1
|
Fischer K, Valentin Jordbræk S, Olsen S, Bockwoldt M, Schwacke R, Usadel B, Krause K. Taken to extremes: Loss of plastid rpl32 in Streptophyta and Cuscuta's unconventional solution for its replacement. Mol Phylogenet Evol 2024:108243. [PMID: 39581358 DOI: 10.1016/j.ympev.2024.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
The evolution of plant genomes is riddled with exchanges of genetic material within one plant (endosymbiotic gene transfer/EGT) and between unrelated plants (horizontal gene transfer/HGT). These exchanges have left their marks on plant genomes. Parasitic plants with their special evolutionary niche provide ample examples for these processes because they are under a reduced evolutionary pressure to maintain autotrophy and thus to conserve their plastid genomes. On the other hand, the close physical connections with different hosts enabled them to acquire genetic material from other plants. Based on an analysis of an extensive dataset including the parasite Cuscuta campestris and other parasitic plant species, we identified a unique evolutionary history of rpl32 genes coding for an essential plastid ribosomal subunit in Cuscuta. Our analysis suggests that the gene was most likely sequestered by HGT from a member of the Oxalidales order serving as host to an ancestor of the Cuscuta subgenus Grammica. Oxalidales had suffered an ancestral EGT of rpl32 predating the evolution of the genus Cuscuta. The HGT subsequently relieved the plastid rpl32 from its evolutionary constraint and led to its loss from the plastid genome. The HGT-based acquisition in Cuscuta is supported by a high sequence similarity of the mature L32 protein between species of the subgenus Grammica and representatives of the Oxalidales, and by a surprisingly conserved transit peptide, whose functionality in Cuscuta was experimentally verified. The findings are discussed in view of an overall pattern of EGT events for plastid ribosomal subunits in Streptophyta.
Collapse
Affiliation(s)
- Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mathias Bockwoldt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rainer Schwacke
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), CEPLAS, Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), CEPLAS, Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany; Faculty of Mathematics and Natural Sciences, Institute for Biological Data Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
2
|
Yu Y, Wang X, Qu R, OuYang Z, Guo J, Zhao Y, Huang L. Extraction and analysis of high-quality chloroplast DNA with reduced nuclear DNA for medicinal plants. BMC Biotechnol 2024; 24:20. [PMID: 38637734 PMCID: PMC11025248 DOI: 10.1186/s12896-024-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.
Collapse
Affiliation(s)
- Yifan Yu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China
| | - Xinxin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Renjun Qu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhen OuYang
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yujun Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, China.
| |
Collapse
|
3
|
Abdel-Ghany SE, LaManna LM, Harroun HT, Maliga P, Sloan DB. Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex. PLANT MOLECULAR BIOLOGY 2022; 108:277-287. [PMID: 35039977 DOI: 10.1007/s11103-022-01241-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Replacing the native clpP1 gene in the Nicotiana plastid genome with homologs from different donor species showed that the extent of genetic incompatibilities depended on the rate of sequence evolution. The plastid caseinolytic protease (Clp) complex plays essential roles in maintaining protein homeostasis and comprises both plastid-encoded and nuclear-encoded subunits. Despite the Clp complex being retained across green plants with highly conserved protein sequences in most species, examples of extremely accelerated amino acid substitution rates have been identified in numerous angiosperms. The causes of these accelerations have been the subject of extensive speculation but still remain unclear. To distinguish among prevailing hypotheses and begin to understand the functional consequences of rapid sequence divergence in Clp subunits, we used plastome transformation to replace the native clpP1 gene in tobacco (Nicotiana tabacum) with counterparts from another angiosperm genus (Silene) that exhibits a wide range in rates of Clp protein sequence evolution. We found that antibiotic-mediated selection could drive a transgenic clpP1 replacement from a slowly evolving donor species (S. latifolia) to homoplasmy but that clpP1 copies from Silene species with accelerated evolutionary rates remained heteroplasmic, meaning that they could not functionally replace the essential tobacco clpP1 gene. These results suggest that observed cases of rapid Clp sequence evolution are a source of epistatic incompatibilities that must be ameliorated by coevolutionary responses between plastid and nuclear subunits.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Lisa M LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Haleakala T Harroun
