1
|
Sevilleno SS, An HR, Cabahug-Braza RAM, Ahn YJ, Hwang YJ. Cytogenetic Study and Pollen Viability of Phalaenopsis Queen Beer 'Mantefon'. PLANTS (BASEL, SWITZERLAND) 2023; 12:2828. [PMID: 37570982 PMCID: PMC10421358 DOI: 10.3390/plants12152828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Intergeneric and interspecific hybridization has been employed for the breeding of Phalaenopsis to transfer desirable traits between species, producing novel phenotypes with improved size, color, form, and flower-bearing ability. These characteristics are often enhanced; however, many of these hybrids are triploids and have reduced or complete sterility, for example, Phalaenopsis Queen Beer 'Mantefon', an important novelty-type cultivar in Asia, particularly in China, Japan, and Republic of Korea. Despite the increasing demand for the crop for ornamental purposes, little is known about its cytogenetics, which is essential for breeding and, consequently, crop improvement. In this study, karyotyping using fluorescence in situ hybridization, meiotic chromosome behavior analysis, pollen staining, and in vitro viability germination tests were performed to understand the cause of hybrid sterility and pollen abnormality in Phalaenopsis Queen Beer 'Mantefon' from a cytogenetic perspective. Viability tests revealed pollen infertility at all flower developmental stages, confirmed by the absence of pollen tube growth. Aberrant chromosomal behavior was observed in pollen mother cells (PMCs), frequently forming univalents, chromosomal bridges, and laggards during the entire meiotic process. PMCs were also divided irregularly into sporads with varying numbers of micronuclei, which may be responsible for pollen sterility in this cultivar. Altogether, the cytogenetic analyses provided insights into the pollen development of Phalaenopsis Queen Beer 'Mantefon' and the conceivable causes of its infertility.
Collapse
Affiliation(s)
| | - Hye Ryun An
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | | | - Yun-Jae Ahn
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoon-Jung Hwang
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea;
- Plant Genetics and Breeding Institute, Sahmyook University, Seoul 01795, Republic of Korea;
| |
Collapse
|
2
|
Cápal P, Said M, Molnár I, Doležel J. Flow Cytometric Analysis and Sorting of Plant Chromosomes. Methods Mol Biol 2023; 2672:177-200. [PMID: 37335476 DOI: 10.1007/978-1-0716-3226-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Flow cytometry offers a unique way of analyzing and manipulating plant chromosomes. During a rapid movement in a liquid stream, large populations can be classified in a short time according to their fluorescence and light scatter properties. Chromosomes whose optical properties differ from other chromosomes in a karyotype can be purified by flow sorting and used in a range of applications in cytogenetics, molecular biology, genomics, and proteomics. As the samples for flow cytometry must be liquid suspensions of single particles, intact chromosomes must be released from mitotic cells. This protocol describes a procedure for preparation of suspensions of mitotic metaphase chromosomes from meristem root tips and their flow cytometric analysis and sorting for various downstream applications.
Collapse
Affiliation(s)
- Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, Giza, Cairo, Egypt
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
- Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Nagy I, Veeckman E, Liu C, Bel MV, Vandepoele K, Jensen CS, Ruttink T, Asp T. Chromosome-scale assembly and annotation of the perennial ryegrass genome. BMC Genomics 2022; 23:505. [PMID: 35831814 PMCID: PMC9281035 DOI: 10.1186/s12864-022-08697-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The availability of chromosome-scale genome assemblies is fundamentally important to advance genetics and breeding in crops, as well as for evolutionary and comparative genomics. The improvement of long-read sequencing technologies and the advent of optical mapping and chromosome conformation capture technologies in the last few years, significantly promoted the development of chromosome-scale genome assemblies of model plants and crop species. In grasses, chromosome-scale genome assemblies recently became available for cultivated and wild species of the Triticeae subfamily. Development of state-of-the-art genomic resources in species of the Poeae subfamily, which includes important crops like fescues and ryegrasses, is lagging behind the progress in the cereal species. RESULTS Here, we report a new chromosome-scale genome sequence assembly for perennial ryegrass, obtained by combining PacBio long-read sequencing, Illumina short-read polishing, BioNano optical mapping and Hi-C scaffolding. More than 90% of the total genome size of perennial ryegrass (approximately 2.55 Gb) is covered by seven pseudo-chromosomes that show high levels of collinearity to the orthologous chromosomes of Triticeae species. The transposon fraction of perennial ryegrass was found to be relatively low, approximately 35% of the total genome content, which is less than half of the genome repeat content of cultivated cereal species. We predicted 54,629 high-confidence gene models, 10,287 long non-coding RNAs and a total of 8,393 short non-coding RNAs in the perennial ryegrass genome. CONCLUSIONS The new reference genome sequence and annotation presented here are valuable resources for comparative genomic studies in grasses, as well as for breeding applications and will expedite the development of productive varieties in perennial ryegrass and related species.
