1
|
Zheng Z, Guo B, Dutta S, Roy V, Liu H, Schnable PS. The 2020 derecho revealed limited overlap between maize genes associated with root lodging and root system architecture. PLANT PHYSIOLOGY 2023:kiad194. [PMID: 36974884 DOI: 10.1093/plphys/kiad194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Roots anchor plants in soil, and the failure of anchorage (i.e., root lodging) is a major cause of crop yield loss. Anchorage is often assumed to be driven by root system architecture. We made use of a natural experiment to measure the overlap between the genetic regulation of root system architecture and anchorage. After one of the most devastating derechos ever recorded in August 2020, we phenotyped root lodging in a maize (Zea mays) diversity panel consisting of 369 genotypes grown in six environments affected by the derecho. Genome-wide association studies and transcriptome-wide association studies identified 118 candidate genes associated with root lodging. Thirty-four percent (40/118) of these were homologs of genes from Arabidopsis (Arabidopsis thaliana) that affect traits such as root morphology and lignin content, expected to affect root lodging. Finally, Gene Ontology enrichment analysis of the candidate genes and their predicted interaction partners at the transcriptional and translational levels revealed the complex regulatory networks of physiological and biochemical pathways underlying root lodging in maize. Limited overlap between genes associated with lodging resistance and root system architecture in this diversity panel suggests that anchorage depends in part on factors other than gross characteristics of root system architecture.
Collapse
Affiliation(s)
- Zihao Zheng
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011-3650, USA
| | - Bufei Guo
- Department of Statistics, Iowa State University, Ames, IA, 50011-1090, USA
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA, 50011-1090, USA
| | - Vivekananda Roy
- Department of Statistics, Iowa State University, Ames, IA, 50011-1090, USA
| | - Huyu Liu
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011-3650, USA
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011-3650, USA
| |
Collapse
|
2
|
Somssich M, Vandenbussche F, Ivakov A, Funke N, Ruprecht C, Vissenberg K, VanDer Straeten D, Persson S, Suslov D. Brassinosteroids Influence Arabidopsis Hypocotyl Graviresponses through Changes in Mannans and Cellulose. PLANT & CELL PHYSIOLOGY 2021; 62:678-692. [PMID: 33570567 DOI: 10.1093/pcp/pcab024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The force of gravity is a constant environmental factor. Plant shoots respond to gravity through negative gravitropism and gravity resistance. These responses are essential for plants to direct the growth of aerial organs away from the soil surface after germination and to keep an upright posture above ground. We took advantage of the effect of brassinosteroids (BRs) on the two types of graviresponses in Arabidopsis thaliana hypocotyls to disentangle functions of cell wall polymers during etiolated shoot growth. The ability of etiolated Arabidopsis seedlings to grow upward was suppressed in the presence of 24-epibrassinolide (EBL) but enhanced in the presence of brassinazole (BRZ), an inhibitor of BR biosynthesis. These effects were accompanied by changes in cell wall mechanics and composition. Cell wall biochemical analyses, confocal microscopy of the cellulose-specific pontamine S4B dye and cellular growth analyses revealed that the EBL and BRZ treatments correlated with changes in cellulose fibre organization, cell expansion at the hypocotyl base and mannan content. Indeed, a longitudinal reorientation of cellulose fibres and growth inhibition at the base of hypocotyls supported their upright posture whereas the presence of mannans reduced gravitropic bending. The negative effect of mannans on gravitropism is a new function for this class of hemicelluloses. We also found that EBL interferes with upright growth of hypocotyls through their uneven thickening at the base.
