpB-C/Hsp100 gene: evidence of its involvement in post-transcriptional regulation. Cell Stress Chaperones 2016; 21:271-83. [PMID: 26546418 PMCID: PMC4786525 DOI: 10.1007/s12192-015-0657-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022] Open
Abstract
Rice (Oryza sativa) ClpB-C (OsClpB-C) protein is expressed upon heat stress in vegetative tissues and constitutively in seeds. We produced stably transformed Arabidopsis plants carrying β-glucuronidase (Gus) reporter gene downstream to 1-kb OsClpB-C promoter (1kbPro plants). In the 1kbPro plants, expression of Gus transcript and protein followed the expression pattern of OsClpB-C gene in rice plants, i.e., heat induced in vegetative tissues and constitutive in seeds. Next, we produced transgenic Arabidopsis plants containing Gus downstream to 862-bp fragment of OsClpB-C promoter [lacking 138 nucleotides from 3' end of the 5'untranslated region (5'UTR); ∆UTR plants). In ∆UTR plants, Gus transcript was expressed in heat-inducible manner, but strikingly, Gus protein levels were negligible after heat treatment. However, Gus protein was expressed in ∆UTR seedlings at levels comparable to 1kbPro seedlings when recovery treatment of 22 °C/2 h was given post heat stress (38 °C/15 min). This suggests that 5'UTR of OsClpB-C gene is involved in its post-transcriptional regulation and is an obligate requirement for protein expression during persistent heat stress. Furthermore, the Gus transcript levels were higher in the polysomal RNA fraction in heat-stressed seedlings of 1kbPro plants as compared to ∆UTR plants, indicating that 5'UTR aids in assembly of ribosomes onto the Gus transcript during heat stress. Unlike the case of seedlings, Gus protein was formed constitutively in ∆UTR seeds at levels comparable to 1kbPro seeds. Hence, the function of 5'UTR of OsClpB-C is dispensable for expression in seeds.
Collapse
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Richa
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Lalit Dev Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
6
|
Williams BP, Burgess SJ, Reyna-Llorens I, Knerova J, Aubry S, Stanley S, Hibberd JM. An Untranslated cis-Element Regulates the Accumulation of Multiple C4 Enzymes in Gynandropsis gynandra Mesophyll Cells. THE PLANT CELL 2016; 28:454-65. [PMID: 26772995 PMCID: PMC4790868 DOI: 10.1105/tpc.15.00570] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/13/2016] [Indexed: 05/04/2023]
Abstract
C4 photosynthesis is a complex phenotype that allows more efficient carbon capture than the ancestral C3 pathway. In leaves of C4 species, hundreds of transcripts increase in abundance compared with C3 relatives and become restricted to mesophyll (M) or bundle sheath (BS) cells. However, no mechanism has been reported that regulates the compartmentation of multiple enzymes in M or BS cells. We examined mechanisms regulating CARBONIC ANHYDRASE4 (CA4) in C4 Gynandropsis gynandra. Increased abundance is directed by both the promoter region and introns of the G. gynandra gene. A nine-nucleotide motif located in the 5' untranslated region (UTR) is required for preferential accumulation of GUS in M cells. This element is present and functional in three additional 5' UTRs and six 3' UTRs where it determines accumulation of two isoforms of CA and pyruvate,orthophosphate dikinase in M cells. Although the GgCA4 5' UTR is sufficient to direct GUS accumulation in M cells, transcripts encoding GUS are abundant in both M and BS. Mutating the GgCA4 5' UTR abolishes enrichment of protein in M cells without affecting transcript abundance. The work identifies a mechanism that directs cell-preferential accumulation of multiple enzymes required for C4 photosynthesis.
