1
|
Thomson G, Dickinson L, Jacob Y. Genomic consequences associated with Agrobacterium-mediated transformation of plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:342-363. [PMID: 37831618 PMCID: PMC10841553 DOI: 10.1111/tpj.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Attenuated strains of the naturally occurring plant pathogen Agrobacterium tumefaciens can transfer virtually any DNA sequence of interest to model plants and crops. This has made Agrobacterium-mediated transformation (AMT) one of the most commonly used tools in agricultural biotechnology. Understanding AMT, and its functional consequences, is of fundamental importance given that it sits at the intersection of many fundamental fields of study, including plant-microbe interactions, DNA repair/genome stability, and epigenetic regulation of gene expression. Despite extensive research and use of AMT over the last 40 years, the extent of genomic disruption associated with integrating exogenous DNA into plant genomes using this method remains underappreciated. However, new technologies like long-read sequencing make this disruption more apparent, complementing previous findings from multiple research groups that have tackled this question in the past. In this review, we cover progress on the molecular mechanisms involved in Agrobacterium-mediated DNA integration into plant genomes. We also discuss localized mutations at the site of insertion and describe the structure of these DNA insertions, which can range from single copy insertions to large concatemers, consisting of complex DNA originating from different sources. Finally, we discuss the prevalence of large-scale genomic rearrangements associated with the integration of DNA during AMT with examples. Understanding the intended and unintended effects of AMT on genome stability is critical to all plant researchers who use this methodology to generate new genetic variants.
Collapse
Affiliation(s)
- Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Lauren Dickinson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
- Yale Cancer Center, Yale School of Medicine; New Haven, Connecticut 06511, USA
| |
Collapse
|
2
|
Zhou ZL, Wang GY, Wang XL, Huang XJ, Zhu ZS, Wang LL, Yang YP, Duan YW. Flower color polymorphism of a wild Iris on the Qinghai-Tibet plateau. BMC PLANT BIOLOGY 2023; 23:633. [PMID: 38066415 PMCID: PMC10709947 DOI: 10.1186/s12870-023-04642-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Flower color plays a crucial role in attracting pollinators and facilitating environmental adaptation. Investigating the causes of flower color polymorphism and understanding their potential effects on both ecology and genetics can enhance our understanding of flower color polymorphism in wild plant. RESULTS In this study, we examined the differences of potential male and female fitness between purple- and yellow- flower individuals in Iris potaninii on the Qinghai-Tibet Plateau, and screened key genes and positively selective genes involved in flower color change. Our results showed that yellow flower exhibited a higher pollen-to-ovule ratio. Yellow flowers were derived from purple flowers due to the loss of anthocyanins, and F3H could be an essential gene affecting flower color variation though expression regulation and sequence polymorphism in this species. Furthermore, our findings suggest that genes positively selected in yellow-flowered I. potaninii might be involved in nucleotide excision repair and plant-pathogen interactions. CONCLUSIONS These results suggest that F3H induces the flower color variation of Iris potaninii, and the subsequent ecological and additive positive selection on yellow flowers may further enhance plant adaptations to alpine environments.
Collapse
Affiliation(s)
- Zhi-Li Zhou
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Guang-Yan Wang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xi-Long Wang
- Tibet Plateau Institute of Biology, Lhasa, Xizang, 850001, China
| | - Xiao-Juan Huang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Zhang-Shichang Zhu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lin-Lin Wang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yong-Ping Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - Yuan-Wen Duan
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
3
|
Li Y, Guo G, Xu H, He T, Zong Y, Zhang S, Faheem M, Lu R, Zhou L, Liu C. Comparative transcriptome analysis reveals compatible and recalcitrant genotypic response of barley microspore-derived embryogenic callus toward Agrobacterium infection. BMC PLANT BIOLOGY 2021; 21:579. [PMID: 34876002 PMCID: PMC8650547 DOI: 10.1186/s12870-021-03346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND The Agrobacterium mediated transformation has been routinely used in lots of plant species as a powerful tool to deliver genes of interest into a host plant. However, the transformation of elite and commercially valuable cultivar is still limited by the genotype-dependency, and the efficiency of Agrobacterium infection efficiency is crucial for the success of transformation. RESULTS In this study, the microspore-derived embryogenic calli (MDEC) of barley elite cultivars and breeding lines were employed as