1
|
Qu L, Huang X, Su X, Zhu G, Zheng L, Lin J, Wang J, Xue H. Potato: from functional genomics to genetic improvement. MOLECULAR HORTICULTURE 2024; 4:34. [PMID: 39160633 PMCID: PMC11331666 DOI: 10.1186/s43897-024-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Gan P, Tang C, Lu Y, Ren C, Nasab HR, Kun X, Wang X, Li L, Kang Z, Wang X, Wang J. Quantitative phosphoproteomics reveals molecular pathway network in wheat resistance to stripe rust. STRESS BIOLOGY 2024; 4:32. [PMID: 38945963 PMCID: PMC11214938 DOI: 10.1007/s44154-024-00170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/24/2024] [Indexed: 07/02/2024]
Abstract
Protein phosphorylation plays an important role in immune signaling transduction in plant resistance to pathogens. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), severely devastates wheat production. Nonetheless, the molecular mechanism of wheat resistance to stripe rust remains limited. In this study, quantitative phosphoproteomics was employed to investigate the protein phosphorylation changes in wheat challenged by Pst. A total of 1537 and 2470 differentially accumulated phosphoproteins (DAPs) were identified from four early infection stage (6, 12, 18 and 24 h post-inoculation) in incompatible and compatible wheat-Pst interactions respectively. KEGG analysis revealed that Oxidative Phosphorylation, Phosphatidylinositol Signaling, and MAPK signaling processes are distinctively enriched in incompatible interaction, while Biosynthesis of secondary metabolites and RNA degradation process were significantly enriched in compatible interactions. In particular, abundant changes in phosphorylation levels of chloroplast proteins were identified, suggesting the regulatory role of photosynthesis in wheat-Pst interaction, which is further emphasized by protein-protein interaction (PPI) network analysis. Motif-x analysis identified [xxxxSPxxxx] motif, likely phosphorylation sites for defensive response-related kinases, and a new [xxxxSSxxxx] motif significantly enriched in incompatible interaction. The results shed light on the early phosphorylation events contributing to wheat resistance against Pst. Moreover, our study demonstrated that the phosphorylation levels of Nucleoside diphosphate kinase TaNAPK1 are upregulated at 12 hpi with CYR23 and at 24 hpi with CYR31. Transient silencing of TaNAPK1 was able to attenuate wheat resistance to CYR23 and CYR31. Our study provides new insights into the mechanisms underlying Pst-wheat interactions and may provide database to find potential targets for the development of new resistant varieties.
Collapse
Affiliation(s)
- Pengfei Gan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Lu
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi, 830049, Xinjiang, China
| | - Chenrong Ren
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi, 830049, Xinjiang, China
| | - Hojjatollah Rabbani Nasab
- Plant Protection Research Department,Agricultural and Natural Resource Research and Education Center of Golestan, Agricultural Research,Education and Extension Organization (AREEO), Gorgan, Iran
| | - Xufeng Kun
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liangzhuang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Qiu H, Wang B, Huang M, Sun X, Yu L, Cheng D, He W, Zhou D, Wu X, Song B, Tang N, Chen H. A novel effector RipBT contributes to Ralstonia solanacearum virulence on potato. MOLECULAR PLANT PATHOLOGY 2023; 24:947-960. [PMID: 37154802 PMCID: PMC10346376 DOI: 10.1111/mpp.13342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
Ralstonia solanacearum is one of the most destructive plant-pathogenic bacteria, infecting more than 200 plant species, including potato (Solanum tuberosum) and many other solanaceous crops. R. solanacearum has numerous pathogenicity factors, and type III effectors secreted through type III secretion system (T3SS) are key factors to counteract host immunity. Here, we show that RipBT is a novel T3SS-secreted effector by using a cyaA reporter system. Transient expression of RipBT in Nicotiania benthamiana induced strong cell death in a plasma membrane-localization dependent manner. Notably, mutation of RipBT in R. solanacearum showed attenuated virulence on potato, while RipBT transgenic potato plants exhibited enhanced susceptibility to R. solanacearum. Interestingly, transcriptomic analyses suggest that RipBT may interfere with plant reactive oxygen species (ROS) metabolism during the R. solanacearum infection of potato roots. In addition, the expression of RipBT remarkably suppressed the flg22-induced pathogen-associated molecular pattern-triggered immunity responses, such as the ROS burst. Taken together, RipBT acts as a T3SS effector, promoting R. solanacearum infection on potato and presumably disturbing ROS homeostasis.
Collapse
Affiliation(s)
- Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Xiaohu Sun
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Wenfeng He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Dan Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
4
|
Majeed Y, Zhu X, Zhang N, Rasheed A, Tahir MM, Si H. Functional analysis of mitogen-activated protein kinases (MAPKs) in potato under biotic and abiotic stress. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:31. [PMID: 37312964 PMCID: PMC10248695 DOI: 10.1007/s11032-022-01302-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Biotic and abiotic stresses are the main constrain of potato (Solanum tuberosum L.) production all over the world. To overcome these hurdles, many techniques and mechanisms have been used for increasing food demand for increasing population. One of such mechanism is mitogen-activated protein kinase (MAPK) cascade, which is significance regulators of MAPK pathway under various biotic and abiotic stress conditions in plants. However, the acute role in potato for various biotic and abiotic resistance is not fully understood. In eukaryotes including plants, MAPK transfer information from sensors to responses. In potato, biotic and abiotic stresses, as well as a range of developmental responses including differentiation, proliferation, and cell death in plants, MAPK plays an essential role in transduction of diverse extracellular stimuli. Different biotic and abiotic stress stimuli such as pathogen (bacteria, virus, and fungi, etc.) infections, drought, high and low temperatures, high salinity, and high or low osmolarity are induced by several MAPK cascade and MAPK gene families in potato crop. The MAPK cascade is synchronized by numerous mechanisms, including not only transcriptional regulation but also through posttranscriptional regulation such as protein-protein interactions. In this review, we will discuss the recent detailed functional analysis of certain specific MAPK gene families which are involved in resistance to various biotic and abiotic stresses in potato. This study will also provide new insights into functional analysis of various MAPK gene families in biotic and abiotic stress response as well as its possible mechanism.
Collapse
Affiliation(s)
- Yasir Majeed
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xi Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Adnan Rasheed
- Key Laboratory of Crops Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Majid Mahmood Tahir
- Department of Soil and Environmental Sciences, Faculty of Agriculture, University of Poonch, Azad Jammu and Kashmir, Rawalakot, Pakistan
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
5
|
Zhang H, Li F, Li Z, Cheng J, Chen X, Wang Q, Joosten MH, Shan W, Du Y. Potato StMPK7 is a downstream component of StMKK1 and promotes resistance to the oomycete pathogen Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2021; 22:644-657. [PMID: 33764635 PMCID: PMC8126187 DOI: 10.1111/mpp.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 05/05/2023]
Abstract
A cascade formed by phosphorylation events of mitogen-activated protein kinases (MAPKs) takes part in plant stress responses. However, the roles of these MAPKs in resistance of potato (Solanum tuberosum) against Phytophthora pathogens is not well studied. Our previous work showed that a Phytophthora infestans RXLR effector targets and stabilizes the negative regulator of MAPK kinase 1 of potato (StMKK1). Because in Arabidopsis thaliana the AtMPK4 is the downstream phosphorylation target of AtMKK1, we performed a phylogenetic analysis and found that potato StMPK4/6/7 are closely related and are orthologs of AtMPK4/5/11/12. Overexpression of StMPK4/7 enhances plant resistance to P. infestans and P. parasitica. Yeast two-hybrid analysis revealed that StMPK7 interacts with StMKK1, and StMPK7 is phosphorylated on flg22 treatment and by expressing constitutively active StMKK1 (CA-StMKK1), indicating that StMPK7 is a direct downstream signalling partner of StMKK1. Overexpression of StMPK7 in potato enhances potato resistance to P. infestans. Constitutively active StMPK7 (CA-StMPK7; StMPK7D198G, E202A ) was found to promote immunity to Phytophthora pathogens and to trigger host cell death when overexpressed in Nicotiana benthamiana leaves. Cell death triggered by CA-StMPK7 is SGT1/RAR1-dependent. Furthermore, cell death triggered by CA-StMPK7 is suppressed on coexpression with the salicylate hydroxylase NahG, and StMPK7 activation promotes salicylic acid (SA)-responsive gene expression. We conclude that potato StMPK7 is a downstream signalling component of the phosphorelay cascade involving StMKK1 and StMPK7 plays a role in immunity to Phytophthora pathogens via an SA-dependent signalling pathway.
