1
|
Semchenko M, Barry KE, de Vries FT, Mommer L, Moora M, Maciá-Vicente JG. Deciphering the role of specialist and generalist plant-microbial interactions as drivers of plant-soil feedback. THE NEW PHYTOLOGIST 2022; 234:1929-1944. [PMID: 35338649 DOI: 10.1111/nph.18118] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Feedback between plants and soil microbial communities can be a powerful driver of vegetation dynamics. Plants elicit changes in the soil microbiome that either promote or suppress conspecifics at the same location, thereby regulating population density-dependence and species co-existence. Such effects are often attributed to the accumulation of host-specific antagonistic or beneficial microbiota in the rhizosphere. However, the identity and host-specificity of the microbial taxa involved are rarely empirically assessed. Here we review the evidence for host-specificity in plant-associated microbes and propose that specific plant-soil feedbacks can also be driven by generalists. We outline the potential mechanisms by which generalist microbial pathogens, mutualists and decomposers can generate differential effects on plant hosts and synthesize existing evidence to predict these effects as a function of plant investments into defence, microbial mutualists and dispersal. Importantly, the capacity of generalist microbiota to drive plant-soil feedbacks depends not only on the traits of individual plants but also on the phylogenetic and functional diversity of plant communities. Identifying factors that promote specialization or generalism in plant-microbial interactions and thereby modulate the impact of microbiota on plant performance will advance our understanding of the mechanisms underlying plant-soil feedback and the ways it contributes to plant co-existence.
Collapse
Affiliation(s)
- Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kathryn E Barry
- Ecology and Biodiversity, Department of Biology, Institute of Science, Utrecht University, Padualaan 8, Utrecht, the Netherlands
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Jose G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
2
|
Kurashov EA, Krylova JV, Rusanov AG. Change of Low-Molecular-Weight Metabolome of Alien Species Potamogeton pectinatus L. in Lake Ladoga in Comparison with Population of Native Range. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2020. [DOI: 10.1134/s2075111720030066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Dai X, Liu Y, Zhuang J, Yao S, Liu L, Jiang X, Zhou K, Wang Y, Xie D, Bennetzen JL, Gao L, Xia T. Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins. THE NEW PHYTOLOGIST 2020; 226:1104-1116. [PMID: 32061142 DOI: 10.1111/nph.16425] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/23/2019] [Indexed: 05/22/2023]
Abstract
Plant tannins, including condensed tannins (CTs) and hydrolyzable tannins (HTs), are widely distributed in the plant kingdom. To date, tannase (TA) - is a type of tannin acyl-hydrolase hydrolyzing HTs, CT monomer gallates and depsides - has been reported in microbes only. Whether plants express TA remains unknown. Herein, we report plant TA genes. A native Camellia sinensis TA (CsTA) is identified from leaves. Six TAs are cloned from tea, strawberry (Fragaria × ananassa, Fa) and four other crops. Biochemical analysis shows that the native CsTA and six recombinant TAs hydrolyze tannin compounds, depsides and phenolic glycosides. Transcriptional and metabolic analyses reveal that the expression of CsTA is oppositely associated with the accumulation of galloylated catechins. Moreover, the transient overexpression and RNA interference of FaTA are positively associated with the accumulation of ellagitannins in strawberry fruit. Phylogenetic analysis across different kingdoms shows that 29 plant TA homologs are clustered as a plant-specific TA clade in class I carboxylesterases. Further analysis across the angiosperms reveals that these TA genes are dispersed in tannin-rich plants, which share a single phylogenetic origin c. 120 million yr ago. Plant TA is discovered for the first time in the plant kingdom and is shown to be valuable to improve tannin compositions in plants.
Collapse
Affiliation(s)
- Xinlong Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
- College of Tea Science, Guizhou University, 550025, Guiyang, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Li Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Kang Zhou
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Deyu Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jeffrey L Bennetzen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
4
|
Biotransformation of industrial tannins by filamentous fungi. Appl Microbiol Biotechnol 2018; 102:10361-10375. [PMID: 30293196 DOI: 10.1007/s00253-018-9408-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Tannins are secondary metabolites that are widely distributed in the plant kingdom. They act as growth inhibitors for many microorganisms: they are released upon microbial attack, helping to fight infection in plant tissues. Extraction of tannins from plants is an active industrial sector with several applications, including oenology, animal feeding, mining, the chemical industry, and, in particular, the tanning industry. However, tannins are also considered very recalcitrant pollutants in wastewater of diverse origin. The ability to grow on plant substrates rich in tannins and on industrial tannin preparations is usually considered typical of some species of fungi. These organisms are able to tolerate the toxicity of tannins thanks to the production of enzymes that transform or degrade these substrates, mainly through hydrolysis and oxidation. Filamentous fungi capable of degrading tannins could have a strong environmental impact as bioremediation agents, in particular in the treatment of tanning wastewaters.
