1
|
Bellido-Pedraza CM, Calatrava V, Llamas A, Fernandez E, Sanz-Luque E, Galvan A. Nitrous Oxide Emissions from Nitrite Are Highly Dependent on Nitrate Reductase in the Microalga Chlamydomonas reinhardtii. Int J Mol Sci 2022; 23:9412. [PMID: 36012676 PMCID: PMC9409008 DOI: 10.3390/ijms23169412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas and an ozone-depleting compound whose synthesis and release have traditionally been ascribed to bacteria and fungi. Although plants and microalgae have been proposed as N2O producers in recent decades, the proteins involved in this process have been only recently unveiled. In the green microalga Chlamydomonas reinhardtii, flavodiiron proteins (FLVs) and cytochrome P450 (CYP55) are two nitric oxide (NO) reductases responsible for N2O synthesis in the chloroplast and mitochondria, respectively. However, the molecular mechanisms feeding these NO reductases are unknown. In this work, we use cavity ring-down spectroscopy to monitor N2O and CO2 in cultures of nitrite reductase mutants, which cannot grow on nitrate or nitrite and exhibit enhanced N2O emissions. We show that these mutants constitute a very useful tool to study the rates and kinetics of N2O release under different conditions and the metabolism of this greenhouse gas. Our results indicate that N2O production, which was higher in the light than in the dark, requires nitrate reductase as the major provider of NO as substrate. Finally, we show that the presence of nitrate reductase impacts CO2 emissions in both light and dark conditions, and we discuss the role of NO in the balance between CO2 fixation and release.
Collapse
Affiliation(s)
| | - Victoria Calatrava
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Aurora Galvan
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
2
|
Zoghbi-Rodríguez NM, Gamboa-Tuz SD, Pereira-Santana A, Rodríguez-Zapata LC, Sánchez-Teyer LF, Echevarría-Machado I. Phylogenomic and Microsynteny Analysis Provides Evidence of Genome Arrangements of High-Affinity Nitrate Transporter Gene Families of Plants. Int J Mol Sci 2021; 22:13036. [PMID: 34884876 PMCID: PMC8658032 DOI: 10.3390/ijms222313036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.
Collapse
Affiliation(s)
- Normig M. Zoghbi-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Alejandro Pereira-Santana
- Conacyt-Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico;
| | - Luis C. Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Lorenzo Felipe Sánchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| |
Collapse
|
3
|
Plouviez M, Fernández E, Grossman AR, Sanz-Luque E, Sells M, Wheeler D, Guieysse B. Responses of Chlamydomonas reinhardtii during the transition from P-deficient to P-sufficient growth (the P-overplus response): The roles of the vacuolar transport chaperones and polyphosphate synthesis. JOURNAL OF PHYCOLOGY 2021; 57:988-1003. [PMID: 33778959 DOI: 10.1111/jpy.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) assimilation and polyphosphate (polyP) synthesis were investigated in Chlamydomonas reinhardtii by supplying phosphate (PO43- ; 10 mg P·L-1 ) to P-depleted cultures of wildtypes, mutants with defects in genes involved in the vacuolar transporter chaperone (VTC) complex, and VTC-complemented strains. Wildtype C. reinhardtii assimilated PO43- and stored polyP within minutes of adding PO43- to cultures that were P-deprived, demonstrating that these cells were metabolically primed to assimilate and store PO43- . In contrast, vtc1 and vtc4 mutant lines assayed under the same conditions never accumulated polyP, and PO43- assimilation was considerably decreased in comparison with the wildtypes. In addition, to confirm the bioinformatics inferences and previous experimental work that the VTC complex of C. reinhardtii has a polyP polymerase function, these results evidence the influence of polyP synthesis on PO43- assimilation in C. reinhardtii. RNA-sequencing was carried out on C. reinhardtii cells that were either P-depleted (control) or supplied with PO43- following P depletion (treatment) in order to identify changes in the levels of mRNAs correlated with the P status of the cells. This analysis showed that the levels of VTC1 and VTC4 transcripts were strongly reduced at 5 and 24 h after the addition of PO43- to the cells, although polyP granules were continuously synthesized during this 24 h period. These results suggest that the VTC complex remains active for at least 24 h after supplying the cells with PO43- . Further bioassays and sequence analyses suggest that inositol phosphates may control polyP synthesis via binding to the VTC SPX domain.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, 14071, Spain
