1
|
Zhou Z, Fang C, Yu F, Shen Y, Xu H, Li H, Zhang Y. Visualization of cysteine in AD mouse with a high-quantum yield NIR fluorescent probe. Talanta 2024; 278:126482. [PMID: 38950502 DOI: 10.1016/j.talanta.2024.126482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) has gradually received enthusiastic attention with the aging process, and studying its biological relevance is expected. Excitingly, fluorescence probes were considered to be powerful tools for exploring biological correlations. Therefore, a highly selective near-infrared (NIR) fluorescent probe (DCM-Cl-Acr) for imaging cysteine (Cys) in AD was designed and synthesized. Through structural optimization, the probe exhibited high fluorescence quantum yield and low detection limit (20 nM) towards Cys. Meanwhile, based on the high selectivity and high sensitivity response exhibited by the probe to Cys, it was successfully applied to visualize endogenous and exogenous Cys in living cells and zebrafish, and showed good discrimination from homocysteine (Hcy) and glutathione (GSH). Further, the correlation between AD and Cys concentration was clarified by imaging studies in hippocampus tissue of AD mouse, and the abnormal accumulation of Cys in the hippocampus of AD brain was demonstrated.
Collapse
Affiliation(s)
- Zile Zhou
- Key Laboratory of Water Treatment Functional Materials (Hunan Provincial), Engineering Research Center of Hunan Province for Recycling Technology of Electroplating Wastewater, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Cong Fang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Feiju Yu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Youming Shen
- Key Laboratory of Water Treatment Functional Materials (Hunan Provincial), Engineering Research Center of Hunan Province for Recycling Technology of Electroplating Wastewater, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Hai Xu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
2
|
The RNA-binding protein repertoire of Arabidopsis thaliana. Sci Rep 2016; 6:29766. [PMID: 27405932 PMCID: PMC4942612 DOI: 10.1038/srep29766] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/08/2016] [Indexed: 12/28/2022] Open
Abstract
RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category 'RNA-binding', have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.
Collapse
|
3
|
Sun Y, Zerges W. Translational regulation in chloroplasts for development and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:809-20. [PMID: 25988717 DOI: 10.1016/j.bbabio.2015.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022]
Abstract
Chloroplast genomes encode 100-200 proteins which function in photosynthesis, the organellar genetic system, and other pathways and processes. These proteins are synthesized by a complete translation system within the chloroplast, with bacterial-type ribosomes and translation factors. Here, we review translational regulation in chloroplasts, focusing on changes in translation rates which occur in response to requirements for proteins encoded by the chloroplast genome for development and homeostasis. In addition, we delineate the developmental and physiological contexts and model organisms in which translational regulation in chloroplasts has been studied. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Yi Sun
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada
| | - William Zerges
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
4
|
Idoine AD, Boulouis A, Rupprecht J, Bock R. The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii. PLoS One 2014; 9:e108760. [PMID: 25272288 PMCID: PMC4182738 DOI: 10.1371/journal.pone.0108760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022] Open
Abstract
Chloroplasts are derived from cyanobacteria and have retained a bacterial-type genome and gene expression machinery. The chloroplast genome encodes many of the core components of the photosynthetic apparatus in the thylakoid membranes. To avoid photooxidative damage and production of harmful reactive oxygen species (ROS) by incompletely assembled thylakoid protein complexes, chloroplast gene expression must be tightly regulated and co-ordinated with gene expression in the nucleus. Little is known about the control of chloroplast gene expression at the genome-wide level in response to internal rhythms and external cues. To obtain a comprehensive picture of organelle transcript levels in the unicellular model alga Chlamydomonas reinhardtii in diurnal conditions, a qRT-PCR platform was developed and used to quantify 68 chloroplast, 21 mitochondrial as well as 71 nuclear transcripts in cells grown in highly controlled 12 h light/12 h dark cycles. Interestingly, in anticipation of dusk, chloroplast transcripts from genes involved in transcription reached peak levels first, followed by transcripts from genes involved in translation, and finally photosynthesis gene transcripts. This pattern matches perfectly the theoretical demands of a cell “waking up” from the night. A similar trend was observed in the nuclear transcripts. These results suggest a striking internal logic in the expression of the chloroplast genome and a previously unappreciated complexity in the regulation of chloroplast genes.
Collapse
Affiliation(s)
- Adam D. Idoine
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Alix Boulouis
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Jens Rupprecht
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
- * E-mail:
| |
Collapse
|
5
|
Salvador ML, Suay L, Klein U. Messenger RNA degradation is initiated at the 5' end and follows sequence- and condition-dependent modes in chloroplasts. Nucleic Acids Res 2011; 39:6213-22. [PMID: 21507888 PMCID: PMC3152361 DOI: 10.1093/nar/gkr226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using reporter gene constructs, consisting of the bacterial uidA (GUS) coding region flanked by the 5′ and 3′ regions of the Chlamydomonas rbcL and psaB genes, respectively, we studied the degradation of mRNAs in the chloroplast of Chlamydomonas reinhardtii in vivo. Extending the 5′ terminus of transcripts of the reporter gene by more than 6 nucleotides triggered rapid degradation. Placing a poly(G) tract, known to pause exoribonucleases, in various positions downstream of the 5′ terminus blocked rapid degradation of the transcripts. In all these cases the 5′ ends of the accumulating GUS transcripts were found to be trimmed to the 5′ end of the poly(G) tracts indicating that a 5′→3′ exoribonuclease is involved in the degradation process. Several unstable variants of the GUS transcript could not be rescued from rapid degradation by a poly(G) tract showing that sequence/structure-dependent modes of mRNA breakdown exist in the Chlamydomonas chloroplast. Furthermore, degradation of poly(G)-stabilized transcripts that accumulated in cells maintained in the dark could be augmented by illuminating the cells, implying a photo-activated mode of mRNA degradation that is not blocked by a poly(G) tract. These results suggest sequence- and condition-dependent 5′→3′ mRNA-degrading pathways in the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- Maria L Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, Dr Moliner 50, Burjassot, Valencia 46100, Spain
| | | | | |
Collapse
|
6
|
Mehrotra S, Trivedi PK, Sethuraman A, Mehrotra R. The rbcL gene of Populus deltoides has multiple transcripts and is redox-regulated in vitro. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:466-73. [PMID: 20817342 DOI: 10.1016/j.jplph.2010.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/01/2010] [Accepted: 08/01/2010] [Indexed: 05/25/2023]
Abstract
We report the discovery of three types of transcripts for the gene encoding large subunit of Rubisco (rbcL) from chloroplast genome of Populus deltoides, an angiospermic tree. While the larger two transcripts are in confirmation with reported transcripts for other rbcL genes as far as the 5' ends are concerned, the third transcript is unique since it lacks the consensus ribosome-binding site. We also report the molecular weights of several proteins interacting with the 5' untranslated region of the same mRNA and that the RNA-protein interaction in vitro is influenced by redox reagents.