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
4
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
A New Chloroplast DNA Extraction Protocol Significantly Improves the Chloroplast Genome Sequence Quality of Foxtail Millet (Setaria italica (L.) P. Beauv.). Sci Rep 2019; 9:16227. [PMID: 31700055 PMCID: PMC6838068 DOI: 10.1038/s41598-019-52786-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/23/2019] [Indexed: 12/03/2022] Open
Abstract
The complexity of the leaf constitution of foxtail millet (Setaria italica (L.) P. Beauv.) makes it difficult to obtain high-purity cpDNA. Here, we developed a protocol to isolate high-quality cpDNA from foxtail millet and other crops. The new protocol replaces previous tissue grinding and homogenization by enzyme digestion of tiny leaf strips to separate protoplasts from leaf tissue and protects chloroplasts from damage by undue grinding and homogenization and from contamination of cell debris and nuclear DNA. Using the new protocol, we successfully isolated high-quality cpDNAs for whole-genome sequencing from four foxtail millet cultivars, and comparative analysis revealed that they were approximately 27‰ longer than their reference genome. In addition, six cpDNAs of four other species with narrow and thin leaf blades, including wheat (Triticum aestivum L.), maize (Zea may L.), rice (Oryza sativa L.) and sorghum (Sorghum bicolor (L.) Moench), were also isolated by our new protocol, and they all exhibited high sequence identities to their corresponding reference genomes. A maximum-likelihood tree based on the chloroplast genomes we sequenced here was constructed, and the result was in agreement with previous reports, confirming that these cpDNA sequences were available for well-supported phylogenetic analysis and could provide valuable resources for future research.
Collapse
|
6
|
de Santana Lopes A, Gomes Pacheco T, Nascimento da Silva O, Magalhães Cruz L, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. The plastomes of Astrocaryum aculeatum G. Mey. and A. murumuru Mart. show a flip-flop recombination between two short inverted repeats. PLANTA 2019; 250:1229-1246. [PMID: 31222493 DOI: 10.1007/s00425-019-03217-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
The plastomes of Astrocaryum murumuru and A. aculeatum revealed a lineage-specific structural feature originated by flip-flop recombination, non-synonymous substitutions in conserved genes and several molecular markers. Astrocaryum murumuru Mart. and A. aculeatum G.Mey. are two palm species of Amazon forest that are economically important as source of food, oil and raw material for several applications. Genetic studies aiming to establish strategies for conservation and domestication of both species are still in the beginning given that the exploitation is mostly by extractive activity. The identification and characterization of molecular markers are essential to assess the genetic diversity of natural populations of both species. Therefore, we sequenced and characterized in detail the plastome of both species. We compared both species and identified 32 polymorphic SSR loci, 150 SNPs, 46 indels and eight hotspots of nucleotide diversity. Additionally, we reported a specific RNA editing site found in the ccsA gene, which is exclusive to A. murumuru. Moreover, the structural analysis in the plastomes of both species revealed a 4.6-kb inversion encompassing a set of genes involved in chlororespiration and plastid translation. This 4.6-kb inversion is a lineage-specific structural feature of the genus Astrocaryum originated by flip-flop recombination between two short inverted repeats. Furthermore, our phylogenetic analysis using whole plastomes of 39 Arecaceae species placed the Astrocaryum species sister to Acrocomia within the tribe Cocoseae. Finally, our data indicated substantial changes in the plastome structure and sequence of both species of the genus Astrocaryum, bringing new molecular markers, several structural and evolving features, which can be applied in several areas such as genetic, evolution, breeding, phylogeny and conservation strategies for both species.