| | - Arthur Robert Grossman
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, California, 94305, USA
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, 14071, Spain
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, California, 94305, USA
| | - Matthew Sells
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - David Wheeler
- New South Wales Department of Primary Industries, 161 Kite St, Orange, New South Wales, 2800, Australia
| | - Benoit Guieysse
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
4
|
|
5
|
Plouviez M, Wheeler D, Shilton A, Packer MA, McLenachan PA, Sanz-Luque E, Ocaña-Calahorro F, Fernández E, Guieysse B. The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:45-56. [PMID: 28333392 DOI: 10.1111/tpj.13544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/27/2017] [Accepted: 03/17/2017] [Indexed: 05/13/2023]
Abstract
Over the last decades, several studies have reported emissions of nitrous oxide (N2 O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes). As N2 O is a potent greenhouse gas and an ozone-depleting pollutant, these findings suggest that large-scale cultivation of microalgae (and possibly, natural eutrophic ecosystems) could have a significant environmental impact. Using the model unicellular microalga Chlamydomonas reinhardtii, this study was conducted to investigate the molecular basis of microalgal N2 O synthesis. We report that C. reinhardtii supplied with nitrite (NO2- ) under aerobic conditions can reduce NO2- into nitric oxide (NO) using either a mitochondrial cytochrome c oxidase (COX) or a dual enzymatic system of nitrate reductase (NR) and amidoxime-reducing component, and that NO is subsequently reduced into N2 O by the enzyme NO reductase (NOR). Based on experimental evidence and published literature, we hypothesize that when nitrate (NO3- ) is the main Nitrogen source and the intracellular concentration of NO2- is low (i.e. under physiological conditions), microalgal N2 O synthesis involves the reduction of NO3- to NO2- by NR followed by the reduction of NO2- to NO by the dual system involving NR. This microalgal N2 O pathway has broad implications for environmental science and algal biology because the pathway of NO3- assimilation is conserved among microalgae, and because its regulation may involve NO.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - David Wheeler
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Andy Shilton
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Michael A Packer
- Cawthron Institute, 98 Halifax Street, Nelson, 7010, New Zealand
| | - Patricia A McLenachan
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Francisco Ocaña-Calahorro
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Benoit Guieysse
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
6
|
Calatrava V, Chamizo-Ampudia A, Sanz-Luque E, Ocaña-Calahorro F, Llamas A, Fernandez E, Galvan A. How Chlamydomonas handles nitrate and the nitric oxide cycle. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2593-2602. [PMID: 28201747 DOI: 10.1093/jxb/erw507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The green alga Chlamydomonas is a valuable model system capable of assimilating different forms of nitrogen (N). Nitrate (NO3-) has a relevant role in plant-like organisms, first as a nitrogen source for growth and second as a signalling molecule. Several modules are necessary for Chlamydomonas to handle nitrate, including transporters, nitrate reductase (NR), nitrite reductase (NiR), GS/GOGAT enzymes for ammonium assimilation, and regulatory protein(s). Transporters provide a first step for influx/efflux, homeostasis, and sensing of nitrate; and NIT2 is the key transcription factor (RWP-RK) for mediating the nitrate-dependent activation of a number of genes. Here, we review how NR participates in the cycle NO3- →NO2- →NO →NO3-. NR uses the partner protein amidoxime-reducing component/nitric oxide-forming nitrite reductase (ARC/NOFNiR) for the conversion of nitrite (NO2-) into nitric oxide (NO). It also uses the truncated haemoglobin THB1 in the conversion of nitric oxide to nitrate. Nitric oxide is a negative signal for nitrate assimilation; it inhibits the activity and expression of high-affinity nitrate/nitrite transporters and NR. During this cycle, the positive signal of nitrate is transformed into the negative signal of nitric oxide, which can then be converted back into nitrate. Thus, NR is back in the spotlight as a strategic regulator of the nitric oxide cycle and the nitrate assimilation pathway.