Collapse
Affiliation(s)
- Marc Somssich
- School of Biosciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Gent 9000, Belgium
| | - Alexander Ivakov
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Norma Funke
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
- Targenomix GmbH, Am Muehlenberg 11, Potsdam 14476, Germany
| | - Colin Ruprecht
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
- Max-Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Kris Vissenberg
- Biology Department, Integrated Molecular Plant Physiology Research, University of Antwerp, Groenenborgerlaan 171, Antwerpen 2020, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos, Heraklion, Crete 71410, Greece
| | - Dominique VanDer Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Gent 9000, Belgium
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Dmitry Suslov
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg 199034, Russia
| |
Collapse
|
3
|
Harrison BR, Masson PH. Immunohistochemistry relative to gravity: a simple method to retain information about gravity for immunolocalization and histochemistry. Methods Mol Biol 2016; 1309:1-12. [PMID: 25981763 DOI: 10.1007/978-1-4939-2697-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
We describe a simple method to preserve information about a plant organ's orientation relative to the direction of the gravity vector during sample processing for immunolocalization or histochemical analysis of cell biological processes. This approach has been used in gravity stimulated roots of Arabidopsis thaliana and Zea mays to study PIN3 relocalization, study the asymmetrical remodeling of the actin network and the cortical microtubule array, and to reveal the asymmetrical expression of the auxin signaling reporter DR5::GUS. This method enables the rapid analysis of a large number of samples from a variety of genotypes, as well as from tissue that may be too thick for microscopy in live plants.
Collapse
Affiliation(s)
- Benjamin R Harrison
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK, 99504, USA,
| | | |
Collapse
|
4
|
Zhang Q, Zhang X, Pettolino F, Zhou G, Li C. Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:127-139. [PMID: 26788957 DOI: 10.1016/j.jplph.2015.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Barley (Hordeum vulgare L.) seed germination initiates many important biological processes such as DNA, membrane and mitochondrial repairs. However, little is known on cell wall modifications in germinating embryos. We have investigated cell wall polysaccharide composition change, gene transcription and alternative splicing events in four barley varieties at 24h and 48 h germination. Cell wall components in germinating barley embryos changed rapidly, with increases in cellulose and (1,3)(1,4)-β-D-glucan (20-100%) within 24h, but decreases in heteroxylan and arabinan (3-50%). There were also significant changes in the levels of type I arabinogalactans and heteromannans. Alternative splicing played very important roles in cell wall modifications. At least 22 cell wall transcripts were detected to undergo either alternative 3' splicing, alternative 5' splicing or intron retention type of alternative splicing. These genes coded enzymes catalyzing synthesis and degradation of cellulose, heteroxylan, (1,3)(1,4)-β-D-glucan and other cell wall polymers. Furthermore, transcriptional regulation also played very important roles in cell wall modifications. Transcript levels of primary wall cellulase synthase, heteroxylan synthesizing and nucleotide sugar inter-conversion genes were very high in germinating embryos. At least 50 cell wall genes changed transcript levels significantly. Expression patterns of many cell wall genes coincided with changes in polysaccharide composition. Our data showed that cell wall polysaccharide metabolism was very active in germinating barley embryos, which was regulated at both transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Qisen Zhang
- Australian Export Grains Innovation Centre, 3 Baron-Hay Court, South Perth, WA 6155, Australia.
| | - Xiaoqi Zhang
- Western Barley Genetics Alliance, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia.
| | | | - Gaofeng Zhou
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA 6155, Australia.
| | - Chengdao Li
- Australian Export Grains Innovation Centre, 3 Baron-Hay Court, South Perth, WA 6155, Australia; Western Barley Genetics Alliance, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia; Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA 6155, Australia.
