1
|
Łabuz J, Banaś AK, Zgłobicki P, Bażant A, Sztatelman O, Giza A, Lasok H, Prochwicz A, Kozłowska-Mroczek A, Jankowska U, Hermanowicz P. Phototropin2 3'UTR overlaps with the AT5G58150 gene encoding an inactive RLK kinase. BMC PLANT BIOLOGY 2024; 24:55. [PMID: 38238701 PMCID: PMC10795372 DOI: 10.1186/s12870-024-04732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND This study examines the biological implications of an overlap between two sequences in the Arabidopsis genome, the 3'UTR of the PHOT2 gene and a putative AT5G58150 gene, encoded on the complementary strand. AT5G58150 is a probably inactive protein kinase that belongs to the transmembrane, leucine-rich repeat receptor-like kinase family. Phot2 is a membrane-bound UV/blue light photoreceptor kinase. Thus, both proteins share their cellular localization, on top of the proximity of their loci. RESULTS The extent of the overlap between 3'UTR regions of AT5G58150 and PHOT2 was found to be 66 bp, using RACE PCR. Both the at5g58150 T-DNA SALK_093781C (with insertion in the promoter region) and 35S::AT5G58150-GFP lines overexpress the AT5G58150 gene. A detailed analysis did not reveal any substantial impact of PHOT2 or AT5G58150 on their mutual expression levels in different light and osmotic stress conditions. AT5G58150 is a plasma membrane protein, with no apparent kinase activity, as tested on several potential substrates. It appears not to form homodimers and it does not interact with PHOT2. Lines that overexpress AT5G58150 exhibit a greater reduction in lateral root density due to salt and osmotic stress than wild-type plants, which suggests that AT5G58150 may participate in root elongation and formation of lateral roots. In line with this, mass spectrometry analysis identified proteins with ATPase activity, which are involved in proton transport and cell elongation, as putative interactors of AT5G58150. Membrane kinases, including other members of the LRR RLK family and BSK kinases (positive regulators of brassinosteroid signalling), can also act as partners for AT5G58150. CONCLUSIONS AT5G58150 is a membrane protein that does not exhibit measurable kinase activity, but is involved in signalling through interactions with other proteins. Based on the interactome and root architecture analysis, AT5G58150 may be involved in plant response to salt and osmotic stress and the formation of roots in Arabidopsis.
Collapse
Affiliation(s)
- Justyna Łabuz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland.
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Aleksandra Giza
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Hanna Lasok
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Aneta Prochwicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Anna Kozłowska-Mroczek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Paweł Hermanowicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| |
Collapse
|
2
|
Long noncoding RNAs in Brassica rapa L. following vernalization. Sci Rep 2019; 9:9302. [PMID: 31243302 PMCID: PMC6594933 DOI: 10.1038/s41598-019-45650-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 06/07/2019] [Indexed: 01/04/2023] Open
Abstract
Brassica rapa L. is an important agricultural crop that requires a period of prolonged cold for flowering. This process is known as vernalization. Studies have shown that long noncoding RNAs (lncRNAs) play important roles in abiotic stress responses and several cold-responsive noncoding RNAs have been suggested to be involved in vernalization. We examined the transcriptome of the Chinese cabbage inbred line (B. rapa L. var. pekinensis) RJKB-T24, and identified 1,444 long intergenic noncoding RNAs (lincRNAs), 551 natural antisense transcripts (NATs), and 93 intronic noncoding RNAs (incRNAs); 549 of the 2,088 lncRNAs significantly altered their expression in response to four weeks of cold treatment. Most differentially expressed lncRNAs did not lead to a change of expression levels in mRNAs covering or near lncRNAs, suggesting that the transcriptional responses to four weeks of cold treatment in lncRNA and mRNA are independent. However, some differentially expressed mRNAs had NATs with expression altered in the same direction. These genes were categorized as having an abiotic stress response, suggesting that the paired-expression may play a role in the transcriptional response to vernalization or cold treatment. We also identified short-term cold treatment induced NATs in BrFLC and BrMAF genes, which are involved in vernalization. The lncRNAs we identified differed from those reported in Arabidopsis thaliana, suggesting the role of lncRNAs in vernalization differ between these two species.