Collapse
Affiliation(s)
- Houxiao Zhang
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Fangfang Li
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Zhenzhen Li
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Jing Cheng
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Xiaokang Chen
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | | | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yu Du
- College of HorticultureNorthwest A&F University and State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- Shaanxi Engineering Research Center for VegetablesYanglingChina
| |
Collapse
|
6
|
In S, Lee HA, Woo J, Park E, Choi D. Molecular Characterization of a Pathogen-Inducible Bidirectional Promoter from Hot Pepper ( Capsicum annuum). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1330-1339. [PMID: 32781924 DOI: 10.1094/mpmi-07-20-0183-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In hot pepper, the sesquiterpene phytoalexin capsidiol is catalyzed by the two final-step enzymes, a sesquiterpene cyclase (EAS) and a hydroxylase (EAH), which are genetically linked and present as head-to-head orientation in the genome. Transcriptomic analysis revealed that a subset of EAS and EAH is highly induced following pathogen infection, suggesting the coregulation of EAS and EAH by a potential bidirectional activity of the promoter (pCaD). A series of the nested deletions of pCaD in both directions verified the bidirectional promoter activity of the pCaD. Promoter deletion analysis revealed that the 226 bp of the adjacent promoter region of EAS and GCC-box in EAH orientation were determined as critical regulatory elements for the induction of each gene. Based on promoter analyses, we generated a set of synthetic promoters to maximize reporter gene expression within the minimal length of the promoter in both directions. We found that the reporter gene expression was remarkably induced upon infection with Phytophthora capsici, Phytophthora infestans, and bacterial pathogen Pseudomonas syringae pv. tomato DC3000 but not with necrotrophic fungi Botrytis cinerea. Our results confirmed the bidirectional activity of the pCaD located between the head-to-head oriented phytoalexin biosynthetic genes in hot pepper. Furthermore, the synthetic promoter modified in pCaD could be a potential tool for pathogen-inducible expression of target genes for developing disease-resistant crops.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Solhee In
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Ah Lee
- Division of Eco-Friendly Horticulture, Yonam College, Cheonan 31005, Republic of Korea
| | - Jongchan Woo
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, U.S.A
| | - Eunsook Park
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, U.S.A
| | - Doil Choi
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Ohnuma M, Teramura H, Shimada H. A simple method to establish an efficient medium suitable for potato regeneration. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:25-30. [PMID: 32362745 PMCID: PMC7193824 DOI: 10.5511/plantbiotechnology.19.1209a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/09/2019] [Indexed: 06/11/2023]
Abstract
Potato (Solanum tuberosum) is one of the important crop plants, and many potato cultivars consist of a tetraploid genome with high heterozygosity. The techniques of transformation and genome editing require plant regeneration. However, no efficient regeneration method has been established except for some specific cultivars, such as 'Sayaka'. In general, it is necessary to determine the adequate concentrations of auxin and cytokinin for plant regeneration. We established an efficient method using a 24-well microplate that easily enabled determination of the concentrations of these plant growth regulators suitable for shoot regeneration. Using this method, the optimal concentrations of these factors were analyzed for two representative potato cultivars, 'Sayaka' and 'Konafubuki'. This analysis revealed there was a large difference in the optimal concentrations between them. Based on this result, a specialized medium for the efficient regeneration of 'Konafubuki' cultivars was proposed. This assay method was also applied for determination of hygromycin sensitivity of these potato cultivars, and it was observed that 'Konafubuki' was rather sensitive to hygromycin. These findings suggested that the selection of a 'Konafubuki' transformant could be achieved using a medium containing a lower amount of hygromycin than that used for 'Sayaka'.
Collapse
Affiliation(s)
- Mariko Ohnuma
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
8
|
Yoshioka M, Adachi A, Sato Y, Doke N, Kondo T, Yoshioka H. RNAi of the sesquiterpene cyclase gene for phytoalexin production impairs pre- and post-invasive resistance to potato blight pathogens. MOLECULAR PLANT PATHOLOGY 2019; 20:907-922. [PMID: 30990946 PMCID: PMC6589726 DOI: 10.1111/mpp.12802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Potato antimicrobial sesquiterpenoid phytoalexins lubimin and rishitin have been implicated in resistance to the late blight pathogen, Phytophthora infestans and early blight pathogen, Alternaria solani. We generated transgenic potato plants in which sesquiterpene cyclase, a key enzyme for production of lubimin and rishitin, is compromised by RNAi to investigate the role of phytoalexins in potato defence. The transgenic tubers were deficient in phytoalexins and exhibited reduced post-invasive resistance to an avirulent isolate of P. infestans, resulting in successful infection of the first attacked cells without induction of cell death. However, cell death was observed in the subsequently penetrated cells. Although we failed to detect phytoalexins and antifungal activity in the extract from wild-type leaves, post-invasive resistance to avirulent P. infestans was reduced in transgenic leaves. On the other hand, A. solani frequently penetrated epidermal cells of transgenic leaves and caused severe disease symptoms presumably from a deficiency in unidentified antifungal compounds. The contribution of antimicrobial components to resistance to penetration and later colonization may vary depending on the pathogen species, suggesting that sesquiterpene cyclase-mediated compounds participate in pre-invasive resistance to necrotrophic pathogen A. solani and post-invasive resistance to hemibiotrophic pathogen P. infestans.
Collapse
Affiliation(s)
- Miki Yoshioka
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| | - Ayako Adachi
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| | - Yutaka Sato
- National Institute of GeneticsYata 1111, MishimaShizuoka411‐8540Japan
| | - Noriyuki Doke
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| | - Tatsuhiko Kondo
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| |
Collapse
|
9
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
10
|
Gene Profiling in Late Blight Resistance in Potato Genotype SD20. Int J Mol Sci 2018; 19:ijms19061728. [PMID: 29891775 PMCID: PMC6032139 DOI: 10.3390/ijms19061728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/18/2018] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
Late blight caused by the oomycete fungus Phytophthora infestans (Pi) is the most serious obstacle to potato (Solanum tuberosum) production in the world. A super race isolate, CN152, which was identified from Sichuan Province, China, could overcome nearly all known late blight resistance genes and caused serious damage in China. The potato genotype SD20 was verified to be highly resistant to CN152; however, the molecular regulation network underlying late blight resistance pathway remains unclear in SD20. Here, we performed a time-course experiment to systematically profile the late blight resistance response genes using RNA-sequencing in SD20. We identified 3354 differentially expressed genes (DEGs), which mainly encoded transcription factors and protein kinases, and also included four NBS-LRR genes. The late blight responsive genes showed time-point-specific induction/repression. Multi-signaling pathways of salicylic acid, jasmonic acid, and ethylene signaling pathways involved in resistance and defense against Pi in SD20. Gene Ontology and KEGG analyses indicated that the DEGs were significantly enriched in metabolic process, protein serine/threonine kinase activity, and biosynthesis of secondary metabolites. Forty-three DEGs were involved in immune response, of which 19 were enriched in hypersensitive response reaction, which could play an important role in broad-spectrum resistance to Pi infection. Experimental verification confirmed the induced expression of the responsive genes in the late blight resistance signaling pathway, such as WRKY, ERF, MAPK, and NBS-LRR family genes. Our results provided valuable information for understanding late blight resistance mechanism of potato.
Collapse
|
11
|
Teo CJ, Takahashi K, Shimizu K, Shimamoto K, Taoka KI. Potato Tuber Induction is Regulated by Interactions Between Components of a Tuberigen Complex. PLANT & CELL PHYSIOLOGY 2017; 58:365-374. [PMID: 28028166 DOI: 10.1093/pcp/pcw197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/10/2016] [Indexed: 05/15/2023]
Abstract
Photoperiod-regulated flowering and potato tuber formation involve leaf-produced mobile signals, florigen and tuberigen, respectively. The major protein component of florigen has been identified as the FLOWERING LOCUS T (FT) protein. In rice, an FT-like protein, Heading date 3a (Hd3a), induces flowering by making the florigen activation complex (FAC) through interactions with 14-3-3 and OsFD1, a rice FD-like protein. In potato, StSP6A, an FT-like protein, was identified as a major component of tuberigen. However, the molecular mechanism of how StSP6A triggers tuber formation remains elusive. Here we analyzed the significance of the formation of a complex including StSP6A, 14-3-3 and FD-like proteins in tuberization. Yeast two-hybrid, bimolecular fluorescence complementation and in vitro pull-down assays showed that StSP6A and StFDL1, a potato FD-like protein, interact with St14-3-3s. StSP6A overexpression induced early tuberization in a 14-3-3-dependent manner, and suppression of StFDL1 delayed tuberization. These results strongly suggest that an FAC-like complex, the tuberigen activation complex (TAC), comprised of StSP6A, St14-3-3s and StFDL1, regulates potato tuber formation.