Collapse
Affiliation(s)
- Ben P Williams
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Steven J Burgess
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Jana Knerova
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Sylvain Aubry
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Susan Stanley
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
7
|
Rosnow J, Yerramsetty P, Berry JO, Okita TW, Edwards GE. Exploring mechanisms linked to differentiation and function of dimorphic chloroplasts in the single cell C4 species Bienertia sinuspersici. BMC PLANT BIOLOGY 2014; 14:34. [PMID: 24443986 PMCID: PMC3904190 DOI: 10.1186/1471-2229-14-34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/15/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND In the model single-cell C4 plant Bienertia sinuspersici, chloroplast- and nuclear-encoded photosynthetic enzymes, characteristically confined to either bundle sheath or mesophyll cells in Kranz-type C4 leaves, all occur together within individual leaf chlorenchyma cells. Intracellular separation of dimorphic chloroplasts and key enzymes within central and peripheral compartments allow for C4 carbon fixation analogous to NAD-malic enzyme (NAD-ME) Kranz type species. Several methods were used to investigate dimorphic chloroplast differentiation in B. sinuspersici. RESULTS Confocal analysis revealed that Rubisco-containing chloroplasts in the central compartment chloroplasts (CCC) contained more photosystem II proteins than the peripheral compartment chloroplasts (PCC) which contain pyruvate,Pi dikinase (PPDK), a pattern analogous to the cell type-specific chloroplasts of many Kranz type NAD-ME species. Transient expression analysis using GFP fusion constructs containing various lengths of a B. sinuspersici Rubisco small subunit (RbcS) gene and the transit peptide of PPDK revealed that their import was not specific to either chloroplast type. Immunolocalization showed the rbcL-specific mRNA binding protein RLSB to be selectively localized to the CCC in B. sinuspersici, and to Rubisco-containing BS chloroplasts in the closely related Kranz species Suaeda taxifolia. Comparative fluorescence analyses were made using redox-sensitive and insensitive GFP forms, as well comparative staining using the peroxidase indicator 3,3-diaminobenzidine (DAB), which demonstrated differences in stromal redox potential, with the CCC having a more negative potential than the PCC. CONCLUSIONS Both CCC RLSB localization and the differential chloroplast redox state are suggested to have a role in post-transcriptional rbcL expression.
Collapse
Affiliation(s)
- Josh Rosnow
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Pradeep Yerramsetty
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
8
|
Bowman SM, Patel M, Yerramsetty P, Mure CM, Zielinski AM, Bruenn JA, Berry JO. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants. BMC PLANT BIOLOGY 2013; 13:138. [PMID: 24053212 PMCID: PMC3849040 DOI: 10.1186/1471-2229-13-138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/16/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. RESULTS RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. CONCLUSIONS Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation and binding of the RLSB binding protein to rbcL mRNA within BS chloroplasts may be one determinant leading to the characteristic cell type-specific localization of Rubisco in C4 plants. Evolutionary modification of RLSB expression, from a C3 "default" state to BS cell-specificity, could represent one mechanism by which rbcL expression has become restricted to only one cell type in C4 plants.
Collapse
Affiliation(s)
- Shaun M Bowman
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
- Current Address: Biology Department, Clarke University, Dubuque, IA 52001, USA
| | - Minesh Patel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
- Current Address: Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Pradeep Yerramsetty
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Christopher M Mure
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Amy M Zielinski
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Jeremy A Bruenn
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
9
|
Wostrikoff K, Clark A, Sato S, Clemente T, Stern D. Ectopic expression of Rubisco subunits in maize mesophyll cells does not overcome barriers to cell type-specific accumulation. PLANT PHYSIOLOGY 2012; 160:419-32. [PMID: 22744982 PMCID: PMC3440216 DOI: 10.1104/pp.112.195677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In maize (Zea mays), Rubisco accumulates in bundle sheath but not mesophyll chloroplasts, but the mechanisms that underlie cell type-specific expression are poorly understood. To explore the coordinated expression of the chloroplast rbcL gene, which encodes the Rubisco large subunit (LS), and the two nuclear RBCS genes, which encode the small subunit (SS), RNA interference was used to reduce RBCS expression. This resulted in Rubisco deficiency and was correlated with translational repression of rbcL. Thus, as in C3 plants, LS synthesis depends on the presence of its assembly partner SS. To test the hypothesis that the previously documented transcriptional repression of RBCS in mesophyll cells is responsible for repressing LS synthesis in mesophyll chloroplasts, a ubiquitin promoter-driven RBCS gene was expressed in both bundle sheath and mesophyll cells. This did not lead to Rubisco accumulation in the mesophyll, suggesting that LS synthesis is impeded even in the presence of ectopic SS expression. To attempt to bypass this putative mechanism, a ubiquitin promoter-driven nuclear version of the rbcL gene was created, encoding an epitope-tagged LS that was expressed in the presence or absence of the Ubi-RBCS construct. Both transgenes were robustly expressed, and the tagged LS was readily incorporated into Rubisco complexes. However, neither immunolocalization nor biochemical approaches revealed significant accumulation of Rubisco in mesophyll cells, suggesting a continuing cell type-specific impairment of its assembly or stability. We conclude that additional cell type-specific factors limit Rubisco expression to bundle sheath chloroplasts.