Collapse
Affiliation(s)
- Istvan Nagy
- Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200 Denmark
| | - Elisabeth Veeckman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, Melle, B-9090 Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- Present address: DLF Seeds A/S, Denmark, Højerupvej 31, Store Heddinge, DK-4660 Denmark
| | - Chang Liu
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Eberhard Karls Universität, Auf der Morgenstelle 32, Tübingen, 72076 Germany
- Present address: Institut für Biologie, Universität Hohenheim, Garbenstr. 30, Stuttgart, 70599 Germany
| | - Michiel Van Bel
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052 Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
| | - Klaas Vandepoele
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052 Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
| | | | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, Melle, B-9090 Belgium
| | - Torben Asp
- Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200 Denmark
| |
Collapse
|
4
|
Purugganan MD, Jackson SA. Advancing crop genomics from lab to field. Nat Genet 2021; 53:595-601. [PMID: 33958781 DOI: 10.1038/s41588-021-00866-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/22/2021] [Indexed: 01/23/2023]
Abstract
Crop genomics remains a key element in ensuring scientific progress to secure global food security. It has been two decades since the sequence of the first plant genome, that of Arabidopsis thaliana, was released, and soon after that the draft sequencing of the rice genome was completed. Since then, the genomes of more than 100 crops have been sequenced, plant genome research has expanded across multiple fronts and the next few years promise to bring further advances spurred by the advent of new technologies and approaches. We are likely to see continued innovations in crop genome sequencing, genetic mapping and the acquisition of multiple levels of biological data. There will be exciting opportunities to integrate genome-scale information across multiple scales of biological organization, leading to advances in our mechanistic understanding of crop biological processes, which will, in turn, provide greater impetus for translation of laboratory results to the field.
Collapse
Affiliation(s)
- Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY, USA. .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | | |
Collapse
|
5
|
Doležel J, Lucretti S, Molnár I, Cápal P, Giorgi D. Chromosome analysis and sorting. Cytometry A 2021; 99:328-342. [PMID: 33615737 PMCID: PMC8048479 DOI: 10.1002/cyto.a.24324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Flow cytometric analysis and sorting of plant mitotic chromosomes has been mastered by only a few laboratories worldwide. Yet, it has been contributing significantly to progress in plant genetics, including the production of genome assemblies and the cloning of important genes. The dissection of complex genomes by flow sorting into the individual chromosomes that represent small parts of the genome reduces DNA sample complexity and streamlines projects relying on molecular and genomic techniques. Whereas flow cytometric analysis, that is, chromosome classification according to fluorescence and light scatter properties, is an integral part of any chromosome sorting project, it has rarely been used on its own due to lower resolution and sensitivity as compared to other cytogenetic methods. To perform chromosome analysis and sorting, commercially available electrostatic droplet sorters are suitable. However, in order to resolve and purify chromosomes of interest the instrument must offer high resolution of optical signals as well as stability during long runs. The challenge is thus not the instrumentation, but the adequate sample preparation. The sample must be a suspension of intact mitotic metaphase chromosomes and the protocol, which includes the induction of cell cycle synchrony, accumulation of dividing cells at metaphase, and release of undamaged chromosomes, is time consuming and laborious and needs to be performed very carefully. Moreover, in addition to fluorescent staining chromosomal DNA, the protocol may include specific labelling of DNA repeats to facilitate discrimination of particular chromosomes. This review introduces the applications of chromosome sorting in plants, and discusses in detail sample preparation, chromosome analysis and sorting to achieve the highest purity in flow-sorted fractions, and their suitability for downstream applications.