Collapse
Affiliation(s)
- Chin-Jit Teo
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Japan
| | - Kenta Takahashi
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Japan
| | - Kanae Shimizu
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Japan
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Japan
| | - Ken-Ichiro Taoka
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Japan
- Laboratory of Plant Genetic Resources, Kihara Institute for Biological Research, Yokohama City University, Maioka, Totsuka, Yokohama, Japan
| |
Collapse
|
12
|
Bjornson M, Dandekar A, Dehesh K. Determinants of timing and amplitude in the plant general stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:119-26. [PMID: 26108530 DOI: 10.1111/jipb.12373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 05/06/2023]
Abstract
Plants have evolved intricate signaling cascades to rapidly and effectively respond to biotic and abiotic challenges. The precise timing of these responses enables optimal resource reallocation to maintain the balance between stress adaptation and growth. Thus, an in-depth understanding of the immediate and long-term mechanisms regulating resource allocation is critical in deciphering how plants withstand environmental challenges. To date however, understanding of this tradeoff has focused on the amplitude of long-term responses, rather than the timing of rapid stress responses. This review presents current knowledge on kinetics of secondary messengers involved in regulation of rapid and general stress responses, followed by rapid stress responsive transduction machinery, and finally the transcriptional response of a functional general stress responsive cis-element. Within this context we discuss the role of timing of initial peak activation and later oscillating peak responses, and explore hormonal and stress signaling crosstalk confounding greater understanding of these cascades.
Collapse
Affiliation(s)
- Marta Bjornson
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Adachi H, Nakano T, Miyagawa N, Ishihama N, Yoshioka M, Katou Y, Yaeno T, Shirasu K, Yoshioka H. WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana. THE PLANT CELL 2015; 27:2645-63. [PMID: 26373453 PMCID: PMC4815087 DOI: 10.1105/tpc.15.00213] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/10/2015] [Accepted: 08/30/2015] [Indexed: 05/18/2023]
Abstract
Pathogen attack sequentially confers pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) after sensing of pathogen patterns and effectors by plant immune receptors, respectively. Reactive oxygen species (ROS) play pivotal roles in PTI and ETI as signaling molecules. Nicotiana benthamiana RBOHB, an NADPH oxidase, is responsible for both the transient PTI ROS burst and the robust ETI ROS burst. Here, we show that RBOHB transactivation mediated by MAPK contributes to R3a/AVR3a-triggered ETI (AVR3a-ETI) ROS burst. RBOHB is markedly induced during the ETI and INF1-triggered PTI (INF1-PTI), but not flg22-tiggered PTI (flg22-PTI). We found that the RBOHB promoter contains a functional W-box in the R3a/AVR3a and INF1 signal-responsive cis-element. Ectopic expression of four phospho-mimicking mutants of WRKY transcription factors, which are MAPK substrates, induced RBOHB, and yeast one-hybrid analysis indicated that these mutants bind to the cis-element. Chromatin immunoprecipitation assays indicated direct binding of the WRKY to the cis-element in plants. Silencing of multiple WRKY genes compromised the upregulation of RBOHB, resulting in impairment of AVR3a-ETI and INF1-PTI ROS bursts, but not the flg22-PTI ROS burst. These results suggest that the MAPK-WRKY pathway is required for AVR3a-ETI and INF1-PTI ROS bursts by activation of RBOHB.
Collapse
Affiliation(s)
- Hiroaki Adachi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takaaki Nakano
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | - Miki Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuri Katou
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Yaeno
- Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Ken Shirasu
- RIKEN CSRS, Tsurumi, Yokohama 230-0045, Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
14
|
Monjil MS, Nozawa T, Shibata Y, Takemoto D, Ojika M, Kawakita K. Methanol extract of mycelia from Phytophthora infestans-induced resistance in potato. C R Biol 2015; 338:185-96. [PMID: 25683100 DOI: 10.1016/j.crvi.2015.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 01/12/2023]
Abstract
Plants recognize certain microbial compounds as elicitors in their active defence mechanisms. It has been shown that a series of defence reactions are induced in potato plant cells after treatment with water-soluble hyphal wall components prepared from Phytophthora infestans. In this study, a methanol extract from mycelia of P. infestans (MEM), which contains lipophilic compounds, was used as another elicitor for the induction of the defence reactions in potato. MEM elicitor induced reactive oxygen species (ROS), especially O2(-) and H2O2 production, and nitric oxide (NO) generation in potato leaves and suspension-cultured cells. Hypersensitive cell death was detected in potato leaves within 6-8 h after MEM elicitor treatment. The accumulation of phytoalexins was detected by MEM elicitor treatment in potato tubers. In potato suspension-cultured cells, several defence-related genes were induced by MEM elicitors, namely Strboh, Sthsr203J, StPVS3, StPR1, and StNR5, which regulate various defence-related functions. Enhanced resistance against P. infestans was found in MEM-treated potato plants. These results suggested that MEM elicitor is recognized by host and enhances defence activities to produce substances inhibitory to pathogens.
Collapse
Affiliation(s)
| | - Takeshi Nozawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yusuke Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Plant Pathology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kazuhito Kawakita
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
15
|
YOSHIOKA H, ADACHI H, ISHIHAMA N, NAKANO T, SHIRAISHI Y, MIYAGAWA N, NOMURA H, YOSHIOKA M, ASAI S. Molecular mechanisms of ROS burst conferred by protein phosphorylation. ACTA ACUST UNITED AC 2015. [DOI: 10.3186/jjphytopath.81.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- H. YOSHIOKA
- Graduate School of Bioagricultural Sciences, Nagoya University
| | - H. ADACHI
- Graduate School of Bioagricultural Sciences, Nagoya University
| | | | - T. NAKANO
- Graduate School of Bioagricultural Sciences, Nagoya University
| | - Y. SHIRAISHI
- Graduate School of Bioagricultural Sciences, Nagoya University
| | | | - H. NOMURA
- Gifu Women’s University, Department of Health and Nutrition
| | - M. YOSHIOKA
- Graduate School of Bioagricultural Sciences, Nagoya University
| | | |
Collapse
|
16
|
Zhang Z, Yang F, Na R, Zhang X, Yang S, Gao J, Fan M, Zhao Y, Zhao J. AtROP1 negatively regulates potato resistance to Phytophthora infestans via NADPH oxidase-mediated accumulation of H2O2. BMC PLANT BIOLOGY 2014; 14:392. [PMID: 25547733 PMCID: PMC4323192 DOI: 10.1186/s12870-014-0392-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/19/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Small GTPases are monomeric guanine nucleotide-binding proteins. In plants, ROPs regulate plant cell polarity, plant cell differentiation and development as well as biotic and abiotic stress signaling pathways. RESULTS We report the subcellular localization of the AtRop1 protein at the plasma membrane in tobacco epidermal cells using GFP fusions. Additionally, transient and stable expression of a dominant negative form (DN) of the Arabidopsis AtRop1 in potato led to H2O2 accumulation associated with the reduced development of Phytophthora infestans Montagne de Bary and smaller lesions on infected potato leaves. The expression of the Strboh-D gene, a NADPH oxidase homologue in potato, was analyzed by RT-PCR. Expression of this gene was maintained in DN-AtRop1 transgenic plants after infection with P. infestans. In transgenic potato lines, the transcript levels of salicylic acid (SA) and jasmonic acid (JA) marker genes (Npr1 and Lox, respectively) were analyzed. The Lox gene was induced dramatically whereas expression of Npr1, a gene up-regulated by SA, decreased slightly in DN-AtRop1 transgenic plants after infection with P. infestans. CONCLUSIONS In conclusion, our results indicate that DN-AtROP1 affects potato resistance to P. infestans. This is associated with increased NADPH oxidase-mediated H2O2 production and JA signaling.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Fan Yang
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Ren Na
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Xiaoluo Zhang
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Shuqing Yang
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Jing Gao
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Mingshou Fan
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Yan Zhao
- Institutes of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101, China.
| | - Jun Zhao
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| |
Collapse
|
17
|
Mine A, Sato M, Tsuda K. Toward a systems understanding of plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:423. [PMID: 25202320 PMCID: PMC4142988 DOI: 10.3389/fpls.2014.00423] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/07/2014] [Indexed: 05/25/2023]
Abstract
Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant-microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial perturbations is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant-microbe interactions, with a special emphasis on reconstruction strategies.