Collapse
|
5
|
Geng LL, Shao GX, Raymond B, Wang ML, Sun XX, Shu CL, Zhang J. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Microbiol Res 2018; 211:13-20. [PMID: 29705202 DOI: 10.1016/j.micres.2018.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/04/2018] [Accepted: 02/25/2018] [Indexed: 11/28/2022]
Abstract
Rhizosphere microorganisms contribute to the health and development of crops and these beneficial microbes are recruited to the root-zone when plants experience biotic/abiotic stress. The subterranean pests Holotrichia parallela cause severe crop loss in peanut (Arachis hypogaea L.) fields. Hypothesizing that infestation by H. parallela larva may influence the composition of rhizosphere microbial communities, deep sequencing of V3 and V4 hypervariable regions of 16S rRNA gene was used to characterize the rhizosphere bacteria of infested and uninfested peanuts. A total of 2,673,656 reads were generated and an average of 2558 OTUs were obtained for each sample. Comparisons of rhizosphere bacterial community structure of peanuts with those infested by H. parallela larva revealed that the relative abundance of Proteobacteria and Bacteroidetes increased, while that of Actinobacteria decreased in the rhizosphere with infestation. A significant shift in bacterial communities was observed within 24 h after infestation by principal coordinate analysis. For the 332 genera identified in 24 h treatment, infestation of white grubs led to the significant changes of abundance of 67 genera. An increase in the Pseudomonas genus of infested-samples for 24 h was verified by real-time qPCR. Our results indicate H. parallela larvae infestation can quickly leads to the change of peanut rhizosphere microbiome and enrichment of specific bacterial species. But the effects were not persistent. This study provides the insight into the function of rhizosphere microbiome in the interaction between subterranean pests and crops.
Collapse
Affiliation(s)
- Li-Li Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gao-Xiang Shao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ben Raymond
- College of Life and Environmental Science, Penryn campus, University of Exeter, Penryn, TR10 9FE, UK
| | - Mei-Ling Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Xiao Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chang-Long Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Uddin MN, Robinson RW. Allelopathy and resource competition: the effects of Phragmites australis invasion in plant communities. BOTANICAL STUDIES 2017; 58:29. [PMID: 28664396 PMCID: PMC5491426 DOI: 10.1186/s40529-017-0183-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/16/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Phragmites australis, a ubiquitous wetland plant, has been considered one of the most invasive species in the world. Allelopathy appears to be one of the invasion mechanisms, however, the effects could be masked by resource competition among target plants. The difficulty of distinguishing allelopathy from resource competition among plants has hindered investigations of the role of phytotoxic allelochemicals in plant communities. This has been addressed via experiments conducted in both the greenhouse and laboratory by growing associated plants, Melaleuca ericifolia, Rumex conglomeratus, and model plant, Lactuca sativa at varying densities with the allelopathic plant, P. australis, its litter and leachate of P. australis litter. This study investigated the potential interacting influences of allelopathy and resource competition on plant growth-density relationships. RESULTS In greenhouse, the root exudates mediated effects showed the strongest growth inhibition of M. ericifolia at high density whereas litter mediated results revealed increased growth at medium density treatments compared to low and high density. Again, laboratory experiments related to seed germination and seedling growth of L. sativa and R. conglomeratus exhibited phytotoxicity decreased showing positive growth as plant density increased and vice versa. Overall, the differential effects were observed among experiments but maximum individual plant biomass and some other positive effects on plant traits such as root and shoot length, chlorophyll content occurred at an intermediate density. This was attributed to the sharing of the available phytotoxin among plants at high densities which is compatible to density-dependent phytotoxicity model. CONCLUSIONS The results demonstrated that plant-plant interference is the combined effect of allelopathy and resource competition with many other factors but this experimental design, target-neighbor mixed-culture in combination of plant grown at varying densities with varying level of phytotoxins, mono-culture, can successfully separate allelopathic effects from competition.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Department of Ecology & Environmental Management, College of Engineering & Science, Victoria University, Melbourne, VIC 8001 Australia
- Institute for Sustainability & Innovation, Victoria University, Melbourne, VIC 8001 Australia
| | - Randall William Robinson
- Department of Ecology & Environmental Management, College of Engineering & Science, Victoria University, Melbourne, VIC 8001 Australia
- Institute for Sustainability & Innovation, Victoria University, Melbourne, VIC 8001 Australia
| |
Collapse
|
7
|
Crocker EV, Nelson EB, Blossey B. Soil conditioning effects of Phragmites australis on native wetland plant seedling survival. Ecol Evol 2017; 7:5571-5579. [PMID: 28808539 PMCID: PMC5551089 DOI: 10.1002/ece3.3024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 11/14/2022] Open
Abstract
Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non-native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis-conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non-native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non-native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non-native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil-mediated impact on other plant species.