Collapse
MESH Headings
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chloroplasts/enzymology
- Chloroplasts/genetics
- Enzyme Stability
- Epitopes/genetics
- Epitopes/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant
- Mesophyll Cells/cytology
- Mesophyll Cells/enzymology
- Models, Biological
- Mutagenesis, Site-Directed
- Photosynthesis
- Plant Vascular Bundle/cytology
- Plant Vascular Bundle/enzymology
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Promoter Regions, Genetic
- RNA Interference
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Ribulose-Bisphosphate Carboxylase/genetics
- Ribulose-Bisphosphate Carboxylase/metabolism
- Transcription, Genetic
- Transgenes
- Zea mays/enzymology
- Zea mays/genetics
Collapse
Affiliation(s)
- Katia Wostrikoff
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
10
|
Williams BP, Aubry S, Hibberd JM. Molecular evolution of genes recruited into C₄ photosynthesis. TRENDS IN PLANT SCIENCE 2012; 17:213-20. [PMID: 22326564 DOI: 10.1016/j.tplants.2012.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 05/03/2023]
Abstract
The C₄ pathway is found in 62 lineages of land plants. We assess evidence for parallel versus convergent evolution of C₄ photosynthesis from three approaches: (i) studies of specific genes and cis-elements controlling their expression; (ii) phylogenetic analyses of mRNAs and inferred amino acid sequences; and (iii) analysis of C₃ and C₄ genomes and transcriptomes. Evidence suggests that although convergent evolution is common, parallel evolution can underlie both changes to gene expression and amino acid sequence. cis-elements that direct cell specificity in C₄ leaves are present in C₃ orthologues of genes recruited into C₄, probably facilitating this parallel evolution. From this, and genomic data, we propose that gene duplication followed by neofunctionalisation is not necessarily important in the evolution of C₄ biochemistry.
Collapse
Affiliation(s)
- Ben P Williams
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
11
|
Kajala K, Brown NJ, Williams BP, Borrill P, Taylor LE, Hibberd JM. Multiple Arabidopsis genes primed for recruitment into C₄ photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:47-56. [PMID: 21883556 DOI: 10.1111/j.1365-313x.2011.04769.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
C(4) photosynthesis occurs in the most productive crops and vegetation on the planet, and has become widespread because it allows increased rates of photosynthesis compared with the ancestral C(3) pathway. Leaves of C(4) plants typically possess complicated alterations to photosynthesis, such that its reactions are compartmented between mesophyll and bundle sheath cells. Despite its complexity, the C(4) pathway has arisen independently in 62 separate lineages of land plants, and so represents one of the most striking examples of convergent evolution known. We demonstrate that elements in untranslated regions (UTRs) of multiple genes important for C(4) photosynthesis contribute to the metabolic compartmentalization characteristic of a C(4) leaf. Either the 5' or the 3' UTR is sufficient for cell specificity, indicating that functional redundancy underlies this key aspect of C(4) gene expression. Furthermore, we show that orthologous PPDK and CA genes from the C(3) plant Arabidopsis thaliana are primed for recruitment into the C(4) pathway. Elements sufficient for M-cell specificity in C(4) leaves are also present in both the 5' and 3' UTRs of these C(3) A. thaliana genes. These data indicate functional latency within the UTRs of genes from C(3) species that have been recruited into the C(4) pathway. The repeated recruitment of pre-existing cis-elements in C(3) genes may have facilitated the evolution of C(4) photosynthesis. These data also highlight the importance of alterations in trans in producing a functional C(4) leaf, and so provide insight into both the evolution and molecular basis of this important type of photosynthesis.