Collapse
Affiliation(s)
- Akira Mine
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Masanao Sato
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural SciencesOkazaki, Japan
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
18
|
Abstract
Thanks to their distinctive mode of action in a coordinated switch-like way, their multi-tiered signaling cascades and their involvement in cell responses to multiple internal and external stimuli, MAP kinases offer a remarkable possibility to be assembled into what we can call "MAPK transgenic circuits" to improve cell functions. Such circuit could be used to enhance cell signaling efficiency and boost cell functions for several purposes in plant biotechnology, medicine, and pharmaceutical industry.
Collapse
Affiliation(s)
- Khaled Moustafa
- Institut National de la Santé et de la Recherche Médicale (INSERM); Créteil, France
- Correspondence to: Khaled Moustafa;
| |
Collapse
|
19
|
Asai S, Ichikawa T, Nomura H, Kobayashi M, Kamiyoshihara Y, Mori H, Kadota Y, Zipfel C, Jones JDG, Yoshioka H. The variable domain of a plant calcium-dependent protein kinase (CDPK) confers subcellular localization and substrate recognition for NADPH oxidase. J Biol Chem 2013; 288:14332-14340. [PMID: 23569203 PMCID: PMC3656289 DOI: 10.1074/jbc.m112.448910] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/03/2013] [Indexed: 11/06/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are Ca(2+) sensors that regulate diverse biological processes in plants and apicomplexans. However, how CDPKs discriminate specific substrates in vivo is still largely unknown. Previously, we found that a potato StCDPK5 is dominantly localized to the plasma membrane and activates the plasma membrane NADPH oxidase (RBOH; for respiratory burst oxidase homolog) StRBOHB by direct phosphorylation of the N-terminal region. Here, we report the contribution of the StCDPK5 N-terminal variable (V) domain to activation of StRBOHB in vivo using heterologous expression system in Nicotiana benthamiana. Mutations of N-terminal myristoylation and palmitoylation sites in the V domain eliminated the predominantly plasma membrane localization and the capacity of StCDPK5 to activate StRBOHB in vivo. A tomato SlCDPK2, which also contains myristoylation and palmitoylation sites in its N terminus, phosphorylated StRBOHB in vitro but not in vivo. Functional domains responsible for activation and phosphorylation of StRBOHB were identified by swapping regions for each domain between StCDPK5 and SlCDPK2. The substitution of the V domain of StCDPK5 with that of SlCDPK2 abolished the activation and phosphorylation abilities of StRBOHB in vivo and relocalized the chimeric CDPK to the trans-Golgi network, as observed for SlCDPK2. Conversely, SlCDPK2 substituted with the V domain of StCDPK5 localized to the plasma membrane and activated StRBOHB. These results suggest that the V domains confer substrate specificity in vivo by dictating proper subcellular localization of CDPKs.
Collapse
Affiliation(s)
- Shuta Asai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Tatsushi Ichikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hironari Nomura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Michie Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Yusuke Kamiyoshihara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611-0690
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yasuhiro Kadota
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Jonathan D G Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
20
|
Kobayashi M, Yoshioka M, Asai S, Nomura H, Kuchimura K, Mori H, Doke N, Yoshioka H. StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst. THE NEW PHYTOLOGIST 2012; 196:223-237. [PMID: 22783903 DOI: 10.1111/j.1469-8137.2012.04226.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• Potato (Solanum tuberosum) calcium-dependent protein kinase (StCDPK5) has been shown to phosphorylate the N-terminal region of plasma membrane RBOH (respiratory burst oxidase homolog) proteins, and participate in StRBOHB-mediated reactive oxygen species (ROS) burst. The constitutively active form, StCDPK5VK, provides a useful tool for gain-of-function analysis of RBOH in defense responses. • StCDPK5- and StCDPK5VK-green fluorescent protein fusion proteins were predominantly targeted to the plasma membrane, and conditional expression of StCDPK5VK activated StRBOHA-D. The interaction was confirmed by bimolecular fluorescence complementation assay. We generated transgenic potato plants containing StCDPK5VK under the control of a pathogen-inducible promoter to investigate the role of ROS burst on defense responses to blight pathogens. • Virulent isolates of the late blight pathogen Phytophthora infestans and the early blight pathogen Alternaria solani induced hypersensitive response-like cell death accompanied by ROS production at the infection sites of transgenic plants. Transgenic plants showed resistance to the near-obligate hemibiotrophic pathogen P. infestans and, by contrast, increased susceptibility to the necrotrophic pathogen A. solani. • These results indicate that RBOH-dependent ROS contribute to basal defense against near-obligate pathogens, but have a negative role in resistance or have a positive role in expansion of disease lesions caused by necrotrophic pathogens.
Collapse
Affiliation(s)
| | | | - Shuta Asai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hironari Nomura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuo Kuchimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Noriyuki Doke
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
21
|
Im JH, Lee H, Kim J, Kim HB, An CS. Soybean MAPK, GMK1 is dually regulated by phosphatidic acid and hydrogen peroxide and translocated to nucleus during salt stress. Mol Cells 2012; 34:271-8. [PMID: 22886763 PMCID: PMC3887844 DOI: 10.1007/s10059-012-0092-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/07/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) is activated by various biotic and abiotic stresses. Salt stress induces two well-characterized MAPK activating signaling molecules, phosphatidic acid (PA) via phospholipase D and phospholipase C, and reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase. In our previous study, the activity of soybean MAPK, GMK1 was strongly induced within 5 min of 300 mM NaCl treatment and this early activity was regulated by PA. In this study, we focused on the regulation of GMK1 at the later stage of the salt stress, because its activity was strongly persistent for up to 30 min. H(2)O(2) activated GMK1 even in the presence of PA generation inhibitors, but GMK1 activity was greatly decreased in the presence of diphenyleneiodonium, an inhibitor of NADPH-oxidase after 5 min of the treatment. On the contrary, the n-butanol and neomycin reduced GMK1 activity within 5 min of the treatment. Thus, GMK1 activity may be sustained by H(2)O(2) 10 min after the treatment. Further, GMK1 was translocated into the nucleus 60 min after NaCl treatment. In the relationship between GMK1 and ROS generation, ROS generation was reduced by SB202190, a MAPK inhibitor, but was increased in protoplast overexpressing TESD-GMKK1. However, these effects were occurred at prolonged time of NaCl treatment. These data suggest that GMK1 indirectly regulates ROS generation. Taken together, we propose that soybean GMK1 is dually regulated by PA and H(2)O(2) at a time dependant manner and translocated to the nucleus by the salt stress signal.
Collapse
Affiliation(s)
- Jong Hee Im
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| | - Hyoungseok Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Division of Life Sciences, Korea Polar Research Institute (KOPRI), Songdo Techno Park, Incheon 406-840,
Korea
| | - Jitae Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Department of Plant Biology, Cornell University, Ithaca, New York, 14853,
USA
| | - Ho Bang Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Life Sciences Research Institute, Biomedic Co. Ltd., Bucheon 420-852,
Korea
| | - Chung Sun An
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| |
Collapse
|
22
|
Sörensson C, Lenman M, Veide-Vilg J, Schopper S, Ljungdahl T, Grøtli M, Tamás MJ, Peck SC, Andreasson E. Determination of primary sequence specificity of Arabidopsis MAPKs MPK3 and MPK6 leads to identification of new substrates. Biochem J 2012; 446:271-8. [PMID: 22631074 DOI: 10.1042/bj20111809] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
MAPKs (mitogen-activated protein kinases) are signalling components highly conserved among eukaryotes. Their diverse biological functions include cellular differentiation and responses to different extracellular stress stimuli. Although some substrates of MAPKs have been identified in plants, no information is available about whether amino acids in the primary sequence other than proline-directed phosphorylation (pS-P) contribute to kinase specificity towards substrates. In the present study, we used a random positional peptide library to search for consensus phosphorylation sequences for Arabidopsis MAPKs MPK3 and MPK6. These experiments indicated a preference towards the sequence L/P-P/X-S-P-R/K for both kinases. After bioinformatic processing, a number of novel candidate MAPK substrates were predicted and subsequently confirmed by in vitro kinase assays using bacterially expressed native Arabidopsis proteins as substrates. MPK3 and MPK6 phosphorylated all proteins tested more efficiently than did another MAPK, MPK4. These results indicate that the amino acid residues in the primary sequence surrounding the phosphorylation site of Arabidopsis MAPK substrates can contribute to MAPK specificity. Further characterization of one of these new substrates confirmed that At1g80180.1 was phosphorylated in planta in a MAPK-dependent manner. Phenotypic analyses of Arabidopsis expressing phosphorylation site mutant forms of At1g80180.1 showed clustered stomata and higher stomatal index in cotyledons expressing the phosphomimetic form of At1g80180.1, providing a link between this new MAPK substrate and the defined role for MPK3 and MPK6 in stomatal patterning.