Collapse
|
3
|
Abstract
Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved mechanisms which allow them to adapt to abiotic stresses through alterations in gene expression and metabolism. In recent years, studies have investigated the role of long noncoding RNA (lncRNA) in regulating gene expression in plants and characterized their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications, and RNA-RNA interactions. Genome-wide transcriptome analyses have identified various types of noncoding RNAs (ncRNAs) that respond to abiotic stress. These ncRNAs are in addition to the well-known housekeeping ncRNAs, such as rRNAs, tRNAs, snoRNAs, and snRNAs. In this review, recent research pertaining to the role of lncRNAs in the response of plants to abiotic stress is summarized and discussed.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Saitama, Japan.
| |
Collapse
|
4
|
Forsthoefel NR, Klag KA, McNichol SR, Arnold CE, Vernon CR, Wood WW, Vernon DM. Arabidopsis PIRL6 Is Essential for Male and Female Gametogenesis and Is Regulated by Alternative Splicing. PLANT PHYSIOLOGY 2018; 178:1154-1169. [PMID: 30206104 PMCID: PMC6236607 DOI: 10.1104/pp.18.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/29/2018] [Indexed: 05/07/2023]
Abstract
Plant intracellular Ras-group leucine-rich repeat (LRR) proteins (PIRLs) are related to Ras-interacting animal LRR proteins that participate in developmental cell signaling. Systematic knockout analysis has implicated some members of the Arabidopsis (Arabidopsis thaliana) PIRL family in pollen development. However, for PIRL6, no bona fide knockout alleles have been recovered, suggesting that it may have an essential function in both male and female gametophytes. To test this hypothesis, we investigated PIRL6 expression and induced knockdown by RNA interference. Knockdown triggered defects in gametogenesis, resulting in abnormal pollen and early developmental arrest in the embryo sac. Consistent with this, PIRL6 was expressed in gametophytes: functional transcripts were detected in wild-type flowers but not in sporocyteless (spl) mutant flowers, which do not produce gametophytes. A genomic PIRL6-GFP fusion construct confirmed expression in both pollen and the embryo sac. Interestingly, PIRL6 is part of a convergent overlapping gene pair, a scenario associated with an increased likelihood of alternative splicing. We detected multiple alternative PIRL6 mRNAs in vegetative organs and spl mutant flowers, tissues that lacked the functionally spliced transcript. cDNA sequencing revealed that all contained intron sequences and premature termination codons. These alternative mRNAs accumulated in the nonsense-mediated decay mutant upf3, indicating that they are normally subjected to degradation. Together, these results demonstrate that PIRL6 is required in both male and female gametogenesis and suggest that sporophytic expression is negatively regulated by unproductive alternative splicing. This posttranscriptional mechanism may function to minimize PIRL6 protein expression in sporophyte tissues while allowing the overlapping adjacent gene to remain widely transcribed.
Collapse
Affiliation(s)
- Nancy R Forsthoefel
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Kendra A Klag
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Savannah R McNichol
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Claire E Arnold
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Corina R Vernon
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Whitney W Wood
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| | - Daniel M Vernon
- Program in Biochemistry, Biophysics, and Molecular Biology, Whitman College, Walla Walla, Washington 99362
| |
Collapse
|
5
|
Yuan Y, Chen S. Widespread antisense transcription of Populus genome under drought. Mol Genet Genomics 2018; 293:1017-1033. [PMID: 29876646 DOI: 10.1007/s00438-018-1456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
Abstract
Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.