Collapse
Affiliation(s)
- Sandhya Mehrotra
- Chamber No. 3222 Q, Faculty Division III, Biosciences Group, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | | | | | | |
Collapse
|
7
|
Walter M, Piepenburg K, Schöttler MA, Petersen K, Kahlau S, Tiller N, Drechsel O, Weingartner M, Kudla J, Bock R. Knockout of the plastid RNase E leads to defective RNA processing and chloroplast ribosome deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:851-63. [PMID: 21105931 DOI: 10.1111/j.1365-313x.2010.04377.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ribonuclease E (RNase E) represents a key enzyme in bacterial RNA metabolism. It plays multifarious roles in RNA processing and also initiates degradation of mRNA by endonucleolytic cleavage. Plastids (chloroplasts) are derived from formerly free-living bacteria and have largely retained eubacterial gene expression mechanisms. Here we report the functional characterization of a chloroplast RNase E that is encoded by a single-copy nuclear gene in the model plant Arabidopsis thaliana. Analysis of knockout plants revealed that, unlike in bacteria, RNase E is not essential for survival. Absence of RNase E results in multiple defects in chloroplast RNA metabolism. Most importantly, polycistronic precursor transcripts overaccumulate in the knockout plants, while several mature monocistronic mRNAs are strongly reduced, suggesting an important function of RNase E in intercistronic processing of primary transcripts from chloroplast operons. We further show that disturbed maturation of a transcript encoding essential ribosomal proteins results in plastid ribosome deficiency and, therefore, provides a molecular explanation for the observed mutant phenotype.
Collapse
Affiliation(s)
- Michael Walter
- Institut für Botanik, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ogrzewalla K, Piotrowski M, Reinbothe S, Link G. The plastid transcription kinase from mustard (Sinapis alba
L.). ACTA ACUST UNITED AC 2009. [DOI: 10.1046/j.1432-1033.2002.03017_269_13.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Gentz PM, Blatch GL, Dorrington RA. Dimerization of the yeast eukaryotic translation initiation factor 5A requires hypusine and is RNA dependent. FEBS J 2009; 276:695-706. [PMID: 19120453 DOI: 10.1111/j.1742-4658.2008.06817.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Post-translational modification of the highly conserved K51 residue of the Saccharomyces cerevisiae eukaryotic translation initiation factor 5A (eIF5A) to form hypusine, is essential for its many functions including the binding of specific mRNAs. We characterized hypusinated yeast eIF5A by size-exclusion chromatography and native PAGE, showing that the protein exists as a homodimer. A K51R mutant, which was not functional in vivo eluted as a monomer and inhibition of hypusination abolished dimerization. Furthermore, treatment of dimeric eIF5A with RNase A resulted in disruption of the dimer, leading us to conclude that RNA binding is also required for dimerization of eIF5A. We present a model of dimerization, based on the Neurospora crassa structural analogue, HEX-1.
Collapse
Affiliation(s)
- Petra M Gentz
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | |
Collapse
|
10
|
Wobbe L, Schwarz C, Nickelsen J, Kruse O. Translational control of photosynthetic gene expression in phototrophic eukaryotes. PHYSIOLOGIA PLANTARUM 2008; 133:507-15. [PMID: 18346070 DOI: 10.1111/j.1399-3054.2008.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
It is getting more and more evident that photosynthetic gene expression is fine-tuned by translation regulation factors encoded in the nucleus of photosynthetic cells. The research of the past decades led to the identification of several nucleus-encoded protein factors that recognize cis-acting elements in plastid transcripts, thereby modulating the stoichiometry and abundance of photosynthetic multisubunit complexes. Despite of its importance for photoacclimatory processes, the investigation of pathways that regulate translation of nuclear-encoded photosynthetic genes is still in its infancy. This review summarizes the yet known paradigms of translation control in chloroplast and cytosol of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Lutz Wobbe
- Algae BioTech Group, Department of Biology, University of Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
11
|
Redox Regulation of Chloroplast Gene Expression. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Brosch M, Krause K, Falk J, Krupinska K. Analysis of gene expression in amyloplasts of potato tubers. PLANTA 2007; 227:91-9. [PMID: 17710432 DOI: 10.1007/s00425-007-0597-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 07/19/2007] [Indexed: 05/08/2023]
Abstract
Gene expression in amyloplasts derived from potato tubers was analyzed at the levels of transcription, mRNA accumulation and formation of polysomes. Compared with chloroplasts, overall transcriptional activity is considerably reduced in amyloplasts. Nevertheless, several transcripts are synthesized in amyloplasts during growth of tubers. Among the transcribed amyloplast genes are the ribosomal operon and the psbA gene. Primer extension analysis provided evidence that in amyloplasts the plastid encoded RNA polymerase (PEP) is the principal RNA polymerase involved in the transcription of the rrn operon. Analysis of plastid steady state transcripts showed that there are only small differences in the levels of specific transcripts between amyloplasts and chloroplasts. With respect to the low transcription rate of the accumulating RNA-species in amyloplasts, a high stability of these transcripts is obvious. Though amyloplasts possess polysomes, specific mRNAs associated with such polysomes could not be detected. This suggests that translation could be impaired in amyloplasts, which, in turn, implies that these organelles are not suitable targets for the expression of transgenes introduced into the plastid genome by plastid transformation.