| |
Collapse
|
5
|
Tan HT, Shirley NJ, Singh RR, Henderson M, Dhugga KS, Mayo GM, Fincher GB, Burton RA. Powerful regulatory systems and post-transcriptional gene silencing resist increases in cellulose content in cell walls of barley. BMC PLANT BIOLOGY 2015; 15:62. [PMID: 25850007 PMCID: PMC4349714 DOI: 10.1186/s12870-015-0448-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/03/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND The ability to increase cellulose content and improve the stem strength of cereals could have beneficial applications in stem lodging and producing crops with higher cellulose content for biofuel feedstocks. Here, such potential is explored in the commercially important crop barley through the manipulation of cellulose synthase genes (CesA). RESULTS Barley plants transformed with primary cell wall (PCW) and secondary cell wall (SCW) barley cellulose synthase (HvCesA) cDNAs driven by the CaMV 35S promoter, were analysed for growth and morphology, transcript levels, cellulose content, stem strength, tissue morphology and crystalline cellulose distribution. Transcript levels of the PCW HvCesA transgenes were much lower than expected and silencing of both the endogenous CesA genes and introduced transgenes was often observed. These plants showed no aberrant phenotypes. Although attempts to over-express the SCW HvCesA genes also resulted in silencing of the transgenes and endogenous SCW HvCesA genes, aberrant phenotypes were sometimes observed. These included brittle nodes and, with the 35S:HvCesA4 construct, a more severe dwarfing phenotype, where xylem cells were irregular in shape and partially collapsed. Reductions in cellulose content were also observed in the dwarf plants and transmission electron microscopy showed a significant decrease in cell wall thickness. However, there were no increases in overall crystalline cellulose content or stem strength in the CesA over-expression transgenic plants, despite the use of a powerful constitutive promoter. CONCLUSIONS The results indicate that the cellulose biosynthetic pathway is tightly regulated, that individual CesA proteins may play different roles in the synthase complex, and that the sensitivity to CesA gene manipulation observed here suggests that in planta engineering of cellulose levels is likely to require more sophisticated strategies.
Collapse
Affiliation(s)
- Hwei-Ting Tan
- />ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064 Australia
| | - Neil J Shirley
- />ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064 Australia
| | - Rohan R Singh
- />ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064 Australia
| | - Marilyn Henderson
- />ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064 Australia
| | - Kanwarpal S Dhugga
- />DuPont Agricultural Biotechnology, DuPont Pioneer, Johnston, IA 50131-1004 USA
| | - Gwenda M Mayo
- />Adelaide Microscopy Waite Facility, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064 Australia
| | - Geoffrey B Fincher
- />ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064 Australia
| | - Rachel A Burton
- />ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064 Australia
| |
Collapse
|
6
|
Zhang Q, Cheetamun R, Dhugga KS, Rafalski JA, Tingey SV, Shirley NJ, Taylor J, Hayes K, Beatty M, Bacic A, Burton RA, Fincher GB. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC PLANT BIOLOGY 2014; 14:27. [PMID: 24423166 PMCID: PMC3927872 DOI: 10.1186/1471-2229-14-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/27/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND The elongating maize internode represents a useful system for following development of cell walls in vegetative cells in the Poaceae family. Elongating internodes can be divided into four developmental zones, namely the basal intercalary meristem, above which are found the elongation, transition and maturation zones. Cells in the basal meristem and elongation zones contain mainly primary walls, while secondary cell wall deposition accelerates in the transition zone and predominates in the maturation zone. RESULTS The major wall components cellulose, lignin and glucuronoarabinoxylan (GAX) increased without any abrupt changes across the elongation, transition and maturation zones, although GAX appeared to increase more between the elongation and transition zones. Microarray analyses show that transcript abundance of key glycosyl transferase genes known to be involved in wall synthesis or re-modelling did not match the increases in cellulose, GAX and lignin. Rather, transcript levels of many of these genes were low in the meristematic and elongation zones, quickly increased to maximal levels in the transition zone and lower sections of the maturation zone, and generally decreased in the upper maturation zone sections. Genes with transcript profiles showing this pattern included secondary cell wall CesA genes, GT43 genes, some β-expansins, UDP-Xylose synthase and UDP-Glucose pyrophosphorylase, some xyloglucan endotransglycosylases/hydrolases, genes involved in monolignol biosynthesis, and NAM and MYB transcription factor genes. CONCLUSIONS The data indicated that the enzymic products of genes involved in cell wall synthesis and modification remain active right along the maturation zone of elongating maize internodes, despite the fact that corresponding transcript levels peak earlier, near or in the transition zone.