Collapse
Affiliation(s)
- Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Sergio Lucretti
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)Division of Biotechnology and AgroindustryRomeItaly
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Debora Giorgi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)Division of Biotechnology and AgroindustryRomeItaly
| |
Collapse
|
6
|
Li X, Huang F, Chai J, Wang Q, Yu F, Huang Y, Wu J, Wang Q, Xu L, Zhang M, Deng Z. Chromosome behavior during meiosis in pollen mother cells from Saccharum officinarum × Erianthus arundinaceus F 1 hybrids. BMC PLANT BIOLOGY 2021; 21:139. [PMID: 33726673 PMCID: PMC7968283 DOI: 10.1186/s12870-021-02911-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In recent years, sugarcane has attracted increasing attention as an energy crop. Wild resources are widely used to improve the narrow genetic base of sugarcane. However, the infertility of F1 hybrids between Saccharum officinarum (S. officinarum) and Erianthus arundinaceus (E. arundinaceus) has hindered sugarcane breeding efforts. To discover the cause of this infertility, we studied the hybridization process from a cytological perspective. RESULTS We examined the meiotic process of pollen mother cells (PMCs) in three F1 hybrids between S. officinarum and E. arundinaceus. Cytological analysis showed that the male parents, Hainan 92-77 and Hainan 92-105, had normal meiosis. However, the meiosis process in F1 hybrids showed various abnormal phenomena, including lagging chromosomes, micronuclei, uneven segregation, chromosome bridges, and inability to form cell plates. Genomic in situ hybridization (GISH) showed unequal chromatin distribution during cell division. Interestingly, 96.70% of lagging chromosomes were from E. arundinaceus. Furthermore, fluorescence in situ hybridization (FISH) was performed using 45S rDNA and 5S rDNA as probes. Either 45S rDNA or 5S rDNA sites were lost during abnormal meiosis, and results of unequal chromosomal separation were also clearly observed in tetrads. CONCLUSIONS Using cytogenetic analysis, a large number of meiotic abnormalities were observed in F1. GISH further confirmed that 96.70% of the lagging chromosomes were from E. arundinaceus. Chromosome loss was found by further investigation of repeat sequences. Our findings provide insight into sugarcane chromosome inheritance to aid innovation and utilization in sugarcane germplasm resources.
Collapse
Affiliation(s)
- Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Fei Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jin Chai
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qiusong Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiayun Wu
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Provincial Bioengineering Institute, Guangzhou, China
| | - Qinnan Wang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liangnian Xu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Muqing Zhang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Highly efficient synchronization of sheep skin fibroblasts at G2/M phase and isolation of sheep Y chromosomes by flow cytometric sorting. Sci Rep 2020; 10:9933. [PMID: 32555328 PMCID: PMC7303189 DOI: 10.1038/s41598-020-66905-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
At present, based on whole genome sequencing, sequences and genes annotation of the sheep (Ovis aries) Y chromosome are still absent. The isolation of Y chromosomes followed by sequencing has been approved as an effective approach to analyze this complex chromosome in other species. In this study, we established a highly efficient synchronization method for G2/M phase of sheep fibroblasts, which was successfully applied to flow-sorting chromosomes of sheep, with a focus on isolation and sequencing of the ovine Y chromosome. The isolated (~80,000) Y chromosomes were verified by fluorescence quantitative real-time polymerase chain reaction, further confirmed by fluorescence in situ hybridization, and amplified by the MALBAC method before next-generation sequencing. The sequence results indicated that 68.90% of reads were Y chromosome-related sequences as they are homologous to the bovine Y chromosome. The remaining 31.1% of reads were aligned to the sheep reference genome, including 13.57% reads to chromosome X and 6.68% to chromosome 17. Importantly, the paired-end reads that are properly aligned to the bovine Y sequence assembly accounted for 46.49%, indicating the success in the ovine Y chromosome isolation and the high quality of the Y chromosome sequences. This study not only set up a foundation for future sequencing, assembly and annotation of the ovine Y chromosome, but also provide a validated approach to overcoming difficulties in sequencing Y chromosome in other mammalian species.