Collapse
Affiliation(s)
- Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Odyone Nascimento da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leonardo Magalhães Cruz
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
7
|
Ferreira de Carvalho J, Lucas J, Deniot G, Falentin C, Filangi O, Gilet M, Legeai F, Lode M, Morice J, Trotoux G, Aury JM, Barbe V, Keller J, Snowdon R, He Z, Denoeud F, Wincker P, Bancroft I, Chèvre AM, Rousseau-Gueutin M. Cytonuclear interactions remain stable during allopolyploid evolution despite repeated whole-genome duplications in Brassica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:434-447. [PMID: 30604905 DOI: 10.1111/tpj.14228] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Several plastid macromolecular protein complexes are encoded by both nuclear and plastid genes. Therefore, cytonuclear interactions are held in place to prevent genomic conflicts that may lead to incompatibilities. Allopolyploidy resulting from hybridization and genome doubling of two divergent species can disrupt these fine-tuned interactions, as newly formed allopolyploid species confront biparental nuclear chromosomes with a uniparentally inherited plastid genome. To avoid any deleterious effects of unequal genome inheritance, preferential transcription of the plastid donor over the other donor has been hypothesized to occur in allopolyploids. We used Brassica as a model to study the effects of paleopolyploidy in diploid parental species, as well as the effects of recent and ancient allopolyploidy in Brassica napus, on genes implicated in plastid protein complexes. We first identified redundant nuclear copies involved in those complexes. Compared with cytosolic protein complexes and with genome-wide retention rates, genes involved in plastid protein complexes show a higher retention of genes in duplicated and triplicated copies. Those redundant copies are functional and are undergoing strong purifying selection. We then compared transcription patterns and sequences of those redundant gene copies between resynthesized allopolyploids and their diploid parents. The neopolyploids showed no biased subgenome expression or maternal homogenization via gene conversion, despite the presence of some non-synonymous substitutions between plastid genomes of parental progenitors. Instead, subgenome dominance was observed regardless of the maternal progenitor. Our results provide new insights on the evolution of plastid protein complexes that could be tested and generalized in other allopolyploid species.
Collapse
Affiliation(s)
| | - Jérémy Lucas
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Gwenaëlle Deniot
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Cyril Falentin
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Olivier Filangi
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Marie Gilet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Fabrice Legeai
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Maryse Lode
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Jérôme Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Gwenn Trotoux
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
| | - Jean Keller
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Rennes, 35042, France
| | - Rod Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Zhesi He
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - France Denoeud
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
- UMR CNRS 8030, Evry, CP5706, France
- Université d'Evry-Val-d'Essonne, Université Paris-Saclay, Evry, 91000, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
- UMR CNRS 8030, Evry, CP5706, France
- Université d'Evry-Val-d'Essonne, Université Paris-Saclay, Evry, 91000, France
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Anne-Marie Chèvre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | | |
Collapse
|
8
|
Wang QM, Cui J, Dai H, Zhou Y, Li N, Zhang Z. Comparative transcriptome profiling of genes and pathways involved in leaf-patterning of Clivia miniata var. variegata. Gene 2018; 677:280-288. [PMID: 30077010 DOI: 10.1016/j.gene.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/11/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023]
Abstract
Clivia miniata var. variegata (Cmvv) typically possesses yellow- and green-striped leaves. The striped plant not only has a high ornamental value but also be suitable for photosynthesis and chloroplast development research. Our previous study had revealed that yellow stripes (YSs) of Cmvv leaves contain chlorophyll-less ineffective chloroplasts. However, mechanism of Cmvv variegation is yet to be investigated. In the study, transcriptomes of both the YSs and green stripes (GSs) from single Cmvv leaves were compared using high-throughput sequencing. A total of 688 differential expression genes (DEGs) were identified based on biological replications. The qRT-PCR results indicated that transcriptome profiles accurately reflected global transcriptome differences between YSs and GSs. Subcellular localization analysis suggested that 56 DEG proteins were targeted to chloroplasts, and might be involved in anterograde signaling and leaf patterning. Moreover, the DEGs were mostly enriched in photosynthesis and plant-pathogen interaction KEGG pathways. Meanwhile, there should be coordination interaction between the two pathways. Seven of the eight DEGs involved in photosynthesis KEGG pathway were chloroplast-encoded genes and distributed among different cistrons of chloroplast DNA (cpDNA) large single copy regions (LSC) which are more prone to mutation. It was proposed that the YSs were caused by mutation(s) in cpDNA LSC. Thus, when the primary zygote of Cmvv was chimeric in LSC, leaf might be yellow- and green-striped. The study would give new insights into plant variegation and offers candidate genes to guide future research attempting to breed variegated plants.