Collapse
Affiliation(s)
- Carolin Sörensson
- Department of Biology, Lund University, Box 117, SE-221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem J 2012; 443:95-102. [PMID: 22248149 DOI: 10.1042/bj20111792] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MAPK (mitogen-activated protein kinase) pathways have been implicated in stress signalling in plants. In the present study, we performed yeast two-hybrid screening to identify partner MAPKs for OsMKK (Oryza sativa MAPK kinase) 6, a rice MAPK kinase, and revealed specific interactions of OsMKK6 with OsMPK3 and OsMPK6. OsMPK3 and OsMPK6 each co-immunoprecipitated OsMKK6, and both were directly phosphorylated by OsMKK6 in vitro. An MBP (myelin basic protein) kinase assay of the immunoprecipitation complex indicated that OsMPK3 and OsMPK6 were activated in response to a moderately low temperature (12°C), but not a severely low temperature (4°C) in rice seedlings. A constitutively active form of OsMKK6, OsMKK6DD, showed elevated phosphorylation activity against OsMPK3 and OsMPK6 in vitro. OsMPK3, but not OsMPK6, was constitutively activated in transgenic plants overexpressing OsMKK6DD, indicating that OsMPK3 is an in vivo target of OsMKK6. Enhanced chilling tolerance was observed in the transgenic plants overexpressing OsMKK6DD. Taken together, our data suggest that OsMKK6 and OsMPK3 constitute a moderately low-temperature signalling pathway and regulate cold stress tolerance in rice.
Collapse
|
24
|
Lee H, Chah OK, Sheen J. Stem-cell-triggered immunity through CLV3p-FLS2 signalling. Nature 2011; 473:376-9. [PMID: 21499263 PMCID: PMC3098311 DOI: 10.1038/nature09958] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 02/10/2011] [Indexed: 12/22/2022]
Abstract
Stem cells in the shoot apical meristem (SAM) of plants are the self-renewable reservoir for leaf, stem and flower organogenesis1,2. In nature, disease-free plants can be regenerated from SAM despite infections elsewhere, which underlies a horticultural practice for decades3. However, the molecular basis of the SAM immunity remains enigmatic. Here we show a surprising discovery that the CLAVATA3 peptide (CLV3p), expressed and secreted from the stem cells and functioning as a key regulator of stem cell homeostasis in the Arabidopsis SAM1,2,4, can trigger immune signalling and pathogen resistance via the flagellin receptor kinase FLS25,6. CLV3p-FLS2 signalling acts independently from the stem cell signalling pathway mediated through CLV1 and CLV2 receptors 1,2,4, and is uncoupled from the FLS2-mediated growth suppression5,6. Endogenous CLV3p perception in the SAM by a pattern recognition receptor FLS2 for bacterial flagellin breaks the previously defined self and nonself discrimination in innate immunity 6,7. The dual CLV3p perceptions illustrate co-evolution of plant peptide and receptor kinase signalling for both development and immunity. The enhanced immunity in SAM or germ lines may represent a common strategy toward immortal fate in plants and animals1,2,8.
Collapse
Affiliation(s)
- Horim Lee
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
25
|
Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. THE NEW PHYTOLOGIST 2011; 190:351-68. [PMID: 21091694 DOI: 10.1111/j.1469-8137.2010.03535.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• To adapt to waterlogging in soil, some gramineous plants, such as maize (Zea mays), form lysigenous aerenchyma in the root cortex. Ethylene, which is accumulated during waterlogging, promotes aerenchyma formation. However, the molecular mechanism of aerenchyma formation is not understood. • The aim of this study was to identify aerenchyma formation-associated genes expressed in maize roots as a basis for understanding the molecular mechanism of aerenchyma formation. Maize plants were grown under waterlogged conditions, with or without pretreatment with an ethylene perception inhibitor 1-methylcyclopropene (1-MCP), or under aerobic conditions. Cortical cells were isolated by laser microdissection and their mRNA levels were examined with a microarray. • The microarray analysis revealed 575 genes in the cortical cells, whose expression was either up-regulated or down-regulated under waterlogged conditions and whose induction or repression was suppressed by pretreatment with 1-MCP. • The differentially expressed genes included genes related to the generation or scavenging of reactive oxygen species, Ca(2+) signaling, and cell wall loosening and degradation. The results of this study should lead to a better understanding of the mechanism of root lysigenous aerenchyma formation.
Collapse
Affiliation(s)
- Imene Rajhi
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. THE PLANT CELL 2011; 23:1153-70. [PMID: 21386030 PMCID: PMC3082260 DOI: 10.1105/tpc.110.081794] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/28/2011] [Accepted: 02/15/2011] [Indexed: 05/17/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have pivotal roles in plant innate immunity. However, downstream signaling of plant defense-related MAPKs is not well understood. Here, we provide evidence that the Nicotiana benthamiana WRKY8 transcription factor is a physiological substrate of SIPK, NTF4, and WIPK. Clustered Pro-directed Ser residues (SP cluster), which are conserved in group I WRKY proteins, in the N-terminal region of WRKY8 were phosphorylated by these MAPKs in vitro. Antiphosphopeptide antibodies indicated that Ser residues in the SP cluster of WRKY8 are phosphorylated by SIPK, NTF4, and WIPK in vivo. The interaction of WRKY8 with MAPKs depended on its D domain, which is a MAPK-interacting motif, and this interaction was required for effective phosphorylation of WRKY8 in plants. Phosphorylation of WRKY8 increased its DNA binding activity to the cognate W-box sequence. The phospho-mimicking mutant of WRKY8 showed higher transactivation activity, and its ectopic expression induced defense-related genes, such as 3-hydroxy-3-methylglutaryl CoA reductase 2 and NADP-malic enzyme. By contrast, silencing of WRKY8 decreased the expression of defense-related genes and increased disease susceptibility to the pathogens Phytophthora infestans and Colletotrichum orbiculare. Thus, MAPK-mediated phosphorylation of WRKY8 has an important role in the defense response through activation of downstream genes.
Collapse
Affiliation(s)
- Nobuaki Ishihama
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Reiko Yamada
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Miki Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Shinpei Katou
- International Young Researchers Empowerment Center, Shinshu University, Nagano 399-4598, Japan
| | - Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
27
|
Yoshioka H, Mase K, Yoshioka M, Kobayashi M, Asai S. Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity. Nitric Oxide 2010; 25:216-21. [PMID: 21195205 DOI: 10.1016/j.niox.2010.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 12/15/2010] [Accepted: 12/19/2010] [Indexed: 12/18/2022]
Abstract
Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in diverse physiological processes, such as programmed cell death, development, cell elongation and hormonal signaling, in plants. Much attention has been paid to the regulation of plant innate immunity by these signal molecules. Recent studies provide evidence that an NADPH oxidase, respiratory burst oxidase homolog, is responsible for pathogen-responsive ROS burst. However, we still do not know about NO-producing enzymes, except for nitrate reductase, although many studies suggest the existence of NO synthase-like activity responsible for NO burst in plants. Here, we introduce regulatory mechanisms of NO and ROS bursts by mitogen-activated protein kinase cascades, calcium-dependent protein kinase or riboflavin and its derivatives, flavin mononucleotide and flavin adenine dinucleotide, and we discuss the roles of the bursts in defense responses against plant pathogens.
Collapse
Affiliation(s)
- Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | |
Collapse
|
28
|
Gust AA, Brunner F, Nürnberger T. Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 2010; 21:204-10. [DOI: 10.1016/j.copbio.2010.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 01/29/2010] [Accepted: 02/02/2010] [Indexed: 12/25/2022]
|
29
|
Panthee DR, Chen F. Genomics of fungal disease resistance in tomato. Curr Genomics 2010; 11:30-9. [PMID: 20808521 PMCID: PMC2851114 DOI: 10.2174/138920210790217927] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/19/2009] [Accepted: 06/19/2009] [Indexed: 11/26/2022] Open
Abstract
Tomato (Solanum lycopersicum) is an important vegetable crop worldwide. Often times, its production is hindered by fungal diseases. Important fungal diseases limiting tomato production are late blight, caused by Phytophthora infestans, early blight, caused by Alternaria solanii, and septoria leaf spot, caused by Septoria lycopersici, fusarium wilt caused by Fusarium oxysporium fsp. oxysporium, and verticilium wilt caused by Verticilium dahlea. The Phytophthora infestans is the same fungus that caused the devastating loss of potato in Europe in 1845. A similar magnitude of crop loss in tomato has not occurred but Phytophthora infestans has caused the complete loss of tomato crops around the world on a small scale. Several attempts have been made through conventional breeding and the molecular biological approaches to understand the biology of host-pathogen interaction so that the disease can be managed and crop loss prevented. In this review, we present a comprehensive analysis of information produced by molecular genetic and genomic experiments on host-pathogen interactions of late blight, early blight, septoria leaf spot, verticilim wilt and fusarium wilt in tomato. Furthermore, approaches adopted to manage these diseases in tomato including genetic transformation are presented. Attempts made to link molecular markers with putative genes and their use in crop improvement are discussed.