Collapse
|
8
|
Zwyrtková J, Němečková A, Čížková J, Holušová K, Kapustová V, Svačina R, Kopecký D, Till BJ, Doležel J, Hřibová E. Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC PLANT BIOLOGY 2020; 20:280. [PMID: 32552738 PMCID: PMC7302162 DOI: 10.1186/s12870-020-02495-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cultivated grasses are an important source of food for domestic animals worldwide. Increased knowledge of their genomes can speed up the development of new cultivars with better quality and greater resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species (Lolium) and diploid and hexaploid fescue species (Festuca). In this work, we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species as well as one fescue and two ryegrass cultivars. RESULTS Partial genome sequences produced by Illumina sequencing technology were used for genome-wide comparative analyses with the RepeatExplorer pipeline. Retrotransposons were the most abundant repeat type in all seven grass species. The Athila element of the Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of the long terminal repeat (LTR) element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of fluorescence in situ hybridization (FISH) with a probe specific to the Fesreba element and immunostaining with centromeric histone H3 (CENH3) antibody showed their co-localization and indicated a possible role of Fesreba in centromere function. CONCLUSIONS Comparative repeatome analyses in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of the LTR element Fesreba. A new LTR element Fesreba was identified and found in abundance in centromeric regions of the fescues and ryegrasses. It may play a role in the function of their centromeres.
Collapse
Affiliation(s)
- Jana Zwyrtková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Alžběta Němečková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Veronika Kapustová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Radim Svačina
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Bradley John Till
- Centro de Genómica Nutricional Agroacuícola, Las Heras 350, Temuco, Chile
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| |
Collapse
|
9
|
Yang S, Zeng K, Luo L, Qian W, Wang Z, Doležel J, Zhang M, Gao X, Deng Z. A flow cytometry-based analysis to establish a cell cycle synchronization protocol for Saccharum spp. Sci Rep 2020; 10:5016. [PMID: 32193460 PMCID: PMC7081271 DOI: 10.1038/s41598-020-62086-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Modern sugarcane is an unusually complex heteroploid crop, and its genome comprises two or three subgenomes. To reduce the complexity of sugarcane genome research, the ploidy level and number of chromosomes can be reduced using flow chromosome sorting. However, a cell cycle synchronization (CCS) protocol for Saccharum spp. is needed that maximizes the accumulation of metaphase chromosomes. For flow cytometry analysis in this study, we optimized the lysis buffer, hydroxyurea(HU) concentration, HU treatment time and recovery time for sugarcane. We determined the mitotic index by microscopic observation and calculation. We found that WPB buffer was superior to other buffers for preparation of sugarcane nuclei suspensions. The optimal HU treatment was 2 mM for 18 h at 25 °C, 28 °C and 30 °C. Higher recovery treatment temperatures were associated with shorter recovery times (3.5 h, 2.5 h and 1.5 h at 25 °C, 28 °C and 30 °C, respectively). The optimal conditions for treatment with the inhibitor of microtubule polymerization, amiprophos-methyl (APM), were 2.5 μM for 3 h at 25 °C, 28 °C and 30 °C. Meanwhile, preliminary screening of CCS protocols for Badila were used for some main species of genus Saccharum at 25 °C, 28 °C and 30 °C, which showed that the average mitotic index decreased from 25 °C to 30 °C. The optimal sugarcane CCS protocol that yielded a mitotic index of >50% in sugarcane root tips was: 2 mM HU for 18 h, 0.1 X Hoagland's Solution without HU for 3.5 h, and 2.5 μM APM for 3.0 h at 25 °C. The CCS protocol defined in this study should accelerate the development of genomic research and cytobiology research in sugarcane.