Collapse
Affiliation(s)
- Yinan Yuan
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Su Chen
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
6
|
Qin P, Loraine AE, McCormick S. Cell-specific cis-natural antisense transcripts (cis-NATs) in the sperm and the pollen vegetative cells of Arabidopsis thaliana. F1000Res 2018; 7:93. [PMID: 29770209 PMCID: PMC5946162 DOI: 10.12688/f1000research.13311.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 11/20/2022] Open
Abstract
Background: cis-NATs
(cis-natural antisense transcripts
) are transcribed from opposite strands of adjacent genes and have been shown to regulate gene expression by generating small RNAs from the overlapping region. cis-NATs are important for plant development and resistance to pathogens and stress. Several genome-wide investigations identified a number of cis-NAT pairs, but these investigations predicted cis-NATS using expression data from bulk samples that included lots of cell types. Some cis-NAT pairs identified from those investigations might not be functional, because both transcripts of cis-NAT pairs need to be co-expressed in the same cell. Pollen only contains two cell types, two sperm and one vegetative cell, which makes cell-specific investigation of cis-NATs possible. Methods: We investigated potential protein-coding cis-NATs in pollen and sperm using pollen RNA-seq data and TAIR10 gene models using the Integrated Genome Browser. We then used sperm microarray data and sRNAs in sperm and pollen to determine possibly functional cis-NATs in the sperm or vegetative cell, respectively. Results: We identified 1471 potential protein-coding cis-NAT pairs, including 131 novel pairs that were not present in TAIR10 gene models. In pollen, 872 possibly functional pairs were identified. 72 and 56 pairs were potentially functional in sperm and vegetative cells, respectively. sRNAs were detected at 794 genes, belonging to 739 pairs. Conclusion: These potential candidates in sperm and the vegetative cell are tools for understanding gene expression mechanisms in pollen.
Collapse
Affiliation(s)
- Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, 611130, China.,U.S. Department of Agriculture/Agricultural Research Service and Department of Plant and Microbial Biology, University of California, Berkeley, Albany, CA, 94710, USA
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Sheila McCormick
- U.S. Department of Agriculture/Agricultural Research Service and Department of Plant and Microbial Biology, University of California, Berkeley, Albany, CA, 94710, USA
| |
Collapse
|
7
|
Szafranski P. Evolutionarily recent, insertional fission of mitochondrial cox2 into complementary genes in bilaterian Metazoa. BMC Genomics 2017; 18:269. [PMID: 28359330 PMCID: PMC5374615 DOI: 10.1186/s12864-017-3626-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/14/2017] [Indexed: 11/21/2022] Open
Abstract
Background Mitochondrial genomes (mtDNA) of multicellular animals (Metazoa) with bilateral symmetry (Bilateria) are compact and usually carry 13 protein-coding genes for subunits of three respiratory complexes and ATP synthase. However, occasionally reported exceptions to this typical mtDNA organization prompted speculation that, as in protists and plants, some bilaterian mitogenomes may continue to lose their canonical genes, or may even acquire new genes. To shed more light on this phenomenon, a PCR-based screen was conducted to assess fast-evolving mtDNAs of apocritan Hymenoptera (Arthropoda, Insecta) for genomic rearrangements that might be associated with the modification of mitochondrial gene content. Results Sequencing of segmental inversions, identified in the screen, revealed that the cytochrome oxidase subunit II gene (cox2) of Campsomeris (Dielis) (Scoliidae) was split into two genes coding for COXIIA and COXIIB. The COXII-derived complementary polypeptides apparently form a heterodimer, have reduced hydrophobicity compared with the majority of mitogenome-encoded COX subunits, and one of them, COXIIB, features increased content of Cys residues. Analogous cox2 fragmentation is known only in two clades of protists (chlorophycean algae and alveolates), where it has been associated with piecewise relocation of this gene into the nucleus. In Campsomeris mtDNA, cox2a and cox2b loci are separated by a 3-kb large cluster of several antiparallel overlapping ORFs, one of which, qnu, seems to encode a nuclease that may have played a role in cox2 fission. Conclusions Although discontinuous mitochondrial protein genes encoding fragmented, complementary polypeptides are known in protists and some plants, split cox2 of Campsomeris is the first case of such a gene arrangement found in animals. The reported data also indicate that bilaterian animal mitogenomes may be carrying lineage-specific genes more often than previously thought, and suggest a homing endonuclease-based mechanism for insertional mitochondrial gene fission. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3626-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, ABBR, R851C, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Wu X, Zeng Y, Guan J, Ji G, Huang R, Li QQ. Genome-wide characterization of intergenic polyadenylation sites redefines gene spaces in Arabidopsis thaliana. BMC Genomics 2015; 16:511. [PMID: 26155789 PMCID: PMC4568572 DOI: 10.1186/s12864-015-1691-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/05/2015] [Indexed: 12/22/2022] Open
Abstract
Background Messenger RNA polyadenylation is an essential step for the maturation of most eukaryotic mRNAs. Accurate determination of poly(A) sites helps define the 3’-ends of genes, which is important for genome annotation and gene function research. Genomic studies have revealed the presence of poly(A) sites in intergenic regions, which may be attributed to 3’-UTR extensions and novel transcript units. However, there is no systematically evaluation of intergenic poly(A) sites in plants. Results Approximately 16,000 intergenic poly(A) site clusters (IPAC) in Arabidopsis thaliana were discovered and evaluated at the whole genome level. Based on the distributions of distance from IPACs to nearby sense and antisense genes, these IPACs were classified into three categories. About 70 % of them were from previously unannotated 3’-UTR extensions to known genes, which would extend 6985 transcripts of TAIR10 genome annotation beyond their 3’-ends, with a mean extension of 134 nucleotides. 1317 IPACs were originated from novel intergenic transcripts, 37 of which were likely to be associated with protein coding transcripts. 2957 IPACs corresponded to antisense transcripts for genes on the reverse strand, which might affect 2265 protein coding genes and 39 non-protein-coding genes, including long non-coding RNA genes. The rest of IPACs could be originated from transcriptional read-through or gene mis-annotations. Conclusions The identified IPACs corresponding to novel transcripts, 3’-UTR extensions, and antisense transcription should be incorporated into current Arabidopsis genome annotation. Comprehensive characterization of IPACs from this study provides insights of alternative polyadenylation and antisense transcription in plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1691-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, China.
| | - Yong Zeng
- Department of Automation, Xiamen University, Xiamen, Fujian, China.
| | - Jinting Guan
- Department of Automation, Xiamen University, Xiamen, Fujian, China.
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian, China. .,Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China.
| | - Rongting Huang
- Department of Automation, Xiamen University, Xiamen, Fujian, China.
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education on Costal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China. .,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA. .,Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Yuan C, Wang J, Harrison AP, Meng X, Chen D, Chen M. Genome-wide view of natural antisense transcripts in Arabidopsis thaliana. DNA Res 2015; 22:233-43. [PMID: 25922535 PMCID: PMC4463847 DOI: 10.1093/dnares/dsv008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/06/2015] [Indexed: 01/19/2023] Open
Abstract
Natural antisense transcripts (NATs) are endogenous transcripts that can form double-stranded RNA structures. Many protein-coding genes (PCs) and non-protein-coding genes (NPCs) tend to form cis-NATs and trans-NATs, respectively. In this work, we identified 4,080 cis-NATs and 2,491 trans-NATs genome-widely in Arabidopsis. Of these, 5,385 NAT-siRNAs were detected from the small RNA sequencing data. NAT-siRNAs are typically 21nt, and are processed by Dicer-like 1 (DCL1)/DCL2 and RDR6 and function in epigenetically activated situations, or 24nt, suggesting these are processed by DCL3 and RDR2 and function in environment stress. NAT-siRNAs are significantly derived from PC/PC pairs of trans-NATs and NPC/NPC pairs of cis-NATs. Furthermore, NAT pair genes typically have similar pattern of epigenetic status. Cis-NATs tend to be marked by euchromatic modifications, whereas trans-NATs tend to be marked by heterochromatic modifications.