Collapse
Affiliation(s)
| | - Eric B. Nelson
- Department of Plant PathologyCornell UniversityIthacaNYUSA
| | - Bernd Blossey
- Department of Natural ResourcesCornell UniversityIthacaNYUSA
| |
Collapse
|
8
|
Neher DA, Williams KM, Lovell ST. Environmental indicators reflective of road design in a forested landscape. Ecosphere 2017. [DOI: 10.1002/ecs2.1734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Deborah A. Neher
- Department of Plant & Soil Science; University of Vermont; Burlington Vermont 05405 USA
| | - Kristin M. Williams
- Department of Plant & Soil Science; University of Vermont; Burlington Vermont 05405 USA
| | - Sarah Taylor Lovell
- Department of Plant & Soil Science; University of Vermont; Burlington Vermont 05405 USA
| |
Collapse
|
9
|
Dawkins K, Esiobu N. Emerging Insights on Brazilian Pepper Tree (Schinus terebinthifolius) Invasion: The Potential Role of Soil Microorganisms. FRONTIERS IN PLANT SCIENCE 2016; 7:712. [PMID: 27252726 PMCID: PMC4878544 DOI: 10.3389/fpls.2016.00712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/09/2016] [Indexed: 06/04/2023]
Abstract
Invasive plant species constitute a major ecological and economic problem worldwide, often distorting trophic levels and ecosystem balance. Numerous studies implicate factors ranging from environmental plasticity, competition for nutrient and space, and allelopathy in the success of invasive species in general. The Brazilian Pepper tree (BP) was introduced to the United States in the 1800s and has since become a category one invasive plant in Florida. It has aggressively spread to about 3000 km(2) of terrestrial surface, fueled in part by the prevalence of the hybrid genotypes and environmental perturbations. It displays some of the well-established invasive mechanisms but there is a serious dearth of knowledge on the plant-microbe-soil interactions and whether the rhizobiome plays any roles in the displacement of native flora and the range expansion of BP. Several control measures, including chemical, mechanical, and biological antagonism have been used with limited success while restoration of natives in soils from which BP was removed has proved problematic partly due to a poorly understood phenomenon described as the "BP legacy effect." Emerging evidence suggests that allelopathy, selective recruitment of beneficial soil microbes, disruption of microbial community structure and alteration of nutrient cycling, exhibited by many other invasive plant species may also be involved in the case of BP. This brief review discusses the well-established BP invasion mechanisms and highlights the current understanding of the molecular, below-ground processes. It also points out the gaps in studies on the potential role of microbial interactions in the success of BP invasion. These hitherto poorly studied mechanisms could further explain the aggressive spread of BP and could potentially contribute significantly to effective control measures and enable appropriate strategies for restoring native plants. The review advocates for the use of cutting-edge techniques in advancing the plant microbiome science. Ultimately, comparing metagenomic analyses of the rhizobiome of invasive plants grown in native and non-native soils could lead to a better understanding of the microbial determinants of biotic resistance, potentially empowering environmental managers with some predictive power of future trends of plant invasion.