Collapse
Affiliation(s)
- Qin-Mei Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jianguo Cui
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yongbin Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Na Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
9
|
Yoshida T, Furihata HY, Kawabe A. Analysis of nuclear mitochondrial DNAs and factors affecting patterns of integration in plant species. Genes Genet Syst 2017; 92:27-33. [PMID: 28228607 DOI: 10.1266/ggs.16-00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sequences homologous to organellar DNA that have been integrated into nuclear genomes are referred to as nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs). NUMTs in nine plant species were analyzed to reveal the integration patterns and possible factors involved. The cumulative lengths of NUMTs in two-thirds of species analyzed were greater than those of NUPTs observed in a previous study. The age distribution of NUMTs was similar to that of NUPTs, suggesting similar mechanisms for integration and degradation of both NUPTs and NUMTs. Nuclear genome size and the cumulative length of NUMTs showed a significant positive correlation for older but not younger NUMTs. The same correlation was also found between nuclear genome size and older NUPTs in 17 species. These results suggested that genome size is a key factor to determine the cumulative length of relatively older NUPTs/NUMTs. Although the factor(s) determining the cumulative length of younger NUPTs/NUMTs is unclear, these sequences may be more deleterious, which could explain the different manner of determining the cumulative length of younger NUPTs/NUMTs in nuclear genomes. In addition, a relationship between the cumulative length of integrated NUMTs and complexity of mitochondrial genomes (i.e., the number of repeats) was found. The results indicate that the structural complexity of both NUMTs and their original mitochondrial sequences affects integration and degradation processes.
Collapse
Affiliation(s)
| | | | - Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University
| |
Collapse
|
10
|
Asaf S, Waqas M, Khan AL, Khan MA, Kang SM, Imran QM, Shahzad R, Bilal S, Yun BW, Lee IJ. The Complete Chloroplast Genome of Wild Rice ( Oryza minuta) and Its Comparison to Related Species. FRONTIERS IN PLANT SCIENCE 2017; 8:304. [PMID: 28326093 PMCID: PMC5339285 DOI: 10.3389/fpls.2017.00304] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/20/2017] [Indexed: 05/17/2023]
Abstract
Oryza minuta, a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O. minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata. Thus, the complete O. minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny.
Collapse
Affiliation(s)
- Sajjad Asaf
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
- Department of Agriculture, Abdul Wali Khan University MardanMardan, Pakistan
| | - Abdul L. Khan
- Chair of Oman's Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Muhammad A. Khan
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Qari M. Imran
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Saqib Bilal
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
- *Correspondence: In-Jung Lee
| |
Collapse
|
11
|
Feng YL, Wicke S, Li JW, Han Y, Lin CS, Li DZ, Zhou TT, Huang WC, Huang LQ, Jin XH. Lineage-Specific Reductions of Plastid Genomes in an Orchid Tribe with Partially and Fully Mycoheterotrophic Species. Genome Biol Evol 2016; 8:2164-75. [PMID: 27412609 PMCID: PMC4987110 DOI: 10.1093/gbe/evw144] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
The plastid genome (plastome) of heterotrophic plants like mycoheterotrophs and parasites shows massive gene losses in consequence to the relaxation of functional constraints on photosynthesis. To understand the patterns of this convergent plastome reduction syndrome in heterotrophic plants, we studied 12 closely related orchids of three different lifeforms from the tribe Neottieae (Orchidaceae). We employ a comparative genomics approach to examine structural and selectional changes in plastomes within Neottieae. Both leafy and leafless heterotrophic species have functionally reduced plastid genome. Our analyses show that genes for the NAD(P)H dehydrogenase complex, the photosystems, and the RNA polymerase have been lost functionally multiple times independently. The physical reduction proceeds in a highly lineage-specific manner, accompanied by structural reconfigurations such as inversions or modifications of the large inverted repeats. Despite significant but minor selectional changes, all retained genes continue to evolve under purifying selection. All leafless Neottia species, including both visibly green and nongreen members, are fully mycoheterotrophic, likely evolved from leafy and partially mycoheterotrophic species. The plastomes of Neottieae span many stages of plastome degradation, including the longest plastome of a mycoheterotroph, providing invaluable insights into the mechanisms of plastome evolution along the transition from autotrophy to full mycoheterotrophy.