Collapse
Affiliation(s)
- Victoria Calatrava
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Alejandro Chamizo-Ampudia
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Emanuel Sanz-Luque
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Francisco Ocaña-Calahorro
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Angel Llamas
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Emilio Fernandez
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| | - Aurora Galvan
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, Universidad de Córdoba, Spain
| |
Collapse
|
7
|
Chamizo-Ampudia A, Sanz-Luque E, Llamas Á, Ocaña-Calahorro F, Mariscal V, Carreras A, Barroso JB, Galván A, Fernández E. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. PLANT, CELL & ENVIRONMENT 2016; 39:2097-107. [PMID: 26992087 DOI: 10.1111/pce.12739] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a relevant signal molecule involved in many plant processes. However, the mechanisms and proteins responsible for its synthesis are scarcely known. In most photosynthetic organisms NO synthases have not been identified, and Nitrate Reductase (NR) has been proposed as the main enzymatic NO source, a process that in vitro is also catalysed by other molybdoenzymes. By studying transcriptional regulation, enzyme approaches, activity assays with in vitro purified proteins and in vivo and in vitro NO determinations, we have addressed the role of NR and Amidoxime Reducing Component (ARC) in the NO synthesis process. N\R and ARC were intimately related both at transcriptional and activity level. Thus, arc mutants showed high NIA1 (NR gene) expression and NR activity. Conversely, mutants without active NR displayed an increased ARC expression in nitrite medium. Our results with nia1 and arc mutants and with purified enzymes support that ARC catalyses the NO production from nitrite taking electrons from NR and not from Cytb5-1/Cytb5-Reductase, the component partners previously described for ARC (proposed as NOFNiR, Nitric Oxide-Forming Nitrite Reductase). This NR-ARC dual system would be able to produce NO in the presence of nitrate, condition under which NR is unable to do it.
Collapse
Affiliation(s)
- Alejandro Chamizo-Ampudia
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Ángel Llamas
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Francisco Ocaña-Calahorro
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Vicente Mariscal
- Institute of Plant Biochemistry and Photosynthesis, C.S.I.C. and University of Sevilla, Américo Vespucio 49, Sevilla, 41092, Spain
| | - Alfonso Carreras
- Group of Biochemistry and Cell Signaling in Nitric Oxide. Department of Biochemistry and Molecular Biology, Campus 'Las Lagunillas', E-23071, University of Jaén, Jaén, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide. Department of Biochemistry and Molecular Biology, Campus 'Las Lagunillas', E-23071, University of Jaén, Jaén, Spain
| | - Aurora Galván
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, Córdoba, 14071, Spain.
| |
Collapse
|
8
|
NRT2.4 and NRT2.5 Are Two Half-Size Transporters from the Chlamydomonas NRT2 Family. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Abstract
In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, '-omics' techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels.
Collapse
Affiliation(s)
- Hanna R Aucoin
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Joseph Gardner
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Nanette R Boyle
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
10
|
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. FRONTIERS IN PLANT SCIENCE 2015; 6:899. [PMID: 26579149 PMCID: PMC4620153 DOI: 10.3389/fpls.2015.00899] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 05/02/2023]
Abstract
Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO) as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| |
Collapse
|
11
|
Sanz-Luque E, Ocaña-Calahorro F, de Montaigu A, Chamizo-Ampudia A, Llamas Á, Galván A, Fernández E. THB1, a truncated hemoglobin, modulates nitric oxide levels and nitrate reductase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:467-79. [PMID: 25494936 DOI: 10.1111/tpj.12744] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
Hemoglobins are ubiquitous proteins that sense, store and transport oxygen, but the physiological processes in which they are implicated is currently expanding. Recent examples of previously unknown hemoglobin functions, which include scavenging of the signaling molecule nitric oxide (NO), illustrate how the implication of hemoglobins in different cell signaling processes is only starting to be unraveled. The extent and diversity of the hemoglobin protein family suggest that hemoglobins have diverged and have potentially evolved specialized functions in certain organisms. A unique model organism to study this functional diversity at the cellular level is the green alga Chlamydomonas reinhardtii because, among other reasons, it contains an unusually high number of a particular type of hemoglobins known as truncated hemoglobins (THB1-THB12). Here, we reveal a cell signaling function for a truncated hemoglobin of Chlamydomonas that affects the nitrogen assimilation pathway by simultaneously modulating NO levels and nitrate reductase (NR) activity. First, we found that THB1 and THB2 expression is modulated by the nitrogen source and depends on NIT2, a transcription factor required for nitrate assimilation genes expression. Furthermore, THB1 is highly expressed in the presence of NO and is able to convert NO into nitrate in vitro. Finally, THB1 is maintained on its active and reduced form by NR, and in vivo lower expression of THB1 results in increased NR activity. Thus, THB1 plays a dual role in NO detoxification and in the modulation of NR activity. This mechanism can partly explain how NO inhibits NR post-translationally.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, 14071, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Wei L, Derrien B, Gautier A, Houille-Vernes L, Boulouis A, Saint-Marcoux D, Malnoë A, Rappaport F, de Vitry C, Vallon O, Choquet Y, Wollman FA. Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:353-72. [PMID: 24474630 PMCID: PMC3963581 DOI: 10.1105/tpc.113.120121] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/04/2013] [Accepted: 01/10/2014] [Indexed: 05/18/2023]