Collapse
Affiliation(s)
- Shan Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Zeng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wang Qian
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiqiang Wang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Olomouc, CZ-78371, Czech Republic
| | - Muqing Zhang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Xiangxiong Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
10
|
Ebrahimzadegan R, Houben A, Mirzaghaderi G. Repetitive DNA landscape in essential A and supernumerary B chromosomes of Festuca pratensis Huds. Sci Rep 2019; 9:19989. [PMID: 31882680 PMCID: PMC6934454 DOI: 10.1038/s41598-019-56383-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Here, we characterized the basic properties of repetitive sequences in essential A and supernumerary B chromosomes of Festuca pratensis Huds. This was performed by comparative analysis of low-pass Illumina sequence reads of B chromosome lacking (-B) and B chromosome containing (+B) individuals of F. pratensis. 61% of the nuclear genome is composed of repetitive sequences. 43.1% of the genome are transposons of which DNA transposons and retrotransposons made up 2.3% and 40.8%, respectively. LTR retrotransposons are the most abundant mobile elements and contribute to 40.7% of the genome and divided into Ty3-gypsy and Ty1-copia super families with 32.97% and 7.78% of the genome, respectively. Eighteen different satellite repeats were identified making up 3.9% of the genome. Five satellite repeats were used as cytological markers for chromosome identification and genome analysis in the genus Festuca. Four satellite repeats were identified on B chromosomes among which Fp-Sat48 and Fp-Sat253 were specific to the B chromosome of F. pratensis.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, 6617715175, Sanandaj, Iran
| | - Andreas Houben
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, 6617715175, Sanandaj, Iran.
| |
Collapse
|
11
|
Majka J, Książczyk T, Kiełbowicz-Matuk A, Kopecký D, Kosmala A. Exploiting repetitive sequences and BAC clones in Festuca pratensis karyotyping. PLoS One 2017; 12:e0179043. [PMID: 28591168 PMCID: PMC5462415 DOI: 10.1371/journal.pone.0179043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/23/2017] [Indexed: 11/24/2022] Open
Abstract
The Festuca genus is thought to be the most numerous genus of the Poaceae family. One of the most agronomically important forage grasses, Festuca pratensis Huds. is treated as a model plant to study the molecular mechanisms associated with tolerance to winter stresses, including frost. However, the precise mapping of the genes governing stress tolerance in this species is difficult as its karyotype remains unrecognized. Only two F. pratensis chromosomes with 35S and 5S rDNA sequences can be easily identified, but its remaining chromosomes have not been distinguished to date. Here, two libraries derived from F. pratensis nuclear DNA with various contents of repetitive DNA sequences were used as sources of molecular probes for fluorescent in situ hybridisation (FISH), a BAC library and a library representing sequences most frequently present in the F. pratensis genome. Using FISH, six groups of DNA sequences were revealed in chromosomes on the basis of their signal position, including dispersed-like sequences, chromosome painting-like sequences, centromeric-like sequences, knob-like sequences, a group without hybridization signals, and single locus-like sequences. The last group was exploited to develop cytogenetic maps of diploid and tetraploid F. pratensis, which are presented here for the first time and provide a remarkable progress in karyotype characterization.
Collapse
Affiliation(s)
- Joanna Majka
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
- * E-mail:
| | - Tomasz Książczyk
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | - David Kopecký
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
12
|
Ansari HA, Ellison NW, Bassett SA, Hussain SW, Bryan GT, Williams WM. Fluorescence chromosome banding and FISH mapping in perennial ryegrass, Lolium perenne L. BMC Genomics 2016; 17:977. [PMID: 27887567 PMCID: PMC5124321 DOI: 10.1186/s12864-016-3231-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/01/2016] [Indexed: 11/29/2022] Open
Abstract
Background The unambiguous identification of individual chromosomes is a key part of the genomic characterization of any species. In this respect, the development and application of chromosome banding techniques has revolutionised mammalian and especially, human genomics. However, partly because of the traditional use of chromosome squash preparations, consistent fluorescence banding has rarely been achieved in plants. Here, successful fluorescence chromosome banding has been achieved for the first time in perennial ryegrass (Lolium perenne), a forage and turf grass with a large genome and a symmetrical karyotype with chromosomes that are difficult to distinguish. Results Based on flame-dried chromosome preparations instead of squashes, a simple fluorescence Q-banding technique using quinacrine mustard, unambiguously identified each chromosome and enabled the development of a banded karyotype and ideogram of the species. This Q-banding technique was also shown to be compatible with sequential FISH mapping enabling labelled genes and molecular markers to be precisely assigned to specific cytogenetic bands. A technique for DAPI-banding, which gave a similar pattern to Q-banding, was also introduced. This was compatible with FISH mapping and was used to anchor a single copy gene from an earlier mapped linkage group of L. perenne, thus providing a step towards integration of the genetic and cytogenetic maps. Conclusions By enabling the allocation of genes mapped by other methods to physically identified chromosome positions, this work will contribute to a better understanding of genomic structures and functions in grasses.