Collapse
Affiliation(s)
- Mario Brosch
- Department of General Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | | | | | | |
Collapse
|
13
|
Marín-Navarro J, Manuell AL, Wu J, P Mayfield S. Chloroplast translation regulation. PHOTOSYNTHESIS RESEARCH 2007; 94:359-74. [PMID: 17661159 DOI: 10.1007/s11120-007-9183-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5' UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.
Collapse
Affiliation(s)
- Julia Marín-Navarro
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
14
|
Transcription and transcriptional regulation in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0232] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Pfannschmidt T, Liere K. Redox regulation and modification of proteins controlling chloroplast gene expression. Antioxid Redox Signal 2005; 7:607-18. [PMID: 15890004 DOI: 10.1089/ars.2005.7.607] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chloroplasts are typical organelles of plant cells and represent the site of photosynthesis. As one very remarkable feature, they possess their own genome and a complete machinery to express the genetic information in it. The plastid gene expression machinery is a unique assembly of prokaryotic-, eukaryotic-, and phage-like components because chloroplasts acquired a great number of regulatory proteins during evolution. Such proteins can be found at all levels of gene expression. They significantly expand the functional and especially the regulatory properties of the "old" gene expression system that chloroplasts inherited from their prokaryotic ancestors. Recent results show that photosynthesis has a strong regulatory effect on plastid gene expression. The redox states of electron transport components, redox-active molecules coupled to photosynthesis, and pools of reactive oxygen species act as redox signals. They provide a functional feedback control, which couples the expression of chloroplast genes to the actual function of photosynthesis and, by this means, helps to acclimate the photosynthetic process to environmental cues. The redox signals are mediated by various specific signaling pathways that involve many of the "new" regulatory proteins. Chloroplasts therefore are an ideal model to study redox-regulated mechanisms in gene expression control. Because of the multiple origins of the expression machinery, these observations are of great relevance for many other biological systems.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Department for General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | | |
Collapse
|
16
|
Mahalingam R, Shah N, Scrymgeour A, Fedoroff N. Temporal evolution of the Arabidopsis oxidative stress response. PLANT MOLECULAR BIOLOGY 2005; 57:709-30. [PMID: 15988565 DOI: 10.1007/s11103-005-2860-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Accepted: 02/26/2005] [Indexed: 05/03/2023]
Abstract
We have carried out a detailed analysis of the changes in gene expression levels in Arabidopsis thaliana ecotype Columbia (Col-0) plants during and for 6 h after exposure to ozone (O3) at 350 parts per billion (ppb) for 6 h. This O3 exposure is sufficient to induce a marked transcriptional response and an oxidative burst, but not to cause substantial tissue damage in Col-0 wild-type plants and is within the range encountered in some major metropolitan areas. We have developed analytical and visualization tools to automate the identification of expression profile groups with common gene ontology (GO) annotations based on the sub-cellular localization and function of the proteins encoded by the genes, as well as to automate promoter analysis for such gene groups. We describe application of these methods to identify stress-induced genes whose transcript abundance is likely to be controlled by common regulatory mechanisms and summarized our findings in a temporal model of the stress response.
Collapse
Affiliation(s)
- Ramamurthy Mahalingam
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | |
Collapse
|
17
|
Erickson B, Stern DB, Higgs DC. Microarray analysis confirms the specificity of a Chlamydomonas reinhardtii chloroplast RNA stability mutant. PLANT PHYSIOLOGY 2005; 137:534-44. [PMID: 15665248 PMCID: PMC1065354 DOI: 10.1104/pp.104.053256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The expression of chloroplast and mitochondrial genes depends on nucleus-encoded proteins, some of which control processing, stability, and/or translation of organellar RNAs. To test the specificity of one such RNA stability factor, we used two known Chlamydomonas reinhardtii nonphotosynthetic mutants carrying mutations in the Mcd1 nuclear gene (mcd1-1 and mcd1-2). We previously reported that these mutants fail to accumulate the chloroplast petD mRNA and its product, subunit IV of the cytochrome b6/f complex, which is essential for photosynthesis. Such mutants are generally presumed to be gene specific but are not tested rigorously. Here, we have used microarray analysis to assess changes in chloroplast, mitochondrial, and nuclear RNAs, and since few other RNAs were significantly altered in these mutants, conclude that Mcd1 is indeed specifically required for petD mRNA accumulation. In addition, a new unlinked nuclear mutation was discovered in mcd1-2, which greatly reduced chloroplast atpA mRNA accumulation. Genetic analyses showed failure to complement mda1-ncc1, where atpA-containing transcripts are similarly affected (D. Drapier, J. Girard-Bascou, D.B. Stern, F.-A. Wollman [2002] Plant J 31: 687-697), and we have named this putative new allele mda1-2. We conclude that DNA microarrays are efficient and useful for characterizing the specificity of organellar RNA accumulation mutants.