Collapse
Affiliation(s)
- Kaisa Kajala
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | | | | | | | | |
Collapse
|
12
|
Cloning and Analysis of Two Promoters of Chalcone Synthase Gene A (<I>chsA</I>) in Petunia hybrida*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Peterhansel C. Best practice procedures for the establishment of a C(4) cycle in transgenic C(3) plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3011-3019. [PMID: 21335437 DOI: 10.1093/jxb/err027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
C(4) plants established a mechanism for the concentration of CO(2) in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase in order to saturate the enzyme with substrate and substantially to reduce the alternative fixation of O(2) that results in energy losses. Transfer of the C(4) mechanism to C(3) plants has been repeatedly tested, but none of the approaches so far resulted in transgenic plants with enhanced photosynthesis or growth. Instead, often deleterious effects were observed. A true C(4) cycle requires the co-ordinated activity of multiple enzymes in different cell types and in response to diverse environmental and metabolic stimuli. This review summarizes our current knowledge about the most appropriate regulatory elements and coding sequences for the establishment of C(4) protein activities in C(3) plants. In addition, technological breakthroughs for the efficient transfer of the numerous genes probably required to transform a C(3) plant into a C(4) plant will be discussed.
Collapse
Affiliation(s)
- Christoph Peterhansel
- Institute of Botany, Leibniz University Hannover, Herrenhaeuser Straße 2, D-30419 Hannover, Germany.
| |
Collapse
|
14
|
|
15
|
Hibberd JM, Covshoff S. The regulation of gene expression required for C4 photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:181-207. [PMID: 20192753 DOI: 10.1146/annurev-arplant-042809-112238] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
C(4) photosynthesis is normally associated with the compartmentation of photosynthesis between mesophyll (M) and bundle sheath (BS) cells. The mechanisms regulating the differential accumulation of photosynthesis proteins in these specialized cells are fundamental to our understanding of how C(4) photosynthesis operates. Cell-specific accumulation of proteins in M or BS can be mediated by posttranscriptional processes and translational efficiency as well as by differences in transcription. Individual genes are likely regulated at multiple levels. Although cis-elements have been associated with cell-specific expression in C(4) leaves, there has been little progress in identifying trans-factors. When C(4) photosynthesis genes from C(4) species are placed in closely related C(3) species, they are often expressed in a manner faithful to the C(4) cycle. Next-generation sequencing and comprehensive analysis of the extent to which genes from C(4) species are expressed in M or BS cells of C(3) plants should provide insight into how the C(4) pathway is regulated and evolved.
Collapse
Affiliation(s)
- Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
16
|
Banerjee AK, Lin T, Hannapel DJ. Untranslated regions of a mobile transcript mediate RNA metabolism. PLANT PHYSIOLOGY 2009; 151:1831-43. [PMID: 19783647 PMCID: PMC2785979 DOI: 10.1104/pp.109.144428] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/21/2009] [Indexed: 05/18/2023]
Abstract
BEL1-like transcription factors are ubiquitous in plants and interact with KNOTTED1 types to regulate numerous developmental processes. In potato (Solanum tuberosum subsp. andigena), the BEL1-like transcription factor StBEL5 and its Knox protein partner regulate tuber formation by targeting genes that control growth. RNA detection methods and heterografting experiments demonstrated that StBEL5 transcripts are present in phloem cells and move across a graft union to localize in stolon tips, the site of tuber induction. This movement of RNA originates in leaf veins and petioles and is induced by a short-day photoperiod, regulated by the untranslated regions, and correlated with enhanced tuber production. Assays for RNA mobility suggest that both 5' and 3' untranslated regions contribute to the preferential accumulation of the StBEL5 RNA but that the 3' untranslated region may contribute more to transport from the leaf to the stem and into the stolons. Addition of the StBEL5 untranslated regions to another BEL1-like mRNA resulted in its preferential transport to stolon tips and enhanced tuber production. Transcript stability assays showed that the untranslated regions and a long-day photoperiod enhanced StBEL5 RNA stability in shoot tips. Upon fusion of the untranslated regions of StBEL5 to a beta-glucuronidase marker, translation in tobacco (Nicotiana tabacum) protoplasts was repressed by those constructs containing the 3' untranslated sequence. These results demonstrate that the untranslated regions of the mRNA of StBEL5 are involved in mediating its long-distance transport, in maintaining transcript stability, and in controlling translation.