Collapse
Affiliation(s)
- Helal A Ansari
- AgResearch Ltd, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand.
| | - Nicholas W Ellison
- AgResearch Ltd, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand.,, Present address: 16 Moerangi St., Palmerston North, 4410, New Zealand
| | - Shalome A Bassett
- AgResearch Ltd, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Syed W Hussain
- AgResearch Ltd, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Gregory T Bryan
- AgResearch Ltd, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Warren M Williams
- AgResearch Ltd, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
13
|
Vrána J, Cápal P, Šimková H, Karafiátová M, Čížková J, Doležel J. Flow Analysis and Sorting of Plant Chromosomes. CURRENT PROTOCOLS IN CYTOMETRY 2016; 78:5.3.1-5.3.43. [PMID: 27723090 DOI: 10.1002/cpcy.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Analysis and sorting of plant chromosomes (plant flow cytogenetics) is a special application of flow cytometry in plant genomics and its success depends critically on sample quality. This unit describes the methodology in a stepwise manner, starting with the induction of cell cycle synchrony and accumulation of dividing cells in mitotic metaphase, and continues with the preparation of suspensions of intact mitotic chromosomes, flow analysis and sorting of chromosomes, and finally processing of the sorted chromosomes. Each step of the protocol is described in detail as some procedures have not been used widely. Supporting histograms are presented as well as hints on dealing with plant material; the utility of sorted chromosomes for plant genomics is also discussed. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
14
|
Koo DH, Tiwari VK, Hřibová E, Doležel J, Friebe B, Gill BS. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat. Cytogenet Genome Res 2016; 148:314-21. [PMID: 27403741 DOI: 10.1159/000447471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 11/19/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) provides an efficient system for cytogenetic analysis of wild relatives of wheat for individual chromosome identification, elucidation of homoeologous relationships, and for monitoring alien gene transfers into wheat. This study is aimed at developing cytogenetic markers for chromosome identification of wheat and Aegilops geniculata (2n = 4x = 28, UgUgMgMg) using satellite DNAs obtained from flow-sorted chromosome 5Mg. FISH was performed to localize the satellite DNAs on chromosomes of wheat and selected Aegilops species. The FISH signals for satellite DNAs on chromosome 5Mg were generally associated with constitutive heterochromatin regions corresponding to C-band-positive chromatin including telomeric, pericentromeric, centromeric, and interstitial regions of all the 14 chromosome pairs of Ae. geniculata. Most satellite DNAs also generated FISH signals on wheat chromosomes and provided diagnostic chromosome arm-specific cytogenetic markers that significantly improved chromosome identification in wheat. The newly identified satellite DNA CL36 produced localized Mg genome chromosome-specific FISH signals in Ae. geniculata and in the M genome of the putative diploid donor species Ae. comosa subsp. subventricosa but not in Ae. comosa subsp. comosa, suggesting that the Mg genome of Ae. geniculata was probably derived from subsp. subventricosa.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kans., USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Nuclear genomes of many important plant species are tremendously complicated to map and sequence. The ability to isolate single chromosomes, which represent small units of nuclear genome, is priceless in many areas of plant research including cytogenetics, genomics, and proteomics. Flow cytometry is the only technique which can provide large quantities of pure chromosome fractions suitable for downstream applications including physical mapping, preparation of chromosome-specific BAC libraries, sequencing, and optical mapping. Here, we describe step-by-step procedure of preparation of liquid suspensions of intact mitotic metaphase chromosomes and their flow cytometric analysis and sorting.