Collapse
Affiliation(s)
- Yan-Lei Feng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Germany
| | - Jian-Wu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan, China
| | - Yu Han
- Nanchang University, Jiangxi, China
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Zhu Li
- Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ting-Ting Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Chang Huang
- Chenshan Shanghai Botanical Garden, Shanghai, Songjiang, China
| | - Lu-Qi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xiao-Hua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Shapiro JA. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process. BIOLOGY 2016; 5:E27. [PMID: 27338490 PMCID: PMC4929541 DOI: 10.3390/biology5020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
Abstract
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Cusimano N, Wicke S. Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae. THE NEW PHYTOLOGIST 2016; 210:680-93. [PMID: 26671255 DOI: 10.1111/nph.13784] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/28/2015] [Indexed: 05/10/2023]
Abstract
Plastid genomes (plastomes) of nonphotosynthetic plants experience extensive gene losses and an acceleration of molecular evolutionary rates. Here, we inferred the mechanisms and timing of reductive genome evolution under relaxed selection in the broomrape family (Orobanchaceae). We analyzed the plastomes of several parasites with a major focus on the genus Orobanche using genome-descriptive and Bayesian phylogenetic-comparative methods. Besides this, we scanned the parasites' other cellular genomes to trace the fate of all genes that were purged from their plastomes. Our analyses indicate that the first functional gene losses occurred within 10 Myr of the transition to obligate parasitism in Orobanchaceae, and that the physical plastome reduction proceeds by small deletions that accumulate over time. Evolutionary rate shifts coincide with the genomic reduction process in broomrapes, suggesting that the shift of selectional constraints away from photosynthesis to other molecular processes alters the plastid rate equilibrium. Most of the photosynthesis-related genes or fragments of genes lost from the plastomes of broomrapes have survived in their nuclear or mitochondrial genomes as the results of multiple intracellular transfers and subsequent fragmentation. Our findings indicate that nonessential DNA is eliminated much faster in the plastomes of nonphotosynthetic parasites than in their other cellular genomes.
Collapse
Affiliation(s)
- Natalie Cusimano
- Department of Biology, Ludwig Maximilian University of Munich, Menzinger Street 67, Munich, 80638, Germany
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, Muenster, 48149, Germany
| |
Collapse
|
14
|
Zhou C, Li C. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression. FRONTIERS IN PLANT SCIENCE 2016; 7:315. [PMID: 27047502 PMCID: PMC4801893 DOI: 10.3389/fpls.2016.00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/29/2016] [Indexed: 06/01/2023]
Abstract
We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106-a R2R3-MYB transcription factor-upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis.
Collapse
|
15
|
Leister D. Towards understanding the evolution and functional diversification of DNA-containing plant organelles. F1000Res 2016; 5. [PMID: 26998248 PMCID: PMC4792205 DOI: 10.12688/f1000research.7915.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/27/2022] Open
Abstract
Plastids and mitochondria derive from prokaryotic symbionts that lost most of their genes after the establishment of endosymbiosis. In consequence, relatively few of the thousands of different proteins in these organelles are actually encoded there. Most are now specified by nuclear genes. The most direct way to reconstruct the evolutionary history of plastids and mitochondria is to sequence and analyze their relatively small genomes. However, understanding the functional diversification of these organelles requires the identification of their complete protein repertoires – which is the ultimate goal of organellar proteomics. In the meantime, judicious combination of proteomics-based data with analyses of nuclear genes that include interspecies comparisons and/or predictions of subcellular location is the method of choice. Such genome-wide approaches can now make use of the entire sequences of plant nuclear genomes that have emerged since 2000. Here I review the results of these attempts to reconstruct the evolution and functions of plant DNA-containing organelles, focusing in particular on data from nuclear genomes. In addition, I discuss proteomic approaches to the direct identification of organellar proteins and briefly refer to ongoing research on non-coding nuclear DNAs of organellar origin (specifically, nuclear mitochondrial DNA and nuclear plastid DNA).
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität, Planegg-Martinsried, 82152, Germany; Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
16
|
Rousseau-Gueutin M, Bellot S, Martin GE, Boutte J, Chelaifa H, Lima O, Michon-Coudouel S, Naquin D, Salmon A, Ainouche K, Ainouche M. The chloroplast genome of the hexaploid Spartina maritima (Poaceae, Chloridoideae): Comparative analyses and molecular dating. Mol Phylogenet Evol 2015; 93:5-16. [PMID: 26182838 DOI: 10.1016/j.ympev.2015.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022]
Abstract
The history of many plant lineages is complicated by reticulate evolution with cases of hybridization often followed by genome duplication (allopolyploidy). In such a context, the inference of phylogenetic relationships and biogeographic scenarios based on molecular data is easier using haploid markers like chloroplast genome sequences. Hybridization and polyploidization occurred recurrently in the genus Spartina (Poaceae, Chloridoideae), as illustrated by the recent formation of the invasive allododecaploid S. anglica during the 19th century in Europe. Until now, only a few plastid markers were available to explore the history of this genus and their low variability limited the resolution of species relationships. We sequenced the complete chloroplast genome (plastome) of S. maritima, the native European parent of S. anglica, and compared it to the plastomes of other Poaceae. Our analysis revealed the presence of fast-evolving regions of potential taxonomic, phylogeographic and phylogenetic utility at various levels within the Poaceae family. Using secondary calibrations, we show that the tetraploid and hexaploid lineages of Spartina diverged 6-10 my ago, and that the two parents of the invasive allopolyploid S. anglica separated 2-4 my ago via long distance dispersal of the ancestor of S. maritima over the Atlantic Ocean. Finally, we discuss the meaning of divergence times between chloroplast genomes in the context of reticulate evolution.