unique subjects to characterize the genotypic response during Agrobacterium infection process. Our results identified compatible barley genotypes (GanPi 6 and L07, assigned as GP6-L07 group) and one recalcitrant genotype (Hong 99, assigned as H99) for the Agrobacterium strain LBA4404 infection using GUS assay. The accumulation trend of reactive oxygen species (ROS) was similar among genotypes across the time course. The results of RNA-seq depicted that the average expressional intensity of whole genomic genes was similar among barley genotypes during Agrobacterium infection. However, the numbers of differentially expressed genes (DEGs) exhibited significant expressional variation between GP6-L07 and H99 groups from 6 to 12 h post-inoculation (hpi). Gene ontology (GO) enrichment analysis revealed different regulation patterns for the predicted biological processes between the early (up-regulated DEGs overrepresented at 2 hpi) and late stages (down-regulated DEGs overrepresented from 6 to 24 hpi) of infection. KEGG analysis predicted 12 pathways during Agrobacterium infection. Among which one pathway related to pyruvate metabolism was enriched in GP6 and L07 at 6 hpi. Two pathways related to plant hormone signal transduction and DNA replication showed expressional variation between GP6-L07 and H99 at 24 hpi. It was further validated by qRT-PCR assay for seven candidate genes (Aldehyde dehydrogenase, SAUR, SAUR50, ARG7, Replication protein A, DNA helicase and DNA replication licensing factor) involved in the three pathways, which are all up-regulated in compatible while down-regulated in recalcitrant genotypes, suggesting the potential compatibility achieved at later stage for the growth of Agrobacterium infected cells. CONCLUSIONS Our findings demonstrated the similarity and difference between compatible and recalcitrant genotypes of barley MDEC upon Agrobacterium infection. Seven candidate genes involved in pyruvate metabolism, hormonal signal transduction and DNA replication were identified, which advocates the genotypic dependency during Agrobacterium infection process.
Collapse
Affiliation(s)
- Yingbo Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Guimei Guo
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Hongwei Xu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Ting He
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Yingjie Zong
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Shuwei Zhang
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | | | - Ruiju Lu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Longhua Zhou
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China.
| | - Chenghong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China.
| |
Collapse
|
4
|
Gong W, Zhou Y, Wang R, Wei X, Zhang L, Dai Y, Zhu Z. Analysis of T-DNA integration events in transgenic rice. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153527. [PMID: 34563791 DOI: 10.1016/j.jplph.2021.153527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Agrobacterium-mediated plant transformation has been widely used for introducing transgene(s) into a plant genome and plant breeding. However, our understanding of T-DNA integration into rice genome remains limited relative to that in the model dicot Arabidopsis. To better elucidate the T-DNA integration into the rice genome, we investigated extensively the T-DNA ends and their flanking rice genomic sequences from two transgenic rice plants carrying Cowpea Trypsin Inhibitor (CpTI)-derived gene Signal-CpTI-KDEL (SCK) and Bacillus thuringiensis (BT) gene, respectively, by TAIL-PCR method. Analysis of the junction sequences between the T-DNA ends and rice genome DNA indicated that there were three joining patterns of microhomology, filler DNA sequences, and exact joining, and both the T-DNA ends tend to adopt identical manner to join the rice genome. After T-DNA integration, there were several variations of rice genomic sequences, including small deletions at the integration sites, superfluous DNA inserted between T-DNA and genome, and translocation of genomic DNA in the flanking regions. The translocation block could be from a noncontiguous region in the same chromosome or different chromosomes at the integration sites, and the originating position of the translocated block resulted in comparable deletion based on a cut/paste mechanism rather than a replication mechanism. Our study may lead to a better understand of T-DNA integration mechanism and facilitate functional genomic studies and further crop improvement.
Collapse
Affiliation(s)
- Wankui Gong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - Yun Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Rui Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; Public Health Emergency Center, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Xiaoli Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Dai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Jin X, Hapsari ND, Lee S, Jo K. DNA binding fluorescent proteins as single-molecule probes. Analyst 2020; 145:4079-4095. [DOI: 10.1039/d0an00218f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA binding fluorescent proteins are useful probes for a broad range of biological applications.