Collapse
|
10
|
Archaeal rhizosphere communities differ between the native and invasive lineages of the wetland plant Phragmites australis (common reed) in a Chesapeake Bay subestuary. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1144-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Crocker EV, Karp MA, Nelson EB. Virulence of oomycete pathogens from Phragmites australis-invaded and noninvaded soils to seedlings of wetland plant species. Ecol Evol 2015; 5:2127-39. [PMID: 26078850 PMCID: PMC4461415 DOI: 10.1002/ece3.1468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 12/17/2022] Open
Abstract
Soil pathogens affect plant community structure and function through negative plant-soil feedbacks that may contribute to the invasiveness of non-native plant species. Our understanding of these pathogen-induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown. In this study, we examine the diversity and virulence of soil oomycete pathogens in freshwater wetland soils invaded by non-native Phragmites australis (European common reed) to better understand the potential for soil pathogen communities to impact a range of native and non-native species and influence invasiveness. We isolated oomycetes from four sites over a 2-year period, collecting nearly 500 isolates belonging to 36 different species. These sites were dominated by species of Pythium, many of which decreased seedling survival of a range of native and invasive plants. Despite any clear host specialization, many of the Pythium species were differentially virulent to the native and non-native plant species tested. Isolates from invaded and noninvaded soils were equally virulent to given individual plant species, and no apparent differences in susceptibility were observed between the collective groups of native and non-native plant species.
Collapse
Affiliation(s)
- Ellen V Crocker
- Forest Health Research and Education Center, Department of Forestry, University of Kentucky Lexington, Kentucky, 40503
| | - Mary Ann Karp
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University Ithaca, New York, 14853
| | - Eric B Nelson
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University Ithaca, New York, 14853
| |
Collapse
|
12
|
Kowalski KP, Bacon C, Bickford W, Braun H, Clay K, Leduc-Lapierre M, Lillard E, McCormick MK, Nelson E, Torres M, White J, Wilcox DA. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front Microbiol 2015; 6:95. [PMID: 25745417 PMCID: PMC4333861 DOI: 10.3389/fmicb.2015.00095] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/26/2015] [Indexed: 01/03/2023] Open
Abstract
A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.
Collapse
Affiliation(s)
- Kurt P. Kowalski
- U.S. Geological Survey, Great Lakes Science CenterAnn Arbor, MI, USA
| | - Charles Bacon
- U.S. Department of Agriculture, Agricultural Research ServiceAthens, GA, USA
| | - Wesley Bickford
- U.S. Geological Survey, Great Lakes Science CenterAnn Arbor, MI, USA
| | | | - Keith Clay
- Department of Biology, Indiana UniversityBloomington, IN, USA
| | | | | | | | - Eric Nelson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell UniversityIthaca, NY, USA
| | - Monica Torres
- Department of Plant Biology and Pathology, Rutgers UniversityNew Brunswick, NJ, USA
| | - James White
- Department of Plant Biology and Pathology, Rutgers UniversityNew Brunswick, NJ, USA
| | - Douglas A. Wilcox
- Department of Environmental Science and Biology, The College at Brockport, State University of New YorkBrockport, NY, USA
| |
Collapse
|
13
|
De-la-Peña C, Loyola-Vargas VM. Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. PLANT PHYSIOLOGY 2014; 166:701-19. [PMID: 25118253 PMCID: PMC4213099 DOI: 10.1104/pp.114.241810] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/10/2014] [Indexed: 05/08/2023]
Abstract
Microbes and plants have evolved biochemical mechanisms to communicate with each other. The molecules responsible for such communication are secreted during beneficial or harmful interactions. Hundreds of these molecules secreted into the rhizosphere have been identified, and their functions are being studied in order to understand the mechanisms of interaction and communication among the different members of the rhizosphere community. The importance of root and microbe secretion to the underground habitat in improving crop productivity is increasingly recognized, with the discovery and characterization of new secreting compounds found in the rhizosphere. Different omic approaches, such as genomics, transcriptomics, proteomics, and metabolomics, have expanded our understanding of the first signals between microbes and plants. In this review, we highlight the more recent discoveries related to molecules secreted into the rhizosphere and how they affect plant productivity, either negatively or positively. In addition, we include a survey of novel approaches to studying the rhizosphere and emerging opportunities to direct future studies.