Collapse
Affiliation(s)
- Qisen Zhang
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| | - Roshan Cheetamun
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, 3010 Parkville, Victoria, Australia
| | - Kanwarpal S Dhugga
- Genetic Discovery Group, Crop Genetics Research and Development, Pioneer Hi-Bred International Inc. 7300 NW 62nd Avenue, 50131-1004 Johnston, IA, USA
| | - J Antoni Rafalski
- Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station, Building E353, 198803 Wilmington, DE, USA
| | - Scott V Tingey
- Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station, Building E353, 198803 Wilmington, DE, USA
| | - Neil J Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| | - Jillian Taylor
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| | - Kevin Hayes
- Genetic Discovery Group, Crop Genetics Research and Development, Pioneer Hi-Bred International Inc. 7300 NW 62nd Avenue, 50131-1004 Johnston, IA, USA
| | - Mary Beatty
- Genetic Discovery Group, Crop Genetics Research and Development, Pioneer Hi-Bred International Inc. 7300 NW 62nd Avenue, 50131-1004 Johnston, IA, USA
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, 3010 Parkville, Victoria, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Proteomic identification of gravitropic response genes in peanut gynophores. J Proteomics 2013; 93:303-13. [PMID: 23994445 DOI: 10.1016/j.jprot.2013.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/11/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Peanut (Arachis hypogaea L.) is one of the most important oil-bearing crops in the world. The gravitropic response of peanut gynophores plays an essential role in peanut reproductive development. In this study, we developed an in vitro culture system and applied it to the study of peanut gynophore gravitropism. By comparing the proteomes of gynophores grown in vitro with the tip pointing upward (gravity stimulation sample) and downward (natural growth control) at 6h and 12h, we observed 42 and 39 with significantly altered expression pattern at 6 and 12h, respectively. Out of these proteins, 13 proteins showed same expression profiling at both 6h and 12h. They were identified by MALDI-TOF/TOF and further characterized with quantitative real time RT-PCR. Among the 13 identified proteins, two were identified as class III acidic endochitinases, two were identified as Kunitz trypsin protease inhibitors, and the remaining proteins were identified as pathogenesis-related class 10 protein, Ara h 8 allergen isoform 3, voltage-dependent anion channel, gamma carbonic anhydrase 1, germin-like protein subfamily 3 member 3 precursor, chloride channel, glycine-rich RNA-binding protein and gibberellin receptor GID1. Real time RT-PCR analysis revealed that transcriptional regulation is consistent with expression at the protein level for class III acidic endochitinase, Kunitz trypsin protease inhibitor, chloride channel and pathogenesis-related class 10 protein, while the expression of the other 7 proteins might be regulated at post-transcriptional levels. This study identified several potential gravitropic response proteins in peanut gynophores and helps to understand early gravitropic responses in peanut gynophores. BIOLOGICAL SIGNIFICANCE The gravitropic response of the peanut gynophores plays an essential role in peanut production. However, the molecular mechanism responsible for gravitropic responses in the peanut gynophores has not been explored yet. The result generated in this study may provide in vitro culture system for gravitropism study of plant gravitropic response and novel insights into the proteome-level response and give a more comprehensive understanding of early gravitropic response in peanut gynophores. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
|
8
|
Clore AM. Cereal grass pulvini: agronomically significant models for studying gravitropism signaling and tissue polarity. AMERICAN JOURNAL OF BOTANY 2013; 100:101-10. [PMID: 23125431 DOI: 10.3732/ajb.1200286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cereal grass pulvini have emerged as model systems that are not only valuable for the study of gravitropism, but are also of agricultural and economic significance. The pulvini are regions of tissue that are apical to each node and collectively return a reoriented stem to a more vertical position. They have proven to be useful for the study of gravisensing and response and are also providing clues about the establishment of polarity across tissues. This review will first highlight the agronomic significance of these stem regions and their benefits for use as model systems and provide a brief historical overview. A detailed discussion of the literature focusing on cell signaling and early changes in gene expression will follow, culminating in a temporal framework outlining events in the signaling and early growth phases of gravitropism in this tissue. Changes in cell wall composition and gene expression that occur well into the growth phase will be touched upon briefly. Finally, some ongoing research involving both maize and wheat pulvini will be introduced along with prospects for future investigations.