Collapse
|
17
|
Rozwadowski K, Yang W, Kagale S. Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems. BMC Biotechnol 2008; 8:88. [PMID: 19014699 PMCID: PMC2601046 DOI: 10.1186/1472-6750-8-88] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 11/17/2008] [Indexed: 12/11/2022] Open
Abstract
Background Employing genomic DNA clones to characterise gene attributes has several advantages over the use of cDNA clones, including the presence of native transcription and translation regulatory sequences as well as a representation of the complete repertoire of potential splice variants encoded by the gene. However, working with genomic DNA clones has traditionally been tedious due to their large size relative to cDNA clones and the presence, absence or position of particular restriction enzyme sites that may complicate conventional in vitro cloning procedures. Results To enable efficient cloning and manipulation of genomic DNA fragments for the purposes of gene expression and reporter-gene studies we have combined aspects of the Gateway system and a bacteriophage-based homologous recombination (i.e. recombineering) system. To apply the method for characterising plant genes we developed novel Gateway and plant transformation vectors that are of small size and incorporate selectable markers which enable efficient identification of recombinant clones. We demonstrate that the genomic coding region of a gene can be directly cloned into a Gateway Entry vector by recombineering enabling its subsequent transfer to Gateway Expression vectors. We also demonstrate how the coding and regulatory regions of a gene can be directly cloned into a plant transformation vector by recombineering. This construct was then rapidly converted into a novel Gateway Expression vector incorporating cognate 5' and 3' regulatory regions by using recombineering to replace the intervening coding region with the Gateway Destination cassette. Such expression vectors can be applied to characterise gene regulatory regions through development of reporter-gene fusions, using the Gateway Entry clones of GUS and GFP described here, or for ectopic expression of a coding region cloned into a Gateway Entry vector. We exemplify the utility of this approach with the Arabidopsis PAP85 gene and demonstrate that the expression profile of a PAP85::GUS transgene highly corresponds with native PAP85 expression. Conclusion We describe a novel combination of the favourable attributes of the Gateway and recombineering systems to enable efficient cloning and manipulation of genomic DNA clones for more effective characterisation of gene function. Although the system and plasmid vectors described here were developed for applications in plants, the general approach is broadly applicable to gene characterisation studies in many biological systems.
Collapse
Affiliation(s)
- Kevin Rozwadowski
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada, S7N 0X2.
| | | | | |
Collapse
|
18
|
Lara MV, Offermann S, Smith M, Okita TW, Andreo CS, Edwards GE. Leaf development in the single-cell C4 system in Bienertia sinuspersici: expression of genes and peptide levels for C4 metabolism in relation to chlorenchyma structure under different light conditions. PLANT PHYSIOLOGY 2008; 148:593-610. [PMID: 18667722 PMCID: PMC2528127 DOI: 10.1104/pp.108.124008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/21/2008] [Indexed: 05/17/2023]
Abstract
Bienertia sinuspersici performs C(4) photosynthesis in individual chlorenchyma cells by the development of two cytoplasmic domains (peripheral and central) with dimorphic chloroplasts, an arrangement that spatially separates the fixation of atmospheric CO(2) into C(4) acids and the donation of CO(2) from C(4) acids to Rubisco in the C(3) cycle. In association with the formation of these cytoplasmic domains during leaf maturation, developmental stages were analyzed for the expression of a number of photosynthetic genes, including Rubisco small and large subunits and key enzymes of the C(4) cycle. Early in development, Rubisco subunits and Gly decarboxylase and Ser hydroxymethyltransferase of the glycolate pathway accumulated more rapidly than enzymes associated with the C(4) cycle. The levels of pyruvate,Pi dikinase and phosphoenolpyruvate carboxylase were especially low until spatial cytoplasmic domains developed and leaves reached maturity, indicating a developmental transition toward C(4) photosynthesis. In most cases, there was a correlation between the accumulation of mRNA transcripts and the respective peptides, indicating at least partial control of the development of photosynthesis at the transcriptional level. During growth under moderate light, when branches containing mature leaves were enclosed in darkness for 1 month, spatial domains were maintained and there was high retention of a number of photosynthetic peptides, including Rubisco subunits and pyruvate,Pi dikinase, despite a reduction in transcript levels. When plants were transferred from moderate to low light conditions for 1 month, there was a striking shift of the central cytoplasmic compartment toward the periphery of chlorenchyma cells; the mature leaves showed strong acclimation with a shade-type photosynthetic response to light while retaining C(4) features indicative of low photorespiration. These results indicate a progressive development of C(4) photosynthesis with differences in the control mechanisms for the expression of photosynthetic genes and peptide synthesis during leaf maturation and in response to light conditions.