Collapse
Affiliation(s)
- Clelia De-la-Peña
- Unidad de Biotecnología (C.D.) and Unidad de Bioquímica y Biología Molecular de Plantas (V.M.L.-V.), Centro de Investigación Científica de Yucatán, 97200 Merida, Yucatan, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Biotecnología (C.D.) and Unidad de Bioquímica y Biología Molecular de Plantas (V.M.L.-V.), Centro de Investigación Científica de Yucatán, 97200 Merida, Yucatan, Mexico
| |
Collapse
|
14
|
Uddin MN, Robinson RW, Caridi D, Al Harun MAY. Suppression of native Melaleuca ericifolia by the invasive Phragmites australis through allelopathic root exudates. AMERICAN JOURNAL OF BOTANY 2014; 101:479-87. [PMID: 24634438 DOI: 10.3732/ajb.1400021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PREMISE OF THE STUDY Invasive plants are a great threat to the conservation of natural ecosystems and biodiversity. Allelopathy as a mechanism for invasion of plants such as Phragmites australis, one of the most aggressive invaders, has the potential to suppress neighboring plant species. Allelopathic interference, through root exudates of P. australis on native Melaleuca ericifolia, was investigated to find out the underlying invasion mechanisms. METHODS Germination and growth effects of P. australis on M. ericifolia were studied in the greenhouse using potting mix both with and without activated carbon, and a combination of single and repeated cuttings of P. australis as the management tool. KEY RESULTS P. AUSTRALIS had significant negative effects on germination and growth of M. ericifolia by inhibiting germination percentage, maximum root length and plant height, biomass, stem diameter, and number of growth points with little effect on leaf physiology. Activated carbon (AC) in turn moderately counteracted these effects. The cutting of P. australis shoots significantly reduced the suppressive effects on M. ericifolia compared to the addition of AC to soil. Furthermore, significant changes in soil such as pH, electrical conductivity, osmotic potential, phenolics, and dehydrogenase activity were identified among cutting treatments with little variation between AC treatments. CONCLUSION The results demonstrated that allelopathy through root exudates of P. australis had relatively low contribution in suppressing M. ericifolia in comparison to other competitive effects. Management tools combining repeated cutting of P. australis shoots with AC treatments may assist partly in the restoration of native ecosystems invaded by P. australis.
Collapse
Affiliation(s)
- Md Nazim Uddin
- College of Engineering & Science, Victoria University, St. Albans Campus, Melbourne, Victoria 8001, Australia
| | | | | | | |
Collapse
|
15
|
Chemical Ecology of Marine Angiosperms: Opportunities at the Interface of Marine and Terrestrial Systems. J Chem Ecol 2013; 39:687-711. [DOI: 10.1007/s10886-013-0297-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
16
|
Weidenhamer JD, Li M, Allman J, Bergosh RG, Posner M. Evidence does not support a role for gallic acid in Phragmites australis invasion success. J Chem Ecol 2013; 39:323-32. [PMID: 23328818 DOI: 10.1007/s10886-013-0242-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 11/29/2022]
Abstract
Gallic acid has been reported to be responsible for the invasive success of nonnative genotypes of Phragmites australis in North America. We have been unable to confirm previous reports of persistent high concentrations of gallic acid in the rhizosphere of invasive P. australis, and of high concentrations of gallic acid and gallotannins in P. australis rhizomes. The half-life of gallic acid in nonsterile P. australis soil was measured by aqueous extraction of soils and found to be less than 1 day at added concentrations up to 10,000 μg g(-1). Furthermore, extraction of P. australis soil collected in North Carolina showed no evidence of gallic acid, and extractions of both rhizomes and leaves of samples of four P. australis populations confirmed to be of invasive genotype show only trace amounts of gallic acid and/or gallotannins. The detection limits were less than 20 μg gallic acid g(-1) FW in the rhizome samples tested, which is approximately 0.015 % of the minimum amount of gallic acid expected based on previous reports. While the occurrence of high concentrations of gallic acid and gallotannins in some local populations of P. australis cannot be ruled out, our results indicate that exudation of gallic acid by P. australis cannot be a primary, general explanation for the invasive success of this species in North America.