Collapse
Affiliation(s)
- M Rousseau-Gueutin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35042 Rennes, France
| | - S Bellot
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35042 Rennes, France
| | - G E Martin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35042 Rennes, France
| | - J Boutte
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35042 Rennes, France
| | - H Chelaifa
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35042 Rennes, France
| | - O Lima
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35042 Rennes, France
| | - S Michon-Coudouel
- Plate-forme Génomique Environnementale et Fonctionnelle, OSUR-CNRS, Université de Rennes 1, 35042 Rennes, France
| | - D Naquin
- Plate-Forme de Bioinformatique, Genouest INRIA/IRISA, Université de Rennes-1, 35042 Rennes, France
| | - A Salmon
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35042 Rennes, France
| | - K Ainouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35042 Rennes, France
| | - M Ainouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1/Université Européenne de Bretagne, 35042 Rennes, France.
| |
Collapse
|
17
|
Abstract
Plastid-to-nucleus DNA transfer provides a rich genetic resource to the complexity of plant nuclear genome architecture. To date, the evolutionary route of nuclear plastid DNA (nupt) remain unknown in conifers. We have sequenced the complete plastomes of two yews, Amentotaxus formosana and Taxus mairei (Taxaceae of coniferales). Our comparative genomic analyses recovered an evolutionary scenario for plastomic reorganization from ancestral to extant plastomes in the three sampled Taxaceae genera, Amentotaxus, Cephalotaxus, and Taxus. Specific primers were designed to amplify nonsyntenic regions between ancestral and extant plastomes, and 12.6 kb of nupts were identified based on phylogenetic analyses. These nupts have significantly accumulated GC-to-AT mutations, reflecting a nuclear mutational environment shaped by spontaneous deamination of 5-methylcytosin. The ancestral initial codon of rps8 is retained in the T. nupts, but its corresponding extant codon is mutated and requires C-to-U RNA-editing. These findings suggest that nupts can help recover scenarios of the nucleotide mutation process. We show that the Taxaceae nupts we retrieved may have been retained because the Cretaceous and they carry information of both ancestral genomic organization and nucleotide composition, which offer clues for understanding the plastome evolution in conifers.
Collapse
Affiliation(s)
- Chih-Yao Hsu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
18
|
Sloan DB, Wu Z. History of plastid DNA insertions reveals weak deletion and at mutation biases in angiosperm mitochondrial genomes. Genome Biol Evol 2014; 6:3210-21. [PMID: 25416619 PMCID: PMC4986453 DOI: 10.1093/gbe/evu253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Angiosperm mitochondrial genomes exhibit many unusual properties, including heterogeneous nucleotide composition and exceptionally large and variable genome sizes. Determining the role of nonadaptive mechanisms such as mutation bias in shaping the molecular evolution of these unique genomes has proven challenging because their dynamic structures generally prevent identification of homologous intergenic sequences for comparative analyses. Here, we report an analysis of angiosperm mitochondrial DNA sequences that are derived from inserted plastid DNA (mtpts). The availability of numerous completely sequenced plastid genomes allows us to infer the evolutionary history of these insertions, including the specific nucleotide substitutions and indels that have occurred because their incorporation into the mitochondrial genome. Our analysis confirmed that many mtpts have a complex history, including frequent gene conversion and multiple examples of horizontal transfer between divergent angiosperm lineages. Nevertheless, it is clear that the majority of extant mtpt sequence in angiosperms is the product of recent transfer (or gene conversion) and is subject to rapid loss/deterioration, suggesting that most mtpts are evolving relatively free from functional constraint. The evolution of mtpt sequences reveals a pattern of biased mutational input in angiosperm mitochondrial genomes, including an excess of small deletions over insertions and a skew toward nucleotide substitutions that increase AT content. However, these mutation biases are far weaker than have been observed in many other cellular genomes, providing insight into some of the notable features of angiosperm mitochondrial architecture, including the retention of large intergenic regions and the relatively neutral GC content found in these regions.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins
| |
Collapse
|
19
|
Vieira LDN, Faoro H, Fraga HPDF, Rogalski M, de Souza EM, de Oliveira Pedrosa F, Nodari RO, Guerra MP. An improved protocol for intact chloroplasts and cpDNA isolation in conifers. PLoS One 2014; 9:e84792. [PMID: 24392157 PMCID: PMC3879346 DOI: 10.1371/journal.pone.0084792] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/27/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Performing chloroplast DNA (cpDNA) isolation is considered a major challenge among different plant groups, especially conifers. Isolating chloroplasts in conifers by such conventional methods as sucrose gradient and high salt has not been successful. So far, plastid genome sequencing protocols for conifer species have been based mainly on long-range PCR, which is known to be time-consuming and difficult to implement. METHODOLOGY/PRINCIPAL FINDINGS We developed a protocol for cpDNA isolation using three different conifer families: Araucaria angustifolia and Araucaria bidwilli (Araucariaceae), Podocarpus lambertii (Podocarpaceae) and Pinus patula (Pinaceae). The present protocol is based on high salt isolation buffer followed by saline Percoll gradient. Combining these two strategies allowed enhanced chloroplast isolation, along with decreased contamination caused by polysaccharides, polyphenols, proteins, and nuclear DNA in cpDNA. Microscopy images confirmed the presence of intact chloroplasts in high abundance. This method was applied to cpDNA isolation and subsequent sequencing by Illumina MiSeq (2×250 bp), using only 50 ng of cpDNA. Reference-guided chloroplast genome mapping showed that high average coverage was achieved for all evaluated species: 24.63 for A. angustifolia, 135.97 for A. bidwilli, 1196.10 for P. lambertii, and 64.68 for P. patula. CONCLUSION Results show that this improved protocol is suitable for enhanced quality and yield of chloroplasts and cpDNA isolation from conifers, providing a useful tool for studies that require isolated chloroplasts and/or whole cpDNA sequences.
Collapse
Affiliation(s)
- Leila do Nascimento Vieira
- Departamento de Fitotecnia, Programa de Pós Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Helisson Faoro
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Hugo Pacheco de Freitas Fraga
- Departamento de Fitotecnia, Programa de Pós Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Rogalski
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Rubens Onofre Nodari
- Departamento de Fitotecnia, Programa de Pós Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Miguel Pedro Guerra
- Departamento de Fitotecnia, Programa de Pós Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
20
|
Abstract
The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
21
|
Yoshida T, Furihata HY, Kawabe A. Patterns of genomic integration of nuclear chloroplast DNA fragments in plant species. DNA Res 2013; 21:127-40. [PMID: 24170805 PMCID: PMC3989485 DOI: 10.1093/dnares/dst045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The transfer of organelle DNA fragments to the nuclear genome is frequently observed in eukaryotes. These transfers are thought to play an important role in gene and genome evolution of eukaryotes. In plants, such transfers occur from plastid to nuclear [nuclear plastid DNAs (NUPTs)] and mitochondrial to nuclear (nuclear mitochondrial DNAs) genomes. The amount and genomic organization of organelle DNA fragments have been studied in model plant species, such as Arabidopsis thaliana and rice. At present, publicly available genomic data can be used to conduct such studies in non-model plants. In this study, we analysed the amount and genomic organization of NUPTs in 17 plant species for which genome sequences are available. The amount and distribution of NUPTs varied among the species. We also estimated the distribution of NUPTs according to the time of integration (relative age) by conducting sequence similarity analysis between NUPTs and the plastid genome. The age distributions suggested that the present genomic constitutions of NUPTs could be explained by the combination of the rapidly eliminated deleterious parts and few but constantly existing less deleterious parts.