Collapse
Affiliation(s)
- Chunhui Yuan
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Zijingang Campus, Yu Hang Tang Road 866#, Hangzhou 310058, China
| | - Jingjing Wang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Zijingang Campus, Yu Hang Tang Road 866#, Hangzhou 310058, China James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Andrew P Harrison
- Department of Mathematical Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Xianwen Meng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Zijingang Campus, Yu Hang Tang Road 866#, Hangzhou 310058, China
| | - Dijun Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Zijingang Campus, Yu Hang Tang Road 866#, Hangzhou 310058, China Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Zijingang Campus, Yu Hang Tang Road 866#, Hangzhou 310058, China James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Gao W, Liu W, Zhao M, Li WX. NERF encodes a RING E3 ligase important for drought resistance and enhances the expression of its antisense gene NFYA5 in Arabidopsis. Nucleic Acids Res 2014; 43:607-17. [PMID: 25514924 PMCID: PMC4288204 DOI: 10.1093/nar/gku1325] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
NFYA5 is an important drought-stress inducible transcription factor gene that is targeted by miR169 in Arabidopsis. We show here that the cis-natural antisense transcript gene of NFYA5, NFYA5 Enhancing RING FINGER (NERF), can produce siRNAs from their overlapping region (OR) and affect NFYA5 transcripts by functioning together with miR169. The NERF protein functions as an E3 ligase for ubiquitination. Overexpression of NERF or OR cDNA leads to siRNANERF accumulation, miR169 repression, and NFYA5 transcript enhancement; knock-down of NERF transcripts by an artificial miRNA enhances miR169 abundance and reduces NFYA5 transcripts. Overexpression of NFYA5 does not affect the NERF mRNA level. Deep sequencing of the small RNA library from 35S::OR plants identifies 960 sequences representing 323 unique siRNAs that originate from OR; the sequences of some siRNANERF are similar/complementary to those of miR169. Overexpression of the 195- to 280-bp OR cDNA-containing siRNAs similar/complementary to miR169 also leads to the accumulation of NFYA5 transcripts. Analysis of NERF knock-down plants and NERF overexpression lines showed that, like NFYA5, NERF is important for controlling stomatal aperture and drought resistance. This regulatory model might apply to other natural antisense transcripts with positively correlated expression patterns.
Collapse
Affiliation(s)
- Wei Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenwen Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen-Xue Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Visser M, van der Walt AP, Maree HJ, Rees DJG, Burger JT. Extending the sRNAome of apple by next-generation sequencing. PLoS One 2014; 9:e95782. [PMID: 24752316 PMCID: PMC3994110 DOI: 10.1371/journal.pone.0095782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/31/2014] [Indexed: 02/07/2023] Open
Abstract
The global importance of apple as a fruit crop necessitates investigations into molecular aspects of the processes that influence fruit quality and yield, including plant development, fruit ripening and disease resistance. In order to study and understand biological processes it is essential to recognise the range of molecules, which influence these processes. Small non-coding RNAs are regulatory agents involved in diverse plant activities, ranging from development to stress response. The occurrence of these molecules in apple leaves was studied by means of next-generation sequencing. 85 novel microRNA (miRNA) gene loci were predicted and characterized along with known miRNA loci. Both cis- and trans-natural antisense transcript pairs were identified. Although the trans-overlapping regions were enriched in small RNA (sRNA) production, cis-overlaps did not seem to agree. More than 150 phased regions were also identified, and for a small subset of these, potential miRNAs that could initiate phasing, were revealed. Repeat-associated siRNAs, which are generated from repetitive genomic regions such as transposons, were also analysed. For this group almost all available repeat sequences, associated with the apple genome and present in Repbase, were found to produce siRNAs. Results from this study extend our current knowledge on apple sRNAs and their precursors significantly. A rich molecular resource has been created and is available to the research community to serve as a baseline for future studies.