Collapse
Affiliation(s)
- María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina
| | | | | | | | | | | |
Collapse
|
19
|
Ziebell H, Payne T, Berry JO, Walsh JA, Carr JP. A cucumber mosaic virus mutant lacking the 2b counter-defence protein gene provides protection against wild-type strains. J Gen Virol 2007; 88:2862-2871. [PMID: 17872541 DOI: 10.1099/vir.0.83138-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several plant virus mutants, in which genes encoding silencing suppressor proteins have been deleted, are known to induce systemic or localized RNA silencing against themselves and other RNA molecules containing homologous sequences. Thus, it is thought that many cases of cross-protection, in which infection with a mild or asymptomatic virus mutant protects plants against challenge infection with closely related virulent viruses, can be explained by RNA silencing. We found that a cucumber mosaic virus (CMV) mutant of the subgroup IA strain Fny (Fny-CMVDelta2b), which cannot express the 2b silencing suppressor protein, cross-protects tobacco (Nicotiana tabacum) and Nicotiana benthamiana plants against disease induction by wild-type Fny-CMV. However, protection is most effective only if inoculation with Fny-CMVDelta2b and challenge inoculation with wild-type CMV occurs on the same leaf. Unexpectedly, Fny-CMVDelta2b also protected plants against infection with TC-CMV, a subgroup II strain that is not closely related to Fny-CMV. Additionally, in situ hybridization revealed that Fny-CMVDelta2b and Fny-CMV can co-exist in the same tissues but these tissues contain zones of Fny-CMVDelta2b-infected host cells from which Fny-CMV appears to be excluded. Taken together, it appears unlikely that cross-protection by Fny-CMVDelta2b occurs by induction of systemic RNA silencing against itself and homologous RNA sequences in wild-type CMV. It is more likely that protection occurs through either induction of very highly localized RNA silencing, or by competition between strains for host cells or resources.
Collapse
Affiliation(s)
- Heiko Ziebell
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Tina Payne
- Warwick HRI, Wellesbourne, Warwick CV35 9EF, UK
| | - James O Berry
- Department of Biological Sciences, State University of New York at Buffalo, NY 14260, USA
| | | | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
20
|
Sathish P, Withana N, Biswas M, Bryant C, Templeton K, Al-Wahb M, Smith-Espinoza C, Roche JR, Elborough KM, Phillips JR. Transcriptome analysis reveals season-specific rbcS gene expression profiles in diploid perennial ryegrass (Lolium perenne L.). PLANT BIOTECHNOLOGY JOURNAL 2007; 5:146-61. [PMID: 17207264 DOI: 10.1111/j.1467-7652.2006.00228.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is a major grass species used for forage and turf throughout the world, and gains by conventional breeding have reached a plateau. Perennial ryegrass is an outcrossing, self-incompatible diploid (2n = 2x = 14) with a relatively large genome (4067 Mbp/diploid genome; Evans, G.M., Rees, H., Snell, C.L. and Sun, S. (1972) The relation between nuclear DNA amount and the duration of the mitotic cycle. Chrom. Today, 3, 24-31). Using tissues sourced from active pastures during the peak of the autumn, winter, spring and summer seasons, we analysed the ryegrass transcriptome employing a Serial Analysis of Gene Expression (SAGE) protocol, with the dual goals of understanding the seasonal changes in perennial ryegrass gene expression and enhancing our ability to select genes for genetic manipulation. A total of 159,002 14-mer SAGE tags was sequenced and mapped to the perennial ryegrass DNA database, comprising methyl-filtered (GeneThresher) and expressed sequence tag (EST) sequences. The analysis of 14,559 unique SAGE tags, which were present more than once in our SAGE library, revealed 964, 1331, 346 and 131 exclusive transcripts to autumn, winter, spring and summer, respectively. Intriguingly, our analysis of the SAGE tags revealed season-specific expression profiles for the small subunit of ribulose-1,5-bisphosphate carboxylase (Rubisco), LprbcS. The transcript level for LprbcS was highest in spring, and then decreased gradually between summer and winter. Five different copies of LprbcS were revealed in ryegrass, with one possibly producing splice variant transcripts. Two highly expressed LprbcS genes were reported, one of which was not active in autumn. Another LprbcS gene showed an inverse expression profile to the autumn inactive LprbcS in a manner to compensate the expression level.