Collapse
Affiliation(s)
- Amy M Clore
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, Florida 34243 USA.
| |
Collapse
|
9
|
Guerriero G, Giorno F, Ciccotti AM, Schmidt S, Baric S. A gene expression analysis of cell wall biosynthetic genes in Malus x domestica infected by 'Candidatus Phytoplasma mali'. TREE PHYSIOLOGY 2012; 32:1365-77. [PMID: 23086810 PMCID: PMC4937989 DOI: 10.1093/treephys/tps095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Apple proliferation (AP) represents a serious threat to several fruit-growing areas and is responsible for great economic losses. Several studies have highlighted the key role played by the cell wall in response to pathogen attack. The existence of a cell wall integrity signaling pathway which senses perturbations in the cell wall architecture upon abiotic/biotic stresses and activates specific defence responses has been widely demonstrated in plants. More recently a role played by cell wall-related genes has also been reported in plants infected by phytoplasmas. With the aim of shedding light on the cell wall response to AP disease in the economically relevant fruit-tree Malus × domestica Borkh., we investigated the expression of the cellulose (CesA) and callose synthase (CalS) genes in different organs (i.e., leaves, roots and branch phloem) of healthy and infected symptomatic outdoor-grown trees, sampled over the course of two time points (i.e., spring and autumn 2011), as well as in in vitro micropropagated control and infected plantlets. A strong up-regulation in the expression of cell wall biosynthetic genes was recorded in roots from infected trees. Secondary cell wall CesAs showed up-regulation in the phloem tissue from branches of infected plants, while either a down-regulation of some genes or no major changes were observed in the leaves. Micropropagated plantlets also showed an increase in cell wall-related genes and constitute a useful system for a general assessment of gene expression analysis upon phytoplasma infection. Finally, we also report the presence of several 'knot'-like structures along the roots of infected apple trees and discuss the occurrence of this interesting phenotype in relation to the gene expression results and the modalities of phytoplasma diffusion.
Collapse
Affiliation(s)
- Gea Guerriero
- Research Centre for Agriculture and Forestry Laimburg, Laimburg 6, 39040 Auer/Ora (BZ), Italy.
| | | | | | | | | |
Collapse
|
10
|
Guerriero G, Spadiut O, Kerschbamer C, Giorno F, Baric S, Ezcurra I. Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6045-56. [PMID: 23048131 PMCID: PMC4944836 DOI: 10.1093/jxb/ers255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cellulose synthase (CesA) genes constitute a complex multigene family with six major phylogenetic clades in angiosperms. The recently sequenced genome of domestic apple, Malus×domestica, was mined for CesA genes, by blasting full-length cellulose synthase protein (CESA) sequences annotated in the apple genome against protein databases from the plant models Arabidopsis thaliana and Populus trichocarpa. Thirteen genes belonging to the six angiosperm CesA clades and coding for proteins with conserved residues typical of processive glycosyltransferases from family 2 were detected. Based on their phylogenetic relationship to Arabidopsis CESAs, as well as expression patterns, a nomenclature is proposed to facilitate further studies. Examination of their genomic organization revealed that MdCesA8-A is closely linked and co-oriented with WDR53, a gene coding for a WD40 repeat protein. The WDR53 and CesA8 genes display conserved collinearity in dicots and are partially co-expressed in the apple xylem. Interestingly, the presence of a bicistronic WDR53-CesA8A transcript was detected in phytoplasma-infected phloem tissues of apple. The bicistronic transcript contains a spliced intergenic sequence that is predicted to fold into hairpin structures typical of internal ribosome entry sites, suggesting its potential cap-independent translation. Surprisingly, the CesA8A cistron is alternatively spliced and lacks the zinc-binding domain. The possible roles of WDR53 and the alternatively spliced CESA8 variant during cellulose biosynthesis in M.×domestica are discussed.
Collapse
Affiliation(s)
- Gea Guerriero
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6, I-39040 Auer, Italy
- To whom correspondence should be addressed. or
| | - Oliver Spadiut
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1A, A-1060 Vienna, Austria
| | - Christine Kerschbamer
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6, I-39040 Auer, Italy
| | - Filomena Giorno
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6, I-39040 Auer, Italy
| | - Sanja Baric
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6, I-39040 Auer, Italy
| | - Inés Ezcurra
- KTH, School of Biotechnology, Albanova, SE-10691 Stockholm, Sweden
- To whom correspondence should be addressed. or
| |
Collapse
|
11
|
|