Collapse
Affiliation(s)
- Marike Visser
- Biotechnology Platform, Agricultural Research Council, Pretoria, Gauteng, South Africa
- Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Anelda P. van der Walt
- Central Analytical Facilities, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape, South Africa
- Infruitec-Nietvoorbij, Agricultural Research Council, Stellenbosch, Western Cape, South Africa
| | - D. Jasper G. Rees
- Biotechnology Platform, Agricultural Research Council, Pretoria, Gauteng, South Africa
| | - Johan T. Burger
- Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape, South Africa
- * E-mail:
| |
Collapse
|
12
|
Liu Z, Gao S, Zhang S, Yang S, Sun N. Complex structures of transgene rearrangement implicate novel mechanisms of RNA-directed DNA methylation and convergent transcription. Genes Genomics 2014. [DOI: 10.1007/s13258-013-0147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Arabidopsis non-coding RNA regulation in abiotic stress responses. Int J Mol Sci 2013; 14:22642-54. [PMID: 24252906 PMCID: PMC3856082 DOI: 10.3390/ijms141122642] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Plant growth and productivity are largely affected by environmental stresses. Therefore, plants have evolved unique adaptation mechanisms to abiotic stresses through fine-tuned adjustment of gene expression and metabolism. Recent advanced technologies, such as genome-wide transcriptome analysis, have revealed that a vast amount of non-coding RNAs (ncRNAs) apart from the well-known housekeeping ncRNAs such as rRNAs, tRNAs, small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs) are expressed under abiotic stress conditions. These various types of ncRNAs are involved in chromatin regulation, modulation of RNA stability and translational repression during abiotic stress response. In this review, we summarize recent progress that has been made on ncRNA research in plant abiotic stress response.
Collapse
|
14
|
Li S, Liberman LM, Mukherjee N, Benfey PN, Ohler U. Integrated detection of natural antisense transcripts using strand-specific RNA sequencing data. Genome Res 2013; 23:1730-9. [PMID: 23816784 PMCID: PMC3787269 DOI: 10.1101/gr.149310.112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pairs of RNA molecules transcribed from partially or entirely complementary loci are called cis-natural antisense transcripts (cis-NATs), and they play key roles in the regulation of gene expression in many organisms. A promising experimental tool for profiling sense and antisense transcription is strand-specific RNA sequencing (ssRNA-seq). To identify cis-NATs using ssRNA-seq, we developed a new computational method based on a model comparison framework that incorporates the inherent variable efficiency of generating perfectly strand-specific libraries. Applying the method to new ssRNA-seq data from whole-root and cell-type–specific Arabidopsis libraries confirmed most of the known cis-NAT pairs and identified 918 additional cis-NAT pairs. Newly identified cis-NAT pairs are supported by polyadenylation data, alternative splicing patterns, and RT-PCR validation. We found 209 cis-NAT pairs that have opposite expression levels in neighboring cell types, implying cell-type–specific roles for cis-NATs. By integrating a genome-wide epigenetic profile of Arabidopsis, we identified a unique chromatin signature of cis-NATs, suggesting a connection between cis-NAT transcription and chromatin modification in plants. An analysis of small-RNA sequencing data showed that ∼4% of cis-NAT pairs produce putative cis-NAT–induced siRNAs. Taken together, our data and analyses illustrate the potential for multifaceted regulatory roles of plant cis-NATs.