Collapse
Affiliation(s)
- Dilip R. Panthee
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, 455 Research Dr., Mills River, NC 28759, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
30
|
Collinge DB, Jørgensen HJL, Lund OS, Lyngkjaer MF. Engineering pathogen resistance in crop plants: current trends and future prospects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:269-91. [PMID: 20687833 DOI: 10.1146/annurev-phyto-073009-114430] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transgenic crops are now grown commercially in 25 countries worldwide. Although pathogens represent major constraints for the growth of many crops, only a tiny proportion of these transgenic crops carry disease resistance traits. Nevertheless, transgenic disease-resistant plants represent approximately 10% of the total number of approved field trials in North America, a proportion that has remained constant for 15 years. In this review, we explore the socioeconomic and biological reasons for the paradox that although technically useful solutions now exist for providing transgenic disease resistance, very few new crops have been introduced to the global market. For bacteria and fungi, the majority of transgenic crops in trials express antimicrobial proteins. For viruses, three-quarters of the transgenics express coat protein (CP) genes. There is a notable trend toward more biologically sophisticated solutions involving components of signal transduction pathways regulating plant defenses. For viruses, RNA interference is increasingly being used.
Collapse
Affiliation(s)
- David B Collinge
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
31
|
Yoshioka H, Asai S, Yoshioka M, Kobayashi M. Molecular mechanisms of generation for nitric oxide and reactive oxygen species, and role of the radical burst in plant immunity. Mol Cells 2009; 28:321-9. [PMID: 19830396 DOI: 10.1007/s10059-009-0156-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 12/17/2022] Open
Abstract
Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and H(2)O(2) accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.
Collapse
Affiliation(s)
- Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
32
|
Tanaka S, Ishihama N, Yoshioka H, Huser A, O'Connell R, Tsuji G, Tsuge S, Kubo Y. The Colletotrichum orbiculare SSD1 mutant enhances Nicotiana benthamiana basal resistance by activating a mitogen-activated protein kinase pathway. THE PLANT CELL 2009; 21:2517-26. [PMID: 19706796 PMCID: PMC2751964 DOI: 10.1105/tpc.109.068023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/25/2009] [Accepted: 08/05/2009] [Indexed: 05/17/2023]
Abstract
Plant basal resistance is activated by virulent pathogens in susceptible host plants. A Colletotrichum orbiculare fungal mutant defective in the SSD1 gene, which regulates cell wall composition, is restricted by host basal resistance responses. Here, we identified the Nicotiana benthamiana signaling pathway involved in basal resistance by silencing the defense-related genes required for restricting the growth of the C. orbiculare mutant. Only silencing of MAP Kinase Kinase2 or of both Salicylic Acid Induced Protein Kinase (SIPK) and Wound Induced Protein Kinase (WIPK), two mitogen-activated protein (MAP) kinases, allowed the mutant to infect and produce necrotic lesions similar to those of the wild type on inoculated leaves. The fungal mutant penetrated host cells to produce infection hyphae at a higher frequency in SIPK WIPK-silenced plants than in nonsilenced plants, without inducing host cellular defense responses. Immunocomplex kinase assays revealed that SIPK and WIPK were more active in leaves inoculated with mutant fungus than with the wild type, suggesting that induced resistance correlates with MAP kinase activity. Infiltration of heat-inactivated mutant conidia induced both SIPK and WIPK more strongly than did those of the wild type, while conidial exudates of the wild type did not suppress MAP kinase induction by mutant conidia. Therefore, activation of a specific MAP kinase pathway by fungal cell surface components determines the effective level of basal plant resistance.
Collapse
Affiliation(s)
- Shigeyuki Tanaka
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Asai S, Yoshioka H. Nitric oxide as a partner of reactive oxygen species participates in disease resistance to nectrotophic pathogen Botryis cinerea in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:619-29. [PMID: 19445587 DOI: 10.1094/mpmi-22-6-0619] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is an essential regulatory molecule in plant immunity in synergy with reactive oxygen species (ROS). However, little is known about the role of NO in disease resistance to necrotrophic pathogens. NO and oxidative bursts were induced during necrotrophic fungal pathogen Botrytis cinerea and Nicotiana benthamiana compatible interaction. Histochemical analyses showed that both NO and ROS were produced in adjacent cells of invaded areas in N. benthamiana leaves. Activation of salicylic acid-induced protein kinase, which regulates the radical burst, and several defense-related genes were induced after inoculation of B. cinerea. Loss-of-function analyses using inhibitors and virus-induced gene silencing were done to investigate the role of the radical burst in pathogenesis. We showed that NO plays a pivotal role in basal defense against B. cinerea and PR-1 gene expression in N. benthamiana. By contrast, ROS function has a negative role in resistance or has a positive role in expansion of disease lesions during B. cinerea-N. benthamiana interaction.
Collapse
Affiliation(s)
- Shuta Asai
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences. Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | |
Collapse
|
34
|
Asai S, Yoshioka H. The role of radical burst via MAPK signaling in plant immunity. PLANT SIGNALING & BEHAVIOR 2008; 3:920-2. [PMID: 19513193 PMCID: PMC2633736 DOI: 10.4161/psb.6601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 07/14/2008] [Indexed: 05/06/2023]
Abstract
Plants rely on the innate immune system to defend themselves from pathogen attacks. Reactive oxygen species (ROS) and nitric oxide (NO) play key roles in the activation of disease resistance mechanisms in plants. The evolutionarily conserved mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes and have been implicated in the plant innate immunity. There have been many disputations about the relationship between the radicals (ROS and NO) and MAPK cascades. Recently, we found that MAPK cascades participate in the regulation of the radical burst. Here, we discuss the regulatory mechanisms of the oxidative and NO bursts in response to pathogen attacks, and crosstalk between MAPK signaling and the radical burst.
Collapse
Affiliation(s)
- Shuta Asai
- Laboratory of Defense in Plant-Pathogen Interactions; Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa, Nagoya Japan
| | | |
Collapse
|
35
|
Lenman M, Sörensson C, Andreasson E. Enrichment of phosphoproteins and phosphopeptide derivatization identify universal stress proteins in elicitor-treated Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1275-84. [PMID: 18785823 DOI: 10.1094/mpmi-21-10-1275] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein phosphorylation is a key biological process that regulates reactions involved in plant-microbe interactions. The phosphorylated form of a protein often represents only a small fraction of the total population and can be problematic to analyze in a mass spectrometer. We demonstrate how a titanium dioxide (TiO(2)) resin can be employed for the enrichment of phosphoproteins, as well as a method to derivatize TiO(2)-purified phosphopeptides to facilitate determination of the exact site of phosphorylation. The use of these methods was exemplified by the identification of two plant proteins that were shown to be phosphorylated after the elicitation of Arabidopsis cells with Phytophthora infestans zoospores and xylanase. Both of the proteins that were identified, At5g54430.1 and At4g27320.1, were found to contain a universal stress protein domain with conserved residues for ATP binding.
Collapse
Affiliation(s)
- Marit Lenman
- Department of Cell and Organism Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
36
|
Asai S, Ohta K, Yoshioka H. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. THE PLANT CELL 2008; 20:1390-406. [PMID: 18515503 PMCID: PMC2438462 DOI: 10.1105/tpc.107.055855] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 04/13/2008] [Accepted: 05/07/2008] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) act as signals in innate immunity in plants. The radical burst is induced by INF1 elicitin, produced by the oomycete pathogen Phytophthora infestans. NO ASSOCIATED1 (NOA1) and NADPH oxidase participate in the radical burst. Here, we show that mitogen-activated protein kinase (MAPK) cascades MEK2-SIPK/NTF4 and MEK1-NTF6 participate in the regulation of the radical burst. NO generation was induced by conditional activation of SIPK/NTF4, but not by NTF6, in Nicotiana benthamiana leaves. INF1- and SIPK/NTF4-mediated NO bursts were compromised by the knockdown of NOA1. However, ROS generation was induced by either SIPK/NTF4 or NTF6. INF1- and MAPK-mediated ROS generation was eliminated by silencing Respiratory Burst Oxidase Homolog B (RBOHB), an inducible form of the NADPH oxidase. INF1-induced expression of RBOHB was compromised in SIPK/NTF4/NTF6-silenced leaves. These results indicated that INF1 regulates NOA1-mediated NO and RBOHB-dependent ROS generation through MAPK cascades. NOA1 silencing induced high susceptibility to Colletotrichum orbiculare but not to P. infestans; conversely, RBOHB silencing decreased resistance to P. infestans but not to C. orbiculare. These results indicate that the effects of the radical burst on the defense response appear to be diverse in plant-pathogen interactions.