Collapse
Affiliation(s)
- Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic.
| | - Petr Cápal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| | - Jarmila Číhalíková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| | - Marie Kubaláková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| |
Collapse
|
16
|
Tiwari VK, Wang S, Danilova T, Koo DH, Vrána J, Kubaláková M, Hribova E, Rawat N, Kalia B, Singh N, Friebe B, Doležel J, Akhunov E, Poland J, Sabir JSM, Gill BS. Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M(g) of Aegilops geniculata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:733-46. [PMID: 26408103 DOI: 10.1111/tpj.13036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 05/07/2023]
Abstract
Next-generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole-genome shotgun sequencing is cost-prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow-sorted chromosome 5M(g) from a wheat/Aegilops geniculata disomic substitution line [DS5M(g) (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired-end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5M(g) , in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single-gene FISH indicated no major chromosomal rearrangements between chromosomes 5M(g) and 5D. Comparing chromosome 5M(g) with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5M(g) -specific SNPs and cytogenetic probe-based resources were developed and validated. Deletion bin-mapped and ordered 5M(g) SNP markers will be useful to track 5M-specific introgressions and translocations. This study provides a detailed sequence-based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Shichen Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66502, USA
| | - Tatiana Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Dal Hoe Koo
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Eva Hribova
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Nidhi Rawat
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Bhanu Kalia
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Narinder Singh
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66502, USA
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jamal S M Sabir
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bikram S Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| |
Collapse
|
17
|
Nussbaumer T, Kugler KG, Schweiger W, Bader KC, Gundlach H, Spannagl M, Poursarebani N, Pfeifer M, Mayer KFX. chromoWIZ: a web tool to query and visualize chromosome-anchored genes from cereal and model genomes. BMC PLANT BIOLOGY 2014; 14:348. [PMID: 25491094 PMCID: PMC4266971 DOI: 10.1186/s12870-014-0348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/24/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Over the last years reference genome sequences of several economically and scientifically important cereals and model plants became available. Despite the agricultural significance of these crops only a small number of tools exist that allow users to inspect and visualize the genomic position of genes of interest in an interactive manner. DESCRIPTION We present chromoWIZ, a web tool that allows visualizing the genomic positions of relevant genes and comparing these data between different plant genomes. Genes can be queried using gene identifiers, functional annotations, or sequence homology in four grass species (Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Oryza sativa). The distribution of the anchored genes is visualized along the chromosomes by using heat maps. Custom gene expression measurements, differential expression information, and gene-to-group mappings can be uploaded and can be used for further filtering. CONCLUSIONS This tool is mainly designed for breeders and plant researchers, who are interested in the location and the distribution of candidate genes as well as in the syntenic relationships between different grass species. chromoWIZ is freely available and online accessible at http://mips.helmholtz-muenchen.de/plant/chromoWIZ/index.jsp.
Collapse
Affiliation(s)
- Thomas Nussbaumer
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Karl G Kugler
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Wolfgang Schweiger
- />Institute for Biotechnology in Plant Production, IFA-Tulln, University of
Natural Resources and Life Sciences, A-3430 Tulln, Austria
| | - Kai C Bader
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Heidrun Gundlach
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Manuel Spannagl
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Naser Poursarebani
- />Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Matthias Pfeifer
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Klaus FX Mayer
- />Plant Genome and System Biology (PGSB), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| |
Collapse
|
18
|
Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H. Advances in plant chromosome genomics. Biotechnol Adv 2014; 32:122-36. [DOI: 10.1016/j.biotechadv.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
|
19
|
Kopecký D, Studer B. Emerging technologies advancing forage and turf grass genomics. Biotechnol Adv 2013; 32:190-9. [PMID: 24309540 DOI: 10.1016/j.biotechadv.2013.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/20/2022]
Abstract
Grassland is of major importance for agricultural production and provides valuable ecosystem services. Its impact is likely to rise in changing socio-economic and climatic environments. High yielding forage grass species are major components of sustainable grassland production. Understanding the genome structure and function of grassland species provides opportunities to accelerate crop improvement and thus to mitigate the future challenges of increased feed and food demand, scarcity of natural resources such as water and nutrients, and high product qualities. In this review, we will discuss a selection of technological developments that served as main drivers to generate new insights into the structure and function of nuclear genomes. Many of these technologies were originally developed in human or animal science and are now increasingly applied in plant genomics. Our main goal is to highlight the benefits of using these technologies for forage and turf grass genome research, to discuss their potentials and limitations as well as their relevance for future applications.
Collapse
Affiliation(s)
- David Kopecký
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371, Olomouc-Holice, Czech Republic
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Universitaetsstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|