Abstract
Starving microalgae for nitrogen sources is commonly used as a biotechnological tool to boost storage of reduced carbon into starch granules or lipid droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report that the selective depletion of Rubisco and cytochrome b6f complex that occurs when Chlamydomonas reinhardtii is starved for nitrogen in the presence of acetate and under normoxic conditions is accompanied by a marked increase in chlororespiratory enzymes, which converts the photosynthetic thylakoid membrane into an intracellular matrix for oxidative catabolism of reductants. Cytochrome b6f subunits and most proteins specifically involved in their biogenesis are selectively degraded, mainly by the FtsH and Clp chloroplast proteases. This regulated degradation pathway does not require light, active photosynthesis, or state transitions but is prevented when respiration is impaired or under phototrophic conditions. We provide genetic and pharmacological evidence that NO production from intracellular nitrite governs this degradation pathway: Addition of a NO scavenger and of two distinct NO producers decrease and increase, respectively, the rate of cytochrome b6f degradation; NO-sensitive fluorescence probes, visualized by confocal microscopy, demonstrate that nitrogen-starved cells produce NO only when the cytochrome b6f degradation pathway is activated.
Collapse
Affiliation(s)
- Lili Wei
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Benoit Derrien
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Arnaud Gautier
- École Normale Supérieure,
Département de Chimie, Unité Mixte de Recherche, CNRS–Ecole
Normale Supérieure–Université Pierre et Marie Curie 8640,
75231 Paris Cedex 05, France
| | - Laura Houille-Vernes
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Alix Boulouis
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Denis Saint-Marcoux
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Alizée Malnoë
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Fabrice Rappaport
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Catherine de Vitry
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
13
|
Scherholz ML, Curtis WR. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC Biotechnol 2013; 13:39. [PMID: 23651806 PMCID: PMC3751429 DOI: 10.1186/1472-6750-13-39] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/25/2013] [Indexed: 11/10/2022] Open
Abstract
Background Lack of accounting for proton uptake and secretion has confounded interpretation of the stoichiometry of photosynthetic growth of algae. This is also problematic for achieving growth of microalgae to high cell concentrations which is necessary to improve productivity and the economic feasibility of commercial-scale chemical production systems. Since microalgae are capable of consuming both nitrate and ammonium, this represents an opportunity to balance culture pH based on a nitrogen feeding strategy that does not utilize gas-phase CO2 buffering. Stoichiometry suggests that approximately 36 weight%N-NH4+ (balance nitrogen as NO3-) would minimize the proton imbalance and permit high-density photoautotrophic growth as it does in higher plant tissue culture. However, algal media almost exclusively utilize nitrate, and ammonium is often viewed as ‘toxic’ to algae. Results The microalgae Chlorella vulgaris and Chlamydomonas reinhardtii exclusively utilize ammonium when both ammonium and nitrate are provided during growth on excess CO2. The resulting proton imbalance from preferential ammonium utilization causes the pH to drop too low to sustain further growth when ammonium was only 9% of the total nitrogen (0.027 gN-NH4+/L). However, providing smaller amounts of ammonium sequentially in the presence of nitrate maintained the pH of a Chlorella vulgaris culture for improved growth on 0.3 gN/L to 5 gDW/L under 5% CO2 gas-phase supplementation. Bioreactor pH dynamics are shown to be predictable based on simple nitrogen assimilation as long as there is sufficient CO2 availability. Conclusions This work provides both a media formulation and a feeding strategy with a focus on nitrogen metabolism and regulation to support high-density algal culture without buffering. The instability in culture pH that is observed in microalgal cultures in the absence of buffers can be overcome through alternating utilization of ammonium and nitrate. Despite the highly regulated array of nitrogen transporters, providing a nitrogen source with a balanced degree of reduction minimizes pH fluctuations. Understanding and accommodating the behavior of nitrogen utilization in microalgae is key to avoiding ‘culture crash’ and reliance on gas phase CO2 buffering, which becomes both ineffective and cost-prohibitive for commercial-scale algal culture.