Collapse
Affiliation(s)
- Shuta Asai
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
37
|
Király L, Hafez YM, Fodor J, Király Z. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol 2008; 89:799-808. [PMID: 18272772 DOI: 10.1099/vir.0.83328-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue necroses and resistance during the hypersensitive response (HR) of tobacco to tobacco mosaic virus (TMV) are overcome at temperatures above 28 degrees C and the virus multiplies to high levels in the originally resistant N-gene expressing plants. We have demonstrated that chemical compounds that generate reactive oxygen species (ROS) or directly applied hydrogen peroxide (H(2)O(2)) are able to induce HR-type necroses in TMV-inoculated Xanthi-nc tobacco even at high temperatures (e.g. 30 degrees C). The amount of superoxide (O(2)(*-)) decreased, while H(2)O(2) slightly increased in TMV- and mock-inoculated leaves at 30 degrees C, as compared with 20 degrees C. Activity of NADPH oxidase and mRNA levels of genes that encode NADPH oxidase and an alternative oxidase, respectively, were significantly lower, while activity of dehydroascorbate reductase was significantly higher at 30 degrees C, as compared with 20 degrees C. It was possible to reverse or suppress the chemically induced HR-type necrotization at 30 degrees C by the application of antioxidants, such as superoxide dismutase and catalase, demonstrating that the development of HR-type necroses indeed depends on a certain level of superoxide and other ROS. Importantly, high TMV levels at 30 degrees C were similar in infected plants, whether the HR-type necrotization developed or not. Suppression of virus multiplication in resistant, HR-producing tobacco at lower temperatures seems to be independent of the appearance of necroses but is associated with temperatures below 28 degrees C.
Collapse
Affiliation(s)
- L Király
- Plant Protection Institute, Hungarian Academy of Sciences, PO Box 102, H-1525 Budapest, Hungary
| | - Y M Hafez
- Department of Botany, Plant Pathology Branch, Faculty of Agriculture, Kafr-El-Sheikh University, Kafr-El-Sheikh, Egypt
| | - J Fodor
- Plant Protection Institute, Hungarian Academy of Sciences, PO Box 102, H-1525 Budapest, Hungary
| | - Z Király
- Plant Protection Institute, Hungarian Academy of Sciences, PO Box 102, H-1525 Budapest, Hungary
| |
Collapse
|
38
|
Attard A, Gourgues M, Galiana E, Panabières F, Ponchet M, Keller H. Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. Nicotianae Breda de Haan). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:83-94. [PMID: 17766006 DOI: 10.1016/j.jplph.2007.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/11/2007] [Accepted: 07/12/2007] [Indexed: 05/17/2023]
Abstract
Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to their particular physiological characteristics, no efficient treatments against diseases caused by these microorganisms are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. Available data are scarce, and genomic approaches were mainly developed for the two species, Phytophthora infestans and Phytophthora sojae. However, these two species are exceptions from, rather than representative species for, the genus. P. infestans is a foliar pathogen, and P. sojae infects a narrow range of host plants, while the majority of Phytophthora species are quite unselective, root-infecting pathogens. To represent this majority, Phytophthora parasitica emerges as a model for the genus, and genomic resources for analyzing its interaction with plants are developing. The aim of this review is to assemble current knowledge on cytological and molecular processes that are underlying plant-pathogen interactions involving Phytophthora species and in particular P. parasitica, and to place them into the context of a hypothetical scheme of co-evolution between the pathogen and the host.
Collapse
Affiliation(s)
- Agnès Attard
- Unité Mixte de Recherches, Interactions Plantes-Microorganismes et Santé Végétale, INRA1064-CNRS6192-UNSA, BP 167, 400 Route des Chappes, 06903 Sophia Antipolis, France
| | | | | | | | | | | |
Collapse
|
39
|
Kumar GNM, Iyer S, Knowles NR. Strboh A homologue of NADPH oxidase regulates wound-induced oxidative burst and facilitates wound-healing in potato tubers. PLANTA 2007; 227:25-36. [PMID: 17653758 DOI: 10.1007/s00425-007-0589-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/06/2007] [Indexed: 05/16/2023]
Abstract
During 30-months of storage at 4 degrees C, potato (Solanum tuberosum L.) tubers progressively lose the ability to produce superoxide in response to wounding, resist microbial infection, and develop a suberized wound periderm. Using differentially aged tubers, we demonstrate that Strboh A is responsible for the wound-induced oxidative burst in potato and aging attenuates its expression. In vivo superoxide production and NADPH oxidase (NOX) activity from 1-month-old tubers increased to a maximum 18-24 h after wounding and then decreased to barely detectable levels by 72 h. Wounding also induced a 68% increase in microsomal protein within 18 h. These wound-induced responses were lost over a 25- to 30-month storage period. Superoxide production and NOX activity were inhibited by diphenylene iodonium chloride, a specific inhibitor of NOX, which in turn effectively inhibited wound-healing and increased susceptibility to microbial infection and decay in 1-month-old tubers. Wound-induced superoxide production was also inhibited by EGTA-mediated destabilization of membranes. The ability to restore superoxide production to EGTA-treated tissue with Ca(+2) declined with advancing tuber age, likely a consequence of age-related changes in membrane architecture. Of the five homologues of NOX (Strboh A-D and F), wounding induced the expression of Strboh A in 6-month-old tubers but this response was absent in tubers stored for 25-30 months. Strboh A thus mediates the initial burst of superoxide in response to wounding of potato tubers; loss of its expression increases the susceptibility to microbial infection and contributes to the age-induced loss of wound-healing ability.
Collapse
Affiliation(s)
- G N Mohan Kumar
- Postharvest Physiology and Biochemistry Laboratory, Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164-6414, USA
| | | | | |
Collapse
|
40
|
Stulemeijer IJE, Stratmann JW, Joosten MHAJ. Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the Cf-4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. PLANT PHYSIOLOGY 2007; 144:1481-94. [PMID: 17478632 PMCID: PMC1914120 DOI: 10.1104/pp.107.101063] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 04/27/2007] [Indexed: 05/15/2023]
Abstract
Tomato (Solanum lycopersicum) plants with the Cf-4 resistance gene recognize strains of the pathogenic fungus Cladosporium fulvum that secrete the avirulence protein Avr4. Transgenic tomato seedlings coexpressing Cf-4 and Avr4 mount a hypersensitive response (HR) at 20 degrees C, which is suppressed at 33 degrees C. Within 120 min after a shift from 33 degrees C to 20 degrees C, tomato mitogen-activated protein (MAP) kinase (LeMPK) activity increases in Cf-4/Avr4 seedlings. Searching tomato genome databases revealed at least 16 LeMPK sequences, including the sequence of LeMPK1, LeMPK2, and LeMPK3 that cluster with biotic stress-related MAP kinase orthologs from Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). LeMPK1, LeMPK2, and LeMPK3 are simultaneously activated in Cf-4/Avr4 seedlings, and, to reveal whether they are functionally redundant or not, recombinant LeMPKs were incubated on PepChip Kinomics slides carrying peptides with potential phosphorylation sites. Phosphorylated peptides and motifs present in them discriminated between the phosphorylation specificities of LeMPK1, LeMPK2, and LeMPK3. LeMPK1, LeMPK2, or LeMPK3 activity was specifically suppressed in Cf-4-tomato by virus-induced gene silencing and leaflets were either injected with Avr4 or challenged with C. fulvum-secreting Avr4. The results of these experiments suggested that the LeMPKs have different but also overlapping roles with regard to HR and full resistance in tomato.