Collapse
Affiliation(s)
- Song Li
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
15
|
Britto-Kido SDA, Ferreira Neto JRC, Pandolfi V, Marcelino-Guimarães FC, Nepomuceno AL, Vilela Abdelnoor R, Benko-Iseppon AM, Kido EA. Natural antisense transcripts in plants: a review and identification in soybean infected with Phakopsora pachyrhizi SuperSAGE library. ScientificWorldJournal 2013; 2013:219798. [PMID: 23878522 PMCID: PMC3710604 DOI: 10.1155/2013/219798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/05/2013] [Indexed: 11/23/2022] Open
Abstract
Natural antisense ranscripts (NAT) are RNA molecules complementary to other endogenous RNAs. They are capable of regulating the expression of target genes at different levels (transcription, mRNA stability, translation, etc.). Such a property makes them ideal for interventions in organisms' metabolism. The present study reviewed plant NAT aspects, including features, availability and genesis, conservation and distribution, coding capacity, NAT pair expression, and functions. Besides, an in silico identification of NATs pairs was presented, using deepSuperSAGE libraries of soybean infected or not with Phakopsora pachyrhizi. Results showed that around 1/3 of the 77,903 predicted trans-NATs (by PlantsNATsDB database) detected had unitags mapped in both sequences of each pair. The same 1/3 of the 436 foreseen cis-NATs showed unitags anchored in both sequences of the related pairs. For those unitags mapped in NAT pairs, a modulation expression was assigned as upregulated, downregulated, or constitutive, based on the statistical analysis (P < 0.05). As a result, the infected treatment promoted the expression of 2,313 trans-NATs pairs comprising unitags exclusively from that library (1,326 pairs had unitags only found in the mock library). To understand the regulation of these NAT pairs could be a key aspect in the ASR plant response.
Collapse
Affiliation(s)
| | | | - Valesca Pandolfi
- Federal University of Pernambuco (UFPE), Department of Genetics, Recife, PE, Brazil
| | | | - Alexandre Lima Nepomuceno
- Embrapa Soybean, Rod. Carlos João Strass, Distrito de Warta, Caixa Postal 231, 86.001-970 Londrina, PR, Brazil
| | - Ricardo Vilela Abdelnoor
- Embrapa Soybean, Rod. Carlos João Strass, Distrito de Warta, Caixa Postal 231, 86.001-970 Londrina, PR, Brazil
| | | | - Ederson Akio Kido
- Federal University of Pernambuco (UFPE), Department of Genetics, Recife, PE, Brazil
| |
Collapse
|
16
|
Vaseva II, Feller U. Natural antisense transcripts of Trifolium repens dehydrins. PLANT SIGNALING & BEHAVIOR 2013; 8:e27674. [PMID: 24390012 PMCID: PMC4091226 DOI: 10.4161/psb.27674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The recently described complex nature of some dehydrin-coding sequences in Trifolium repens could explain the considerable variability among transcripts originating from a single gene.1 For some of the sequences the existence of natural antisense transcripts (NAT s), which could form sense-antisense (SAS) pairs, was predicted. The present study demonstrates that cis-natural antisense transcripts of 2 dehydrin types (YnKn and YnSKn) accumulate in white clover plants subjected to treatments with polyethylene glycol (PEG), abscisic acid (ABA), and high salt concentration. The isolated YnKn cis-NAT s mapped to sequence site enriched in alternative start codons. Some of the sense-antisense pairs exhibited inverse expression with differing profiles which depended on the applied stress. A natural antisense transcript coding for an ABC F family protein (a trans-NAT ) which shares short sequence homology with YnSKn dehydrin was identified in plants subjected to salt stress. Forthcoming experiments will evaluate the impact of NAT s on transcript abundances, elucidating the role of transcriptional and post-transcriptional interferences in the regulation of dehydrin levels under various abiotic stresses.
Collapse
Affiliation(s)
- Irina I Vaseva
- Plant Stress Molecular Biology Department; Institute of Plant Physiology and Genetics; Bulgarian Academy of Sciences; Sofia, Bulgaria
- Correspondence to: Irina I Vaseva, and Urs Feller,
| | - Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR); University of Bern; Bern, Switzerland
- Correspondence to: Irina I Vaseva, and Urs Feller,
| |
Collapse
|