Collapse
Affiliation(s)
- Megerle L Scherholz
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
14
|
Eriksen NT, Riisgård FK, Gunther WS, Lønsmann Iversen JJ. On-line estimation of O(2) production, CO(2) uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor. JOURNAL OF APPLIED PHYCOLOGY 2007; 19:161-174. [PMID: 19396354 PMCID: PMC2668643 DOI: 10.1007/s10811-006-9122-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 08/06/2006] [Indexed: 05/07/2023]
Abstract
Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO(2), H(2), and N(2) were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO(2) uptake was estimated from the addition of CO(2) as acidic titrant and O(2) evolution was estimated from titration by H(2), which was used to reduce O(2) over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O(2) evolution and CO(2) up-take rates. NH(4) (+), NO(2) (-), or NO(3) (-) was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH(4) (+) as the nitrogen source and 1.3 when NO(3) (-) was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3-4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO(2) and H(2) into the reactor headspace to estimate the up-take of CO(2), the production of O(2), and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified.
Collapse
Affiliation(s)
- Niels Thomas Eriksen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, 9000 Aalborg, Denmark
| | - Frederik Kier Riisgård
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, 9000 Aalborg, Denmark
| | - William Stuart Gunther
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, 9000 Aalborg, Denmark
| | - Jens Jørgen Lønsmann Iversen
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
15
|
Wang Y, Li W, Siddiqi Y, Kinghorn JR, Unkles SE, Glass ADM. Evidence for post-translational regulation of NrtA, the Aspergillus nidulans high-affinity nitrate transporter. THE NEW PHYTOLOGIST 2007; 175:699-706. [PMID: 17688585 DOI: 10.1111/j.1469-8137.2007.02135.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Here, influx and efflux of (13)NO(3)(-), and net fluxes of (14)NO(3)(-) and (14)NO(2)(-), were measured in Aspergillus nidulans mutants niaD171 and niiA5, devoid of nitrate reductase (NR) and nitrite reductase (NiR) activities, respectively. Transcript and protein abundances of NrtA, the A. nidulans principal high-affinity NO(3)(-) transporter, were determined using semiquantitative reverse transcription-polymerase chain reaction and western blots, respectively. (13)NO(3)(-) influx in niaD171 was negligible relative to wild-type values, whereas efflux to influx ratios increased nine-fold. Nevertheless, NrtA mRNA and NrtA protein were expressed at levels more than two-fold and three-fold higher, respectively, in niaD171 than in the wild-type strain. This is the first demonstration of diminished high-affinity NO(3)(-) influx associated with elevated transporter levels, providing evidence that, in addition to transcriptional regulation, control of NrtA expression operates at the post-translational level. This mechanism allows for rapid control of NO(3)(-) transport at the protein level, reduces the extent of futile cycling of NO(3)(-) that would otherwise represent a significant energy drain when influx exceeds the capacity for assimilation or storage, and may be responsible for the rapid switching between the on and off state that is associated with simultaneous provision of NH(4)(+) to mycelia absorbing NO(3)(-).