Collapse
Affiliation(s)
- Takanori Yoshida
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Kyoto 603-8555, Japan
| | | | | |
Collapse
|
22
|
Rousseau-Gueutin M, Huang X, Higginson E, Ayliffe M, Day A, Timmis JN. Potential functional replacement of the plastidic acetyl-CoA carboxylase subunit (accD) gene by recent transfers to the nucleus in some angiosperm lineages. PLANT PHYSIOLOGY 2013; 161:1918-29. [PMID: 23435694 PMCID: PMC3613465 DOI: 10.1104/pp.113.214528] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Eukaryotic cells originated when an ancestor of the nucleated cell engulfed bacterial endosymbionts that gradually evolved into the mitochondrion and the chloroplast. Soon after these endosymbiotic events, thousands of ancestral prokaryotic genes were functionally transferred from the endosymbionts to the nucleus. This process of functional gene relocation, now rare in eukaryotes, continues in angiosperms. In this article, we show that the chloroplastic acetyl-CoA carboxylase subunit (accD) gene that is present in the plastome of most angiosperms has been functionally relocated to the nucleus in the Campanulaceae. Surprisingly, the nucleus-encoded accD transcript is considerably smaller than the plastidic version, consisting of little more than the carboxylase domain of the plastidic accD gene fused to a coding region encoding a plastid targeting peptide. We verified experimentally the presence of a chloroplastic transit peptide by showing that the product of the nuclear accD fused to green fluorescent protein was imported in the chloroplasts. The nuclear gene regulatory elements that enabled the erstwhile plastidic gene to become functional in the nuclear genome were identified, and the evolution of the intronic and exonic sequences in the nucleus is described. Relocation and truncation of the accD gene is a remarkable example of the processes underpinning endosymbiotic evolution.
Collapse
Affiliation(s)
- Mathieu Rousseau-Gueutin
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Chang S, Wang Y, Lu J, Gai J, Li J, Chu P, Guan R, Zhao T. The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. PLoS One 2013; 8:e56502. [PMID: 23431381 PMCID: PMC3576410 DOI: 10.1371/journal.pone.0056502] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean.
Collapse
Affiliation(s)
- Shengxin Chang
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yankun Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiangjie Lu
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Junyi Gai
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jijie Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pu Chu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rongzhan Guan
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Rousseau-Gueutin M, Ayliffe MA, Timmis JN. Plastid DNA in the nucleus: new genes for old. PLANT SIGNALING & BEHAVIOR 2012; 7:269-72. [PMID: 22415049 PMCID: PMC3405714 DOI: 10.4161/psb.18762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nuclear genomes of eukaryotes are bombarded by a continuous deluge of organellar DNA which contributes significantly to eukaryote evolution. Here, we present a new PCR-based method that allows the specific amplification of nuclear integrants of organellar DNA (norgs) by exploiting recent deletions present in organellar genome sequences. We have used this method to amplify nuclear integrants of plastid DNA (nupts) from the nuclear genomes of several Nicotiana species and to study the evolutionary forces acting upon these sequences. The role of nupts in endosymbiotic evolution and the different genetic factors influencing the time available for a chloroplastic gene to be functionally relocated in the nucleus are discussed.
Collapse
Affiliation(s)
- Mathieu Rousseau-Gueutin
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia.
| | | | | |
Collapse
|
25
|
Environmental stress increases the entry of cytoplasmic organellar DNA into the nucleus in plants. Proc Natl Acad Sci U S A 2012; 109:2444-8. [PMID: 22308419 DOI: 10.1073/pnas.1117890109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria and chloroplasts (photosynthetic members of the plastid family of cytoplasmic organelles) in eukaryotic cells originated more than a billion years ago when an ancestor of the nucleated cell engulfed two different prokaryotes in separate sequential events. Extant cytoplasmic organellar genomes contain very few genes compared with their candidate free-living ancestors, as most have functionally relocated to the nucleus. The first step in functional relocation involves the integration of inactive DNA fragments into nuclear chromosomes, and this process continues at high frequency with attendant genetic, genomic, and evolutionary consequences. Using two different transplastomic tobacco lines, we show that DNA migration from chloroplasts to the nucleus is markedly increased by mild heat stress. In addition, we show that insertion of mitochondrial DNA fragments during the repair of induced double-strand breaks is increased by heat stress. The experiments demonstrate that the nuclear influx of organellar DNA is a potentially a source of mutation for nuclear genomes that is highly susceptible to temperature fluctuations that are well within the range experienced naturally.
Collapse
|