Collapse
Affiliation(s)
- Puthigae Sathish
- Pastoral Genomics, c/o ViaLactia Biosciences (NZ) Ltd, PO Box 109185, Newmarket, Auckland 1149, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Patel M, Siegel AJ, Berry JO. Untranslated regions of FbRbcS1 mRNA mediate bundle sheath cell-specific gene expression in leaves of a C4 plant. J Biol Chem 2006; 281:25485-91. [PMID: 16803877 DOI: 10.1074/jbc.m604162200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C4 photosynthesis typically requires two specialized leaf cell types, bundle sheath (bs) and mesophyll (mp), which provide the foundation for this highly efficient carbon assimilation pathway. In leaves of Flaveria bidentis, a dicotyledonous C4 plant, ribulose 1,5-bisphosphate carboxylase (rubisco) accumulates only in bs cells surrounding the vascular centers and not in mp cells. This is in contrast to the more common C3 plants, which accumulate rubisco in all photosynthetic cells. Many previous studies have focused on transcriptional control of C4 cell type-specificity; however, post-transcriptional regulation has also been implicated in the bs-specific expression of genes encoding the rubisco subunits. In this current study, a biolistic leaf transformation assay has provided direct evidence that the 5'- and 3'-untranslated regions (UTRs) of F. bidentis FbRbcS1 mRNA (from a nuclear gene encoding the rubisco small subunit), in themselves, confer strong bs cell-specific expression to gfpA reporter gene transcripts when transcribed from a constitutive CaMV promoter. In transformed leaf regions, strong bs cell-specific GFP expression was accompanied by corresponding bs cell-specific accumulation of the constitutively transcribed FbRbcS1 5'-UTR-gfpA-3'-UTR mRNAs. Control constructs lacking any RbcS mRNA sequences were expressed in all leaf cell types. These findings demonstrate that characteristic cell type-specific FbRbcS1 expression patterns in C4 leaves can be established entirely by sequences contained within the transcribed UTRs of FbRbcS1 mRNAs. We conclude that selective transcript stabilization (in bs cells) or degradation (in mp cells) plays a key role in determining bs cell-specific localization of the rubisco enzyme.
Collapse
Affiliation(s)
- Minesh Patel
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
22
|
Brown NJ, Parsley K, Hibberd JM. The future of C4 research--maize, Flaveria or Cleome? TRENDS IN PLANT SCIENCE 2005; 10:215-21. [PMID: 15882653 DOI: 10.1016/j.tplants.2005.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
C4 photosynthesis has evolved multiple times among the angiosperms: the spatial rearrangement of the photosynthetic apparatus, combined with alterations to the leaf structure, allows CO2 to be concentrated around Rubisco. Higher CO2 concentrations at Rubisco decrease the rate of oxygenation and therefore reduce the amount of energy lost through photorespiration. C4 plants are particularly prevalent in tropical and subtropical regions because they can sustain higher rates of net photosynthesis; they also represent some of our most productive crops. To date, most progress in identifying genes crucial for C4 photosynthesis has been made using maize and Flaveria. We propose that Cleome, the most closely related genus containing C4 species to the C3 model Arabidopsis, be used together with Arabidopsis resources to accelerate our progress in elucidating the genetic basis of C4 photosynthesis.
Collapse
Affiliation(s)
- Naomi J Brown
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK CB2 3EA
| | | | | |
Collapse
|