Collapse
Affiliation(s)
- Brian Erickson
- Department of Biological Sciences, University of Wisconsin, Parkside, Kenosha, Wisconsin 53141, USA
| | | | | |
Collapse
|
18
|
Abstract
Initially discovered in the context of photosynthesis, regulation by change in the redox state of thiol groups (S-S <--> 2SH) is now known to occur throughout biology. Several systems, each linking a hydrogen donor to an intermediary disulfide protein, act to effect changes that alter the activity of target proteins: the ferredoxin/thioredoxin system, comprised of reduced ferredoxin, a thioredoxin, and the enzyme, ferredoxin-thioredoxin reductase; the NADP/thioredoxin system, including NADPH, a thioredoxin, and NADP-thioredoxin reductase; and the glutathione/glutaredoxin system, composed of reduced glutathione and a glutaredoxin. A related disulfide protein, protein disulfide isomerase (PDI) acts in protein assembly. Regulation linked to plastoquinone and signaling induced by reactive oxygen species (ROS) and other agents are also being actively investigated. Progress made on these systems has linked redox to the regulation of an increasing number of processes not only in plants, but in other types of organisms as well. Research in areas currently under exploration promises to provide a fuller understanding of the role redox plays in cellular processes, and to further the application of this knowledge to technology and medicine.
Collapse
Affiliation(s)
- Bob B Buchanan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
19
|
Shiina T, Tsunoyama Y, Nakahira Y, Khan MS. Plastid RNA polymerases, promoters, and transcription regulators in higher plants. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:1-68. [PMID: 16157177 DOI: 10.1016/s0074-7696(05)44001-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plastids are semiautonomous plant organelles exhibiting their own transcription-translation systems that originated from a cyanobacteria-related endosymbiotic prokaryote. As a consequence of massive gene transfer to nuclei and gene disappearance during evolution, the extant plastid genome is a small circular DNA encoding only ca. 120 genes (less than 5% of cyanobacterial genes). Therefore, it was assumed that plastids have a simple transcription-regulatory system. Later, however, it was revealed that plastid transcription is a multistep gene regulation system and plays a crucial role in developmental and environmental regulation of plastid gene expression. Recent molecular and genetic approaches have identified several new players involved in transcriptional regulation in plastids, such as multiple RNA polymerases, plastid sigma factors, transcription regulators, nucleoid proteins, and various signaling factors. They have provided novel insights into the molecular basis of plastid transcription in higher plants. This review summarizes state-of-the-art knowledge of molecular mechanisms that regulate plastid transcription in higher plants.
Collapse
Affiliation(s)
- Takashi Shiina
- Faculty of Human Environment, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | |
Collapse
|
20
|
Lezhneva L, Meurer J. The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:740-753. [PMID: 15144376 DOI: 10.1111/j.1365-313x.2004.02081.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The high chlorophyll fluorescence (hcf)145 mutant of Arabidopsis thaliana is specifically affected in photosystem (PS)I function as judged from spectroscopic analysis of PSII and PSI activity. The defect is because of a severe deficiency of PSI core subunits, whereas levels of the four outer antenna subunits of PSI were less reduced in hcf145. Pulse labelling of chloroplast proteins indicated that synthesis of the two largest PSI reaction-centre polypeptides, Psa (photosystem I subunit) A and PsaB, is significantly affected by the mutation. A comparison of stationary transcript levels with rates of transcription demonstrates that hcf145 induces a decreased stability and, probably, transcription of the tricistronic psaA-psaB-rps (small-subunit ribosomal protein)14 mRNA, which is generated by the plastid-encoded RNA polymerase. Translation inhibition experiments excluded translational defects as primary cause of impaired mRNA stability. Larger primary transcripts, which also contain sequences of the ycf3 (hypothetical chloroplast reading frame) gene located upstream of the psaA-psaB-rps14 operon and generated by the action of the nuclear-encoded RNA polymerase, are not targeted by the mutation. Real-time reverse transcription (RT)-PCR analysis has successfully been applied to quantify defined intervals of the tricistronic transcript and it was established that the psaA region is less stable than the rps14 region in hcf145. The hcf145 gene has been mapped on the upper part of chromosome 5.
Collapse
Affiliation(s)
- Lina Lezhneva
- Department Biologie I, Ludwig-Maximilians-Universität, Botanik, Menzingerstr. 67, 80638 München, Germany
| | | |
Collapse
|
21
|
Sakaguchi S, Fukuda T, Takano H, Ono K, Takio S. Photosynthetic Electron Transport Differentially Regulates the Expression of Superoxide Dismutase Genes in Liverwort, Marchantia paleacea var. diptera. ACTA ACUST UNITED AC 2004; 45:318-24. [PMID: 15047880 DOI: 10.1093/pcp/pch039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Liverwort, Marchantia paleacea var. diptera, contains Mn-superoxide dismutase (Mn-SOD) in mitochondria, Fe-SOD in chloroplast and CuZn-SOD in cytosol. An Mn-SOD gene (MpMnSOD) was isolated from the liverwort. Using this clone together with the liverwort Fe-SOD and CuZn-SOD genes as probes, the expression of three SOD genes was investigated. Under heterotrophic conditions, the transcript of three SOD genes was accumulated light independently. On the other hand, under photoautotrophic conditions, the transcript levels of Fe-SOD and Mn-SOD increased in the light while that of CuZn-SOD decreased. The reverse occurred in the dark. In contrast to the transcript level, the activity of the three SODs was barely affected by light. The transcription inhibitor, cordycepin, inhibited either the light-promoted accumulation of Fe-SOD and Mn-SOD transcript or the light-induced reduction of the CuZn-SOD transcript. Photosynthetic electron transport inhibitors, DCMU and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, inhibited the photo-response in three SOD genes. These results suggest that the transcript abundance of three SOD genes in liverwort is regulated by photosynthetic electron transport but the mechanism regulating the transcript abundance of the CuZn-SOD gene is different from that of the Fe-SOD and Mn-SOD genes.