Collapse
|
17
|
Moore GE, Burdick DM, Peter CR, Keirstead DR. Belowground Biomass ofPhragmites australisin Coastal Marshes. Northeast Nat (Steuben) 2012. [DOI: 10.1656/045.019.0406] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Cipollini D, Rigsby CM, Barto EK. Microbes as targets and mediators of allelopathy in plants. J Chem Ecol 2012; 38:714-27. [PMID: 22585095 DOI: 10.1007/s10886-012-0133-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
Studies of allelopathy in terrestrial systems have experienced tremendous growth as interest has risen in describing biochemical mechanisms responsible for structuring plant communities, determining agricultural and forest productivity, and explaining invasive behaviors in introduced organisms. While early criticisms of allelopathy involved issues with allelochemical production, stability, and degradation in soils, an understanding of the chemical ecology of soils and its microbial inhabitants has been increasingly incorporated in studies of allelopathy, and recognized as an essential predictor of the outcome of allelopathic interactions between plants. Microbes can mediate interactions in a number of ways with both positive and negative outcomes for surrounding plants and plant communities. In this review, we examine cases where soil microbes are the target of allelopathic plants leading to indirect effects on competing plants, provide examples where microbes play either a protective effect on plants against allelopathic competitors or enhance allelopathic effects, and we provide examples where soil microbial communities have changed through time in response to allelopathic plants with known or potential effects on plant communities. We focus primarily on interactions involving wild plants in natural systems, using case studies of some of the world's most notorious invasive plants, but we also provide selected examples from agriculturally managed systems. Allelopathic interactions between plants cannot be fully understood without considering microbial participants, and we conclude with suggestions for future research.
Collapse
Affiliation(s)
- Don Cipollini
- Department of Biological Sciences, Environmental Sciences PhD Program, Wright State University, Dayton, OH, USA.
| | | | | |
Collapse
|
19
|
Irvine IC, Brigham CA, Suding KN, Martiny JBH. The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat. PLoS One 2012; 7:e31026. [PMID: 22383990 PMCID: PMC3286463 DOI: 10.1371/journal.pone.0031026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 12/30/2011] [Indexed: 12/05/2022] Open
Abstract
Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1) compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2) to 10(5) CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.
Collapse
Affiliation(s)
- Irina C Irvine
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America.
| | | | | | | |
Collapse
|
20
|
Flamini G. Natural Herbicides as a Safer and More Environmentally Friendly Approach to Weed Control: A Review of the Literature Since 2000. BIOACTIVE NATURAL PRODUCTS 2012. [DOI: 10.1016/b978-0-444-59530-0.00013-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
Irvine IC, Witter MS, Brigham CA, Martiny JBH. Relationships between Methylobacteria and Glyphosate with Native and Invasive Plant Species: Implications for Restoration. Restor Ecol 2011. [DOI: 10.1111/j.1526-100x.2011.00850.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Irina C. Irvine
- Santa Monica Mountains National Recreation Area (U.S. National Park Service), 401 West Hillcrest Drive, Thousand Oaks, CA 91360, U.S.A
- Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92697, U.S.A
| | - Marti S. Witter
- Santa Monica Mountains National Recreation Area (U.S. National Park Service), 401 West Hillcrest Drive, Thousand Oaks, CA 91360, U.S.A
| | - Christy A. Brigham
- Santa Monica Mountains National Recreation Area (U.S. National Park Service), 401 West Hillcrest Drive, Thousand Oaks, CA 91360, U.S.A
| | - Jennifer B. H. Martiny
- Department of Ecology & Evolutionary Biology, University of California, Irvine, CA 92697, U.S.A
| |
Collapse
|
22
|
Biedrzycki ML, Bais HP. Kin recognition in plants: a mysterious behaviour unsolved. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4123-8. [PMID: 20696656 DOI: 10.1093/jxb/erq250] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
23
|
Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol 2010; 25:512-9. [PMID: 20638747 DOI: 10.1016/j.tree.2010.06.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/12/2010] [Accepted: 06/14/2010] [Indexed: 11/20/2022]
Abstract
Soil communities can have profound effects on invasions of ecosystems by exotic plant species. We propose that there are three main pathways by which this can happen. First, plant-soil feedback interactions in the invaded range are neutral to positive, whereas native plants predominantly suffer from negative soil feedback effects. Second, exotic plants can manipulate local soil biota by enhancing pathogen levels or disrupting communities of root symbionts, while suffering less from this than native plants. Third, exotic plants produce allelochemicals toxic to native plants that cannot be detoxified by local soil communities, or that become more toxic following microbial conversion. We discuss the need for integrating these three pathways in order to further understand how soil communities influence exotic plant invasions.
Collapse
|