Collapse
Affiliation(s)
- Iris J E Stulemeijer
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | | | |
Collapse
|
41
|
de la Noval B, Pérez E, Martínez B, León O, Martínez-Gallardo N, Délano-Frier J. Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. MYCORRHIZA 2007; 17:449-460. [PMID: 17356854 DOI: 10.1007/s00572-007-0122-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/17/2007] [Accepted: 02/23/2007] [Indexed: 05/09/2023]
Abstract
A study was performed to determine the effect of the systemin polypeptide on the bio-protective effect of arbuscular mycorrhizal fungi (AMF) in tomato plants infected with Alternaria solani, Phytophthora infestans or P. parasitica. Before infection, tomato plants were colonized with two different AMF, Glomus fasciculatum or G. clarum. In addition, a group of inoculated plants was treated with systemin, just after emergence. The exogenous application of systemin marginally suppressed the resistance against A. solani leaf blight observed in G. fasciculatum mycorrhizal plants but significantly enhanced it in plants colonized with G. clarum. Systemin induced resistance to P. parasitica in leaves of G. fasciculatum mycorrhizal plants, in which AMF colonization alone was shown to have no protective effect. Conversely, none of the treatments led to resistance to root or stem rots caused by P. infestans or P. parasitica. The above effects did not correlate with changes in the activity levels of beta-1,3-glucanase (BG), chitinase (CHI), peroxidase (PRX), and phenylalanine ammonium lyase (PAL) in leaves of infected plants. However, they corroborated previous reports showing that colonization by AMF can lead to a systemic resistance response against A. solani. Systemic resistance to A. solani was similarly observed in non-mycorrhizal systemin-treated plants, which, in contrast, showed increased susceptibility to P. infestans and P. parasitica. The results indicated that the pattern of systemic disease resistance conferred by mycorrhizal colonization was dependent on the AMF employed and could be altered by the exogenous application of systemin, by means of a still undefined mechanism.
Collapse
Affiliation(s)
- Blanca de la Noval
- Instituto Nacional de Ciencias Agrícolas (INCA), Carretera de Tapaste, Km. 3.5, Gaveta Postal 1, 32700, San José de las Lajas, La Habana, Cuba
| | - Eduardo Pérez
- Instituto Nacional de Ciencias Agrícolas (INCA), Carretera de Tapaste, Km. 3.5, Gaveta Postal 1, 32700, San José de las Lajas, La Habana, Cuba
| | - Benedicto Martínez
- Centro Nacional de Sanidad Agropecuaria (CENSA), Carretera de Tapaste, Km. 3.5, Gaveta Postal 1, 32700, San José de las Lajas, La Habana, Cuba
| | - Ondina León
- Instituto Nacional de Ciencias Agrícolas (INCA), Carretera de Tapaste, Km. 3.5, Gaveta Postal 1, 32700, San José de las Lajas, La Habana, Cuba
| | - Norma Martínez-Gallardo
- Unidad de Biotecnología e Ingeniería Genética de Plantas del Cinvestav-Campus Guanajuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, 36500, Irapuato, Gto., Mexico
| | - John Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas del Cinvestav-Campus Guanajuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, 36500, Irapuato, Gto., Mexico.
| |
Collapse
|
42
|
Mino M, Kubota M, Nogi T, Zhang S, Inoue M. Hybrid lethality in interspecific F1 hybrid Nicotiana gossei x N. tabacum involves a MAP-kinases signalling cascade. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:366-73. [PMID: 17236099 DOI: 10.1055/s-2006-924725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A cultured cell line, GTH4 (Nicotiana gossei Domin x N. tabacum L.), which exhibits hybrid lethality, died at 26 degrees C, but not at 37 degrees C. Pharmacological experiments using inhibitors of protein phosphatases and protein kinases indicated the involvement of a protein kinase signalling pathway in the cell death process. Immunoblot analysis revealed that salicylic acid-induced protein kinase (SIPK) was phosphorylated soon after the shift in temperature from 37 degrees C to 26 degrees C. Cultured cells of the hybrid of N. gossei x transgenic N. tabacum harboring a steroid (dexamethasone; DEX)-inducible NtMEK2 (DD) or NtMEK2 (KR), constitutively active and inactive forms of NtMEK2, respectively, were established. Induction of NtMEK2 (DD) by DEX in the hybrid cells induced the activation of SIPK, the generation of hydrogen peroxide (H (2)O (2)), and cell death at 37 degrees C. The activation of SIPK, generation of H (2)O (2), and cell death at 26 degrees C were compromised by DEX treatment in hybrid cells harbouring NtMEK2 (KR). This study provides evidence for the involvement of MAPK signalling in the regulation of cell death in hybrids.
Collapse
Affiliation(s)
- M Mino
- Graduate School of Agriculture, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8255, Japan.
| | | | | | | | | |
Collapse
|
43
|
Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. THE PLANT CELL 2007; 19:1065-80. [PMID: 17400895 PMCID: PMC1867354 DOI: 10.1105/tpc.106.048884] [Citation(s) in RCA: 443] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/20/2007] [Accepted: 03/13/2007] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS) are implicated in plant innate immunity. NADPH oxidase (RBOH; for Respiratory Burst Oxidase Homolog) plays a central role in the oxidative burst, and EF-hand motifs in the N terminus of this protein suggest possible regulation by Ca(2+). However, regulatory mechanisms are largely unknown. We identified Ser-82 and Ser-97 in the N terminus of potato (Solanum tuberosum) St RBOHB as potential phosphorylation sites. An anti-phosphopeptide antibody (pSer82) indicated that Ser-82 was phosphorylated by pathogen signals in planta. We cloned two potato calcium-dependent protein kinases, St CDPK4 and St CDPK5, and mass spectrometry analyses showed that these CDPKs phosphorylated only Ser-82 and Ser-97 in the N terminus of St RBOHB in a calcium-dependent manner. Ectopic expression of the constitutively active mutant of St CDPK5, St CDPK5VK, provoked ROS production in Nicotiana benthamiana leaves. The CDPK-mediated ROS production was disrupted by knockdown of Nb RBOHB in N. benthamiana. The loss of function was complemented by heterologous expression of wild-type potato St RBOHB but not by a mutant (S82A/S97A). Furthermore, the heterologous expression of St CDPK5VK phosphorylated Ser-82 of St RBOHB in N. benthamiana. These results suggest that St CDPK5 induces the phosphorylation of St RBOHB and regulates the oxidative burst.
Collapse
Affiliation(s)
- Michie Kobayashi
- Plant Pathology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. PLANT PHYSIOLOGY 2006; 141:423-35. [PMID: 16603663 PMCID: PMC1475448 DOI: 10.1104/pp.106.078469] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 05/08/2023]
Abstract
The role of the redox state of the apoplast in hormone responses, signaling cascades, and gene expression was studied in transgenic tobacco (Nicotiana tabacum) plants with modified cell wall-localized ascorbate oxidase (AO). High AO activity specifically decreased the ascorbic acid (AA) content of the apoplast and altered plant growth responses triggered by hormones. Auxin stimulated shoot growth only when the apoplastic AA pool was reduced in wild-type or AO antisense lines. Oxidation of apoplastic AA in AO sense lines was associated with loss of the auxin response, higher mitogen-activated protein kinase activities, and susceptibility to a virulent strain of the pathogen Pseudomonas syringae. The total leaf glutathione pool, the ratio of reduced glutathione to glutathione disulfide, and glutathione reductase activities were similar in the leaves of all lines. However, AO sense leaves exhibited significantly lower dehydroascorbate reductase and ascorbate peroxidase activities than wild-type and antisense leaves. The abundance of mRNAs encoding antioxidant enzymes was similar in all lines. However, the day/night rhythms in the abundance of transcripts encoding the three catalase isoforms were changed in response to the AA content of the apoplast. Other transcripts influenced by AO included photorespiratory genes and a plasma membrane Ca(2+) channel-associated gene. We conclude that the redox state of the apoplast modulates plant growth and defense responses by regulating signal transduction cascades and gene expression patterns. Hence, AO activity, which modulates the redox state of the apoplastic AA pool, strongly influences the responses of plant cells to external and internal stimuli.
Collapse
Affiliation(s)
- Cristina Pignocchi
- Crop Performance and Improvement Division , Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, An L. Diverse signals converge at MAPK cascades in plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:274-83. [PMID: 16809044 DOI: 10.1016/j.plaphy.2006.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Indexed: 05/10/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are important signal transducing enzymes that connects diverse receptors/sensors to a wide range of cellular responses in mammals, yeasts and plants. In recent years, a large number of different components of plant MAPK cascades were isolated. Molecular and biochemical studies have revealed that plant MAPKs play important role in the response to a broad variety of biotic and abiotic stresses, including wounding, pathogen infection, temperature, drought, salinity, but also in the signaling of plant hormones and the cell division. This review briefly summaries the recent research results about the cross-talk and complexity of MAP kinase cascades in plant obtained from functional analyses.
Collapse
Affiliation(s)
- T Zhang
- Key Laboratory of Arid and Grassland Ecology of Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|