Collapse
Affiliation(s)
- Ye Wang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Wenbin Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Yaeesh Siddiqi
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - James R Kinghorn
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Shiela E Unkles
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Anthony D M Glass
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
16
|
Pérez-Alegre M, Dubus A, Fernández E. REM1, a new type of long terminal repeat retrotransposon in Chlamydomonas reinhardtii. Mol Cell Biol 2005; 25:10628-38. [PMID: 16287873 PMCID: PMC1291216 DOI: 10.1128/mcb.25.23.10628-10638.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new long terminal repeat (LTR) retrotransposon, named REM1, has been identified in the green alga Chlamydomonas reinhardtii. It was found in low copy number, highly methylated, and with an inducible transpositional activity. This retrotransposon is phylogenetically related to Ty3-gypsy LTR retrotransposons and possesses new and unusual structural features. A regulatory module, ORF3p, is present in an inverse transcriptional orientation to that of the polyprotein and contains PHD-finger and chromodomains, which might confer specificity of the target site and are highly conserved in proteins involved in transcriptional regulation by chromatin remodeling. By using different wild-type and mutant strains, we show that CrREM1 was active with a strong transcriptional activity and amplified its copy number in strains that underwent foreign DNA integration and/or genetic crosses. However, integration of CrREM1 was restricted to these events even though the expression of its full-length transcripts remained highly activated. A regulatory mechanism of CrREM1 retrotransposition which would help to minimize its deleterious effects in the host genome is proposed.
Collapse
Affiliation(s)
- Mónica Pérez-Alegre
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa Planta baja, Facultad de Ciencias, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | | |
Collapse
|
17
|
Baurain D, Dinant M, Coosemans N, Matagne RF. Regulation of the alternative oxidase Aox1 gene in Chlamydomonas reinhardtii. Role of the nitrogen source on the expression of a reporter gene under the control of the Aox1 promoter. PLANT PHYSIOLOGY 2003; 131:1418-30. [PMID: 12644691 PMCID: PMC166901 DOI: 10.1104/pp.013409] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Revised: 11/03/2002] [Accepted: 12/10/2002] [Indexed: 05/21/2023]
Abstract
In higher plants, various developmental and environmental conditions enhance expression of the alternative oxidase (AOX), whereas its induction in fungi is mainly dependent on cytochrome pathway restriction and triggering by reactive oxygen species. The AOX of the unicellular green alga Chlamydomonas reinhardtii is encoded by two different genes, the Aox1 gene being much more transcribed than Aox2. To analyze the transcriptional regulation of Aox1, we have fused its 1.4-kb promoter region to the promoterless arylsulfatase (Ars) reporter gene and measured ARS enzyme activities in transformants carrying the chimeric construct. We show that the Aox1 promoter is generally unresponsive to a number of known AOX inducers, including stress agents, respiratory inhibitors, and metabolites, possibly because the AOX activity is constitutively high in the alga. In contrast, the Aox1 expression is strongly dependent on the nitrogen source, being down-regulated by ammonium and stimulated by nitrate. Inactivation of nitrate reductase leads to a further increase of expression. The stimulation by nitrate also occurs at the AOX protein and respiratory levels. A deletion analysis of the Aox1 promoter region demonstrates that a short upstream segment (-253 to +59 with respect to the transcription start site) is sufficient to ensure gene expression and regulation, but that distal elements are required for full gene expression. The observed pattern of AOX regulation points to the possible interaction between chloroplast and mitochondria in relation to a potential increase of photogenerated ATP when nitrate is used as a nitrogen source.
Collapse
Affiliation(s)
- Denis Baurain
- Genetics of Microorganisms, Department of Life Sciences, B22, University of Liège, Sart Tilman, B-4000 Liège, Belgium
| | | | | | | |
Collapse
|
18
|
Abstract
Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.
Collapse
Affiliation(s)
- José M Siverio
- Departamento de Bioquímica y Biología Molecular, Grupo del Metabolismo del Nitrógeno, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
19
|
Llamas A, Igeño MI, Galván A, Fernández E. Nitrate signalling on the nitrate reductase gene promoter depends directly on the activity of the nitrate transport systems in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:261-71. [PMID: 12000675 DOI: 10.1046/j.1365-313x.2002.01281.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrate signalling on the nitrate reductase (Nia1) gene promoter from Chlamydomonas reinhardtii has been studied by using a construct of the Nia1 promoter transcriptionally fused to the Chlamydomonas arylsulphatase gene as a reporter in strains bearing different sets of nitrate/nitrite transport genes. The high-affinity nitrate transport (HANT) system I is required for efficient signalling by nitrate, even at submicromolar concentrations of the anion. In addition, the autogenous regulation of nitrate reductase has been found to depend on the presence of system I. The low-affinity nitrate transport system III promoted signalling optimally on the promoter at millimolar nitrate concentrations. The HANT system IV, which is insensitive to ammonium and active at low CO2, allowed nitrate signalling at micromolar concentrations even in the presence of ammonium, suggesting that the balance of these two effectors controls Nia1 transcription. Our data indicate that nitrate signalling on the Nia1 gene promoter occurs intracellularly and depends on the activity of nitrate transporters.