Collapse
Affiliation(s)
- Xuelin Jin
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| | - Natalia Diyah Hapsari
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
- Chemistry Education Program
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| |
Collapse
|
6
|
Pereman I, Melamed-Bessudo C, Dahan-Meir T, Herz E, Elbaum M, Levy AA. Single Molecule Imaging of T-DNA Intermediates Following Agrobacterium tumefaciens Infection in Nicotiana benthamiana. Int J Mol Sci 2019; 20:ijms20246209. [PMID: 31835367 PMCID: PMC6940882 DOI: 10.3390/ijms20246209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Plant transformation mediated by Agrobacterium tumefaciens is a well-studied phenomenon in which a bacterial DNA fragment (T-DNA), is transferred to the host plant cell, as a single strand, via type IV secretion system and has the potential to reach the nucleus and to be integrated into its genome. While Agrobacterium-mediated transformation has been widely used for laboratory-research and in breeding, the time-course of its journey from the bacterium to the nucleus, the conversion from single- to double-strand intermediates and several aspects of the integration in the genome remain obscure. In this study, we sought to follow T-DNA infection directly using single-molecule live imaging. To this end, we applied the LacO-LacI imaging system in Nicotiana benthamiana, which enabled us to identify double-stranded T-DNA (dsT-DNA) molecules as fluorescent foci. Using confocal microscopy, we detected progressive accumulation of dsT-DNA foci in the nucleus, starting 23 h after transfection and reaching an average of 5.4 and 8 foci per nucleus at 48 and 72 h post-infection, respectively. A time-course diffusion analysis of the T-DNA foci has demonstrated their spatial confinement.
Collapse
Affiliation(s)
- Idan Pereman
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
- Migal, Galilee Research Institute, Kiryat Shmona 11016, Israel
- Correspondence: (I.P.); (M.E); (A.A.L.)
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Dahan-Meir
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad Herz
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Correspondence: (I.P.); (M.E); (A.A.L.)
| | - Avraham A. Levy
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
- Correspondence: (I.P.); (M.E); (A.A.L.)
| |
Collapse
|
7
|
The Mechanism of T-DNA Integration: Some Major Unresolved Questions. Curr Top Microbiol Immunol 2018; 418:287-317. [DOI: 10.1007/82_2018_98] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Shilo S, Tripathi P, Melamed-Bessudo C, Tzfadia O, Muth TR, Levy AA. T-DNA-genome junctions form early after infection and are influenced by the chromatin state of the host genome. PLoS Genet 2017; 13:e1006875. [PMID: 28742090 PMCID: PMC5546698 DOI: 10.1371/journal.pgen.1006875] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/07/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022] Open
Abstract
Agrobacterium tumefaciens mediated T-DNA integration is a common tool for plant genome manipulation. However, there is controversy regarding whether T-DNA integration is biased towards genes or randomly distributed throughout the genome. In order to address this question, we performed high-throughput mapping of T-DNA-genome junctions obtained in the absence of selection at several time points after infection. T-DNA-genome junctions were detected as early as 6 hours post-infection. T-DNA distribution was apparently uniform throughout the chromosomes, yet local biases toward AT-rich motifs and T-DNA border sequence micro-homology were detected. Analysis of the epigenetic landscape of previously isolated sites of T-DNA integration in Kanamycin-selected transgenic plants showed an association with extremely low methylation and nucleosome occupancy. Conversely, non-selected junctions from this study showed no correlation with methylation and had chromatin marks, such as high nucleosome occupancy and high H3K27me3, that correspond to three-dimensional-interacting heterochromatin islands embedded within euchromatin. Such structures may play a role in capturing and silencing invading T-DNA. Agrobacterium tumefaciens mediated T-DNA integration is an important tool for genetic engineering in plants. This work compares the genetic and epigenetic landscapes of T-DNA-genome junctions under selective and non-selective conditions. Under selection, preferential junctions in low-nucleosome occupancy and hypomethylated regions were found. In the absence of selection, these biases disappeared and T-DNA-genome junctions were uniformly distributed with a preference for 3D-interacting heterochromatin islands embedded within euchromatin, suggesting that many integration events become transcriptionally inactive.
Collapse
Affiliation(s)
- Shay Shilo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Pooja Tripathi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant Pathology, Volcani Center-ARO, Bet-Dagan, Israel
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Tzfadia
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant Systems Biology, VIB, Technologiepark 927, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, Ghent, Belgium
| | - Theodore R. Muth
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- CUNY Brooklyn College, Department of Biology, Brooklyn, NY, United States of America
- * E-mail: (TRM); (AAL)
| | - Avraham A. Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TRM); (AAL)
| |
Collapse
|
9
|
Hu Y, Chen Z, Zhuang C, Huang J. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:954-965. [PMID: 28244154 DOI: 10.1111/tpj.13523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities.
Collapse
Affiliation(s)
- Yufei Hu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyu Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, 510642, China
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Affiliation(s)
- Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
11
|
Abstract
Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.
Collapse
|