Collapse
Affiliation(s)
- Shiho Sakaguchi
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555 Japan
| | | | | | | | | |
Collapse
|
22
|
Herrin DL, Nickelsen J. Chloroplast RNA processing and stability. PHOTOSYNTHESIS RESEARCH 2004; 82:301-14. [PMID: 16143842 DOI: 10.1007/s11120-004-2741-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 03/18/2004] [Indexed: 05/04/2023]
Abstract
Primary chloroplast transcripts are processed in a number of ways, including intron splicing, internal cleavage of polycistronic RNAs, and endonucleolytic or exonucleolytic cleavages at the transcript termini. All chloroplast RNAs are also subject to degradation, although a curious feature of many chloroplast mRNAs is their relative longevity. Some of these processes, e.g., psbA splicing and stability of a number of chloroplast mRNAs, are regulated in response to light-dark cycles or nutrient availability. This review highlights recent advances in our understanding of these processes in the model organism Chlamydomonas reinhardtii, focusing on results since the extensive reviews published in 1998 [Herrin DL et al. 1998 (pp. 183-195), Nickelsen Y 1998 (pp. 151-163), Stern DB and Drager RG 1998 (pp. 164-182), in Rochaix JD et al. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Kluwer Academic Publishers, Dordrecht, The Netherlands]. We also allude to studies with other organisms, and to the potential impact of the Chlamydomonas genome project where appropriate.
Collapse
Affiliation(s)
- David L Herrin
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, 1 University Station A6700, Austin, TX, 78712, USA,
| | | |
Collapse
|
23
|
Abstract
The ability to couple photosynthetic electron transport and redox poise to plastid gene expression enables plants to respond to environmental conditions and coordinate nuclear and chloroplast activities in order to maintain photosynthetic efficiency. The plastid redox regulatory system serves as a paradigm for understanding redox-regulated gene expression. In this review, we will focus on posttranscriptional events of redox-regulated gene expression in the chloroplast. As redox regulation of enzymatic activities in the chloroplast will be covered in other reviews in this volume, as will discussions on the redox regulation of chloroplast transcription, we will concentrate on the available evidence for redox regulation of chloroplast translation, and mRNA splicing and turnover.
Collapse
Affiliation(s)
- Dwight Barnes
- Department of Cell Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
24
|
Abstract
Chloroplasts are the important plant cell organelles where photosynthesis takes place. Throughout this process, reaction center proteins are degraded and subsequently replenished by redox-responsive gene expression. In addition to well defined posttranscriptional mechanisms at the RNA and protein level, the transcription of chloroplast DNA into RNA precursors has been a focal point of studies in this area. Evidence has become available for a central role of a redox-responsive protein kinase named plastid transcription kinase (PTK) because of its association with the chloroplast transcription complex. The recent cloning of the PTK gene has resulted in a full-length cDNA for a protein related to the catalytic alpha subunit of nucleocytoplasmic casein kinase (CK2), yet with an additional chloroplast transit peptide. The corresponding protein, termed cpCK2alpha, was shown to be associated with the major organellar RNA polymerase, PEP-A. Both authentic PTK and recombinant cpCK2alpha have comparable general properties in vitro, and both are subject to regulation by the redox-reactive reagent glutathione. Based on the physical and functional equivalence, it is anticipated that the cloned protein can help clarify the functional role of the transcription kinase in vivo, including the identification of interaction partners at the interface between photosynthetic redox signaling and gene expression.
Collapse
Affiliation(s)
- Gerhard Link
- Department of Plant Cell Physiology and Molecular Biology, University of Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
25
|
Pfannschmidt T. Chloroplast redox signals: how photosynthesis controls its own genes. TRENDS IN PLANT SCIENCE 2003; 8:33-41. [PMID: 12523998 DOI: 10.1016/s1360-1385(02)00005-5] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The photosynthetic apparatus of higher plants and algae is composed of plastid- and nuclear-encoded components, therefore the expression of photosynthesis genes needs to be highly coordinated. Expression is regulated by various factors, one of the most important of which is light. Photosynthesis functions as a sensor for such light signals, and the redox state of photosynthetic electron transport components and redox-active soluble molecules act as regulating parameters. This provides a feedback response loop in which the expression of photosynthesis genes is coupled to the function of the photosynthetic process, and highlights the dual role of photosynthesis in energy fixation and the reception of environmental information.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Department of Plant Physiology, Friedrich-Schiller University of Jena, Dornburger Str. 159, Germany.