Collapse
Affiliation(s)
- Angel Llamas
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, 14071-Córdoba, Spain
| | | | | | | |
Collapse
|
20
|
Soluble and Plasma Membrane-bound Enzymes Involved in Nitrate and Nitrite Metabolism. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2002. [DOI: 10.1007/0-306-48138-3_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Harris EH. CHLAMYDOMONAS AS A MODEL ORGANISM. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:363-406. [PMID: 11337403 DOI: 10.1146/annurev.arplant.52.1.363] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unicellular green alga Chlamydomonas offers a simple life cycle, easy isolation of mutants, and a growing array of tools and techniques for molecular genetic studies. Among the principal areas of current investigation using this model system are flagellar structure and function, genetics of basal bodies (centrioles), chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. A genome project has begun with compilation of expressed sequence tag data and gene expression studies and will lead to a complete genome sequence. Resources available to the research community include wild-type and mutant strains, plasmid constructs for transformation studies, and a comprehensive on-line database.
Collapse
Affiliation(s)
- Elizabeth H Harris
- Developmental, Cell and Molecular Biology Group, Biology Department, Duke University, Durham, North Carolina 27708-1000; e-mail:
| |
Collapse
|
22
|
Machín F, Perdomo G, Pérez MD, Brito N, Siverio JM. Evidence for multiple nitrate uptake systems in the yeast Hansenula polymorpha. FEMS Microbiol Lett 2001; 194:171-4. [PMID: 11164303 DOI: 10.1111/j.1574-6968.2001.tb09464.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hansenula polymorpha mutants disrupted in the high-affinity nitrate transporter gene (YNT1) are still able to grow in nitrate. To detect the nitrate transporter(s) responsible for this growth a strain containing disruption of the nitrate assimilation gene cluster and expressing nitrate reductase gene (YNR1) under the control of H. polymorpha MOX1 (methanol oxidase) promoter was used (FM31 strain). In this strain nitrate taken up is transformed into nitrite by nitrate reductase and excreted to the medium where it is easily detected. Nitrate uptake which is neither induced by nitrate nor repressed by reduced nitrogen sources was detected in the FM31 strain. Likewise, nitrate uptake detected in the strain FM31 is independent of both Ynt1p and Yna1p and is not affected by ammonium, glutamine or chlorate. The inhibition of nitrite extrusion by extracellular nitrite suggests that the nitrate uptake system shown in the FM31 strain could also be involved in nitrite uptake.
Collapse
Affiliation(s)
- F Machín
- Departamento de Bioquímica y Biología Molecular, Grupo del Metabolismo del Nitrógeno-Consejo Superior de Investigaciones Científicas, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | | | |
Collapse
|
23
|
Rexach J, Fernández E, Galván A. The Chlamydomonas reinhardtii Nar1 gene encodes a chloroplast membrane protein involved in nitrite transport. THE PLANT CELL 2000; 12:1441-53. [PMID: 10948261 PMCID: PMC149114 DOI: 10.1105/tpc.12.8.1441] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2000] [Accepted: 05/19/2000] [Indexed: 05/17/2023]
Abstract
A key step for nitrate assimilation in photosynthetic eukaryotes occurs within chloroplasts, where nitrite is reduced to ammonium, which is incorporated into carbon skeletons. The Nar1 gene from Chlamydomonas reinhardtii is clustered with five other genes for nitrate assimilation, all of them regulated by nitrate. Sequence analysis of genomic DNA and cDNA of Nar1 and comparative studies of strains having or lacking Nar1 have been performed. The deduced amino acid sequence indicates that Nar1 encodes a chloroplast membrane protein with substantial identity to putative formate and nitrite transporters in bacteria. Use of antibodies against NAR1 has corroborated its location in the plastidic membrane. Characterization of strains having or lacking this gene suggests that NAR1 is involved in nitrite transport in plastids, which is critical for cell survival under limiting nitrate conditions, and controls the amount of nitrate incorporated by the cells under limiting CO(2) conditions.
Collapse
Affiliation(s)
- J Rexach
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. C-6, 14071-Córdoba, Spain
| | | | | |
Collapse
|