| |
Collapse
|
26
|
Dietz KJ. Redox control, redox signaling, and redox homeostasis in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:141-93. [PMID: 14667044 DOI: 10.1016/s0074-7696(03)28004-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Redox chemistry is a key feature of life. Oxidized substrates are reduced to synthesize functional molecules; reduced substrates are oxidized for energy supply. In addition, cells must fight against uncontrolled oxidation of essential constituents, a process that continuously occurs in an atmosphere of 21% O2. The redox situation is further complicated in plants with their highly reactive photosynthetic metabolism. To this end it is now well established that redox regulation is a central element in adjusting plant metabolism and development to the prevailing environmental conditions. This review introduces general redox chemistry and the main components of the cellular redox network, namely pyridine nucleotides, ascorbate, glutathione, lipoic acid, tocopherol, thioredoxins, glutaredoxins, peroxiredoxins, and other thiol proteins. Examples for redox sensing, transduction, redox-regulated enzymes and transcription, and the function of regulatory circuits are presented. Emphasis is placed on redox regulation of photosynthesis, which is the best understood metabolism governed by redox control on essentially all levels, ranging from gene transcription to translation, assembly and turnover, as well as short-term adaptation by state transition and enzyme activity. Increasing evidence shows the importance of redox regulation in the context of transport, plant development, and programmed cell death.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, W5-134, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany
| |
Collapse
|
27
|
Lilly JW, Maul JE, Stern DB. The Chlamydomonas reinhardtii organellar genomes respond transcriptionally and post-transcriptionally to abiotic stimuli. THE PLANT CELL 2002; 14:2681-706. [PMID: 12417695 PMCID: PMC152721 DOI: 10.1105/tpc.005595] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Chlamydomonas reinhardtii plastid and mitochondrial transcriptomes were surveyed for changes in RNA profiles resulting from growth in 12 culture conditions representing 8 abiotic stimuli. Organellar RNA abundance exhibited marked changes during nutrient stress and exposure to UV light, as revealed by both RNA gel blot and DNA microarray analyses. Of particular note were large increases in tufA and clpP transcript abundance during nutrient limitation. Phosphate and sulfur limitation resulted in the most global, yet opposite, effects on organellar RNA abundance, changes that were dissected further using run-on transcription assays. Removal of sulfate from the culture medium, which is known to reduce photosynthesis, resulted in 2-fold to 10-fold decreases in transcription rates, which were reflected in lower RNA abundance. The decrease in transcriptional activity was completely reversible and recovered to twice the control level after sulfate replenishment. Conversely, phosphate limitation resulted in a twofold to threefold increase in RNA abundance that was found to be a post-transcriptional effect, because it could be accounted for by increased RNA stability. This finding is consistent with the known metabolic slowdown under phosphate stress. Additionally, inhibitor studies suggested that unlike those in higher plants, Chlamydomonas chloroplasts lack a nucleus-encoded plastid RNA polymerase. The apparently single type of polymerase could contribute to the rapid and genome-wide transcriptional responses observed within the chloroplast.
Collapse
Affiliation(s)
- Jason W Lilly
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
28
|
Teramoto H, Nakamori A, Minagawa J, Ono TA. Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2002; 130:325-33. [PMID: 12226512 PMCID: PMC166565 DOI: 10.1104/pp.004622] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2002] [Revised: 03/21/2002] [Accepted: 05/02/2002] [Indexed: 05/18/2023]
Abstract
Excessive light conditions repressed the levels of mRNAs accumulation of multiple Lhc genes encoding light-harvesting chlorophyll-a/b (LHC) proteins of photosystem (PS)II in the unicellular green alga, Chlamydomonas reinhardtii. The light intensity required for the repression tended to decrease with lowering temperature or CO(2) concentration. The responses of six LhcII genes encoding the major LHC (LHCII) proteins and two genes (Lhcb4 and Lhcb5) encoding the minor LHC proteins of PSII (CP29 and CP26) were similar. The results indicate that the expression of these Lhc genes is coordinately repressed when the energy input through the antenna systems exceeds the requirement for CO(2) assimilation. The Lhc mRNA level repressed under high-light conditions was partially recovered by adding the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, suggesting that redox signaling via photosynthetic electron carriers is involved in the gene regulation. However, the mRNA level was still considerably lower under high-light than under low-light conditions even in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Repression of the Lhc genes by high light was prominent even in the mutants deficient in the reaction center(s) of PSII or both PSI and PSII. The results indicate that two alternative processes are involved in the repression of Lhc genes under high-light conditions, one of which is independent of the photosynthetic reaction centers and electron transport events.
Collapse
Affiliation(s)
- Haruhiko Teramoto
- Laboratory for Photobiology (1), Photodynamics Research Center, The Institute of Physical and Chemical Research, Sendai 980-0845, Japan
| | | | | | | |
Collapse
|
29
|
Chi-Ham CL, Keaton MA, Cannon GC, Heinhorst S. The DNA-compacting protein DCP68 from soybean chloroplasts is ferredoxin:sulfite reductase and co-localizes with the organellar nucleoid. PLANT MOLECULAR BIOLOGY 2002; 49:621-31. [PMID: 12081370 DOI: 10.1023/a:1015500431421] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The multiple copies of the chloroplast genome (plastome) are condensed and organized into nucleoids by a set of proteins. One of these, the DNA-binding protein DCP68 from soybean, has previously been shown to compact DNA and to inhibit DNA synthesis in vitro. N-terminal amino acid analysis and the absorption spectrum of the purified protein suggest that DCP68 is the siroheme protein sulfite reductase, a ferredoxin-dependent enzyme that participates in sulfur assimilation for cysteine and methionine biosynthesis. The in vivo association of this protein with chloroplast nucleoids was confirmed by immuno-colocalization with antibodies against sulfite reductase from Arabidopsis thaliana. These results suggest that DCP68 is a bifunctional chloroplast protein that participates in reductive sulfur assimilation and plays a role in organellar nucleoid organization. The fact that dephosphorylation by alkaline phosphatase affects the binding of purified DCP68 to DNA in vitro might be indicative of the way the interaction of the protein with the nucleoid is regulated in vivo.
Collapse
Affiliation(s)
- Cecilia L Chi-Ham
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg 39406-5043, USA
| | | | | | | |
Collapse
|
30
|
Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM. Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:171-88. [PMID: 12121447 DOI: 10.1046/j.1365-313x.2002.01349.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription of plastid chromosomes in vascular plants is accomplished by at least two RNA polymerases of different phylogenetic origin: the ancestral (endosymbiotic) cyanobacterial-type RNA polymerase (PEP), of which the core is encoded in the organelle chromosome, and an additional phage-type RNA polymerase (NEP) of nuclear origin. Disruption of PEP genes in tobacco leads to off-white phenotypes. A macroarray-based approach of transcription rates and of transcript patterns of the entire plastid chromosome from leaves of wild-type as well as from transplastomic tobacco lacking PEP shows that the plastid chromosome is completely transcribed in both wild-type and PEP-deficient plastids, though into polymerase-specific profiles. Different probe types, run-on transcripts, 5' or 3' labelled RNAs, as well as cDNAs, have been used to evaluate the array approach. The findings combined with Northern and Western analyses of a selected number of loci demonstrate further that frequently no correlation exists between transcription rates, transcript levels, transcript patterns, and amounts of corresponding polypeptides. Run-on transcription as well as stationary RNA concentrations may increase, decrease or remain similar between the two experimental materials, independent of the nature of the encoded gene product or of the multisubunit assembly (thylakoid membrane or ribosome). Our findings show (i) that the absence of photosynthesis-related, plastome-encoded polypeptides in PEP-deficient plants is not directly caused by a lack of transcription by PEP, and demonstrate (ii) that the functional integration of PEP and NEP into the genetic system of the plant cell during evolution is substantially more complex than presently supposed.
Collapse
Affiliation(s)
- Julia Legen
- Department für Biologie I der Ludwig-Maximilians-Universität München, Botanik, Menzingerstrasse 67, D-80638 München, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Eguchi S, Takano H, Ono K, Takio S. Photosynthetic electron transport regulates the stability of the transcript for the protochlorophyllide oxidoreductase gene in the liverwort, Marchantia paleacea var. diptera. PLANT & CELL PHYSIOLOGY 2002; 43:573-577. [PMID: 12040105 DOI: 10.1093/pcp/pcf064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The transfer of Marchantia paleacea var. diptera cells to darkness caused a reversible repression in the accumulation of transcript for a gene, por, encoding the NADPH: protochlorophyllide oxidoreductase (EC 1.3.1.33). The photosynthetic inhibitor DCMU and DBMIB repressed the accumulation in light. In the presence of transcription inhibitor cordycepin, not only incubation in the dark but also addition of DCMU or DBMIB in light stimulated the degradation of the por transcript. These findings suggest that photosynthetic electron transport is involved in regulating the stability of the por transcript.
Collapse
Affiliation(s)
- Saeko Eguchi
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555 Japan
| | | | | | | |
Collapse
|
32
|
Vranová E, Inzé D, Van Breusegem F. Signal transduction during oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2002. [PMID: 11997371 DOI: 10.1093/jxb/53.372.1227] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As an unfortunate consequence of aerobic life, active oxygen species (AOS) are formed by partial reduction of molecular oxygen. Plants possess a complex battery of enzymatic and non-enzymatic antioxidants that can protect cells from oxidative damage by scavenging AOS. It is becoming evident that AOS, which are generated during pathogen attack and abiotic stress situations, are recognized by plants as a signal for triggering defence responses. An overview of the literature is presented on the signalling role of AOS in plant defence responses, cell death, and development. Special attention is given to AOS and redox-regulated gene expression and the role of kinases and phosphatases in redox signal transduction.
Collapse
Affiliation(s)
- Eva Vranová
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
33
|
Simpson C, Stern D. Chlamydomonas reinhardtii as a model system for dissecting chloroplast RNA processing and decay mechanisms. Methods Enzymol 2002; 342:384-407. [PMID: 11586911 DOI: 10.1016/s0076-6879(01)42561-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- C Simpson
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
34
|
|
35
|
Baena-González E, Baginsky S, Mulo P, Summer H, Aro EM, Link G. Chloroplast transcription at different light intensities. Glutathione-mediated phosphorylation of the major RNA polymerase involved in redox-regulated organellar gene expression. PLANT PHYSIOLOGY 2001; 127:1044-52. [PMID: 11706185 PMCID: PMC129274 DOI: 10.1104/pp.010168] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2001] [Revised: 05/29/2001] [Accepted: 07/11/2001] [Indexed: 05/20/2023]
Abstract
Previous studies using purified RNA polymerase from mustard (Sinapis alba) chloroplasts showed control of transcription by an associated protein kinase. This kinase was found to respond to reversible thiol/disulfide formation mediated by glutathione (GSH), although at concentrations exceeding those thought to exist in vivo. In the present study, several lines of evidence are presented to substantiate the functioning of this regulation mechanism, also in vivo: (a) Studies on the polymerase-associated transcription kinase revealed that at appropriate ATP levels, GSH concentrations similar to those in vivo are sufficient to modulate the kinase activity; (b) GSH measurements from isolated mustard chloroplasts showed considerable differences in response to light intensity; (c) this was reflected by run-on transcription rates in isolated chloroplasts that were generally higher if organelles were prepared from seedlings incubated under high-light as compared with growth-light conditions; (d) the notion of a general transcriptional switch was strengthened by in vitro experiments showing that the kinase not only affects the transcription of a photosynthetic gene (psbA) but also that of a non-photosynthetic gene (trnQ); and (e) the polymerase-kinase complex revealed specific differences in the phosphorylation state of polypeptides depending on the light intensity to which the seedlings had been exposed prior to chloroplast isolation. Taken together, these data are consistent with GSH and phosphorylation-dependent regulation of chloroplast transcription in vivo.
Collapse
Affiliation(s)
- E Baena-González
- Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Several plastid signals have been identified that regulate the transcription of nuclear genes for plastid and non-plastid proteins. These signals are related to the photosynthetic metabolism of chloroplasts and include porphyrins, reactive oxygen intermediates and carotenoids. The metabolic and developmental state of the chloroplast also control cell differentiation and leaf morphogenesis, but the signaling pathways have not been characterized. Plastid-to-nucleus and light-signaling pathways are separable in some but not all cases. Retrograde signaling thus plays a central role in coordinating gene expression in the nucleus, plastid and mitochondrion, and in integrating pathways of cellular metabolism and development.
Collapse
Affiliation(s)
- S Rodermel
- Department Botany, Iowa State University, 353 Bessey Hall, Ames, IA 50011, USA.
| |
Collapse
|
37
|
Anthonisen IL, Salvador ML, Klein U. Specific sequence elements in the 5' untranslated regions of rbcL and atpB gene mRNas stabilize transcripts in the chloroplast of Chlamydomonas reinhardtii. RNA (NEW YORK, N.Y.) 2001; 7:1024-33. [PMID: 11453063 PMCID: PMC1370143 DOI: 10.1017/s1355838201001479] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Using a series of point mutations in chimeric reporter gene constructs consisting of the 5' regions of the Chlamydomonas chloroplast rbcL or atpB genes fused 5' to the coding sequence of the bacterial uidA (GUS) gene, RNA-stabilizing sequence elements were identified in vivo in the 5' untranslated regions (5' UTRs) of transcripts of the chloroplast genes rbcL and atpB in Chlamydomonas reinhardtii. In chimeric rbcL 5' UTR:GUS transcripts, replacement of single nucleotides in the 10-nt sequence 5'-AUUUCCGGAC-3', extending from positions +38 to +47 relative to the transcripts' 5' terminus, shortened transcript longevity and led to a reduction in transcript abundance of more than 95%. A similar mutational analysis of atpB 5' UTR:GUS transcripts showed that the 12-nt atpB 5' UTR sequence 5'-AUAAGCGUUAGU-3', extending from position +31 to position +42, is important for transcript stability and transcript accumulation in the chloroplast of Chlamydomonas. We discuss how the 5' UTR sequence elements, which are predicted to be part of RNA secondary structures, might function in RNA stabilization.
Collapse
Affiliation(s)
- I L Anthonisen
- Department of Biology, University of Oslo, Blindern, Norway
| | | | | |
Collapse
|
38
|
Su Q, Schild C, Schumann P, Boschetti A. Varying competence for protein import into chloroplasts during the cell cycle in Chlamydomonas. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2315-21. [PMID: 11298749 DOI: 10.1046/j.1432-1327.2001.02111.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By studying the import of radioactively labelled small subunit of ribulose-1,5-bisphosphate carboxylase (pSS) into chloroplasts of the green alga C. reinhardtii cw-15 protein delivery to chloroplasts was found to vary during the cell cycle. Chloroplasts were isolated from highly synchronous cultures at different time points during the cell cycle. When pSS was imported into 'young' chloroplasts isolated early in the light period about three times less pSS was processed to small subunit SS than in 'mature' chloroplasts from the middle of the light period. In 'young' chloroplasts also, less pSS was bound to the envelope surface. During the second half of the light period the import competence of isolated chloroplasts decreased again when based on chlorophyll content or cell volume, but did not change significantly when related to chloroplast number. Measurements of pSS binding to the surface of chloroplasts of different age indicated that the adaptation of protein import competence during the cell cycle is due to a variation of the number of binding sites per chloroplast surface area, rather than to modulation of the binding constant.
Collapse
Affiliation(s)
- Q Su
- Departement für Chemie und Biochemie, Universität Bern, Switzerland
| | | | | | | |
Collapse
|
39
|
Singh M, Boutanaev A, Zucchi P, Bogorad L. Gene elements that affect the longevity of rbcL sequence-containing transcripts in Chlamydomonas reinhardtii chloroplasts. Proc Natl Acad Sci U S A 2001; 98:2289-94. [PMID: 11226232 PMCID: PMC30131 DOI: 10.1073/pnas.041609798] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chloroplast gene rbcL encodes the large subunit of the CO(2)-fixing enzyme ribulose-bisphosphate carboxylase. In previous work a target for photo-accelerated degradation of Chlamydomonas reinhardtii rbcL transcripts in vivo was found to lie within the first 63 nucleotides, and a sequence element required for increasing the longevity of transcripts of rbcL-reporter genes was found to occur between nucleotides 170 and 350. Photo-accelerated degradation of rbcL transcripts has been found to require nucleotides 21 to 41. Transcript nucleotides lying between 329 and 334 and between 14 and 27 are essential for stabilizing transcripts in vivo; mutations in either region reduce the longevity of transcripts. It is postulated that the effectiveness of photo-accelerated endonuclease attacks on the nucleotide 21 to 41 region is reduced by physical blockage or distortion of the target sequence by interacting proteins that associate with nucleotides in the 14 to 27 and 329 to 334 regions of the transcripts. Both the nucleotide +329 to +334 stabilizing sequence of rbcL and a transcription enhancing sequence that lies between +126 and +170 encode well conserved (cyanobacteria through angiosperms) amino acid sequences; the evolution of expression control elements within the protein coding sequence of rbcL is considered.
Collapse
Affiliation(s)
- M Singh
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The conversion of genetic information stored in DNA into a protein product proceeds through the obligatory intermediate of messenger RNA. The steady-state level of an mRNA is determined by its relative synthesis and degradation rates, i.e., an interplay between transcriptional regulation and control of RNA stability. When the biological status of an organism requires that a gene product's abundance varies as a function of developmental stage, environmental factors or intracellular signals, increased or decreased RNA stability can be the determining factor. RNA stability and processing have long been known as important regulatory points in chloroplast gene expression. Here we summarize current knowledge and prospects relevant to these processes, emphasizing biochemical data. The extensive literature on nuclear mutations affecting chloroplast RNA metabolism is reviewed in another article in this volume (Barkan and Goldschmidt-Clermont, this issue).
Collapse
Affiliation(s)
- R A Monde
- Boyce Thompson Institute for Plant Research, Tower Rd., Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|