1
|
Wang S, Duan X, Wang S, Hao L, Zhang Y, Xu C, Yu Y, Xiang L, Jiang F, Heinlein M, Li T, Zhang W. A chaperonin containing T-complex polypeptide-1 facilitates the formation of the PbWoxT1-PbPTB3 ribonucleoprotein complex for long-distance RNA trafficking in Pyrus betulaefolia. THE NEW PHYTOLOGIST 2023; 238:1115-1128. [PMID: 36751904 DOI: 10.1111/nph.18789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Numerous plant endogenous mRNAs move via phloem and thus affect the growth and development of long-distant organs. mRNAs are transported with RNA-binding proteins forming a ribonucleoprotein complex. However, it remains elusive how such RNP complex assembles and facilitates mRNA trafficking. Protease digestion and RNA immunoprecipitation were used to investigate the RNP assembly function of the complete Chaperonin Containing T-complex Polypeptide-1. In situ hybridization, hairy root transformation, microprojectile bombardment, and grafting experiments demonstrate the role of CCT complex in the transport of a PbWoxT1-PbPTB3 RNP complex in Pyrus betulaefolia. PbCCT5 silenced caused defective movement of GFP-PbPTB3 and GFP-PbWoxT1 from hairy roots to new leaves via the phloem. PbCCT5 is shown to interact with PbPTB3. PbCCT complex enhanced PbPTB3 stabilization and permitted assembly of PbWoxT1 and PbPTB3 into an RNP complex. Furthermore, silencing of individual CCT subunits inhibited the intercellular movement of GFP-PbPTB3 and long-distance trafficking of PbWoxT1 and PbPTB3 in grafted plants. Taken together, the CCT complex assembles PbPTB3 and PbWoxT1 into an RNP complex in the phloem in order to facilitate the long-distance trafficking of PbWoxT1 in P. betulaefolia. This study therefore provides important insights into the mechanism of RNP complex formation and transport.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Xuwei Duan
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Shengyuan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Li Hao
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yi Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Chaoran Xu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yunfei Yu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Ling Xiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Feng Jiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Manfred Heinlein
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Tianzhong Li
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Wenna Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
2
|
Ahn HK, Yoon JT, Choi I, Kim S, Lee HS, Pai HS. Functional characterization of chaperonin containing T-complex polypeptide-1 and its conserved and novel substrates in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2741-2757. [PMID: 30825377 PMCID: PMC6506772 DOI: 10.1093/jxb/erz099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 05/31/2023]
Abstract
Chaperonin containing T-complex polypeptide-1 (CCT) is an evolutionarily conserved chaperonin multi-subunit complex that mediates protein folding in eukaryotes. It is essential for cell growth and survival in yeast and mammals, with diverse substrate proteins. However, only a few studies on plant CCT have been reported to date, due to the essentiality of CCT subunit genes and the large size of the complex. Here, we have investigated the structure and function of the Arabidopsis CCT complex in detail. The plant CCT consisted of eight subunits that assemble to form a high-molecular-mass protein complex, shown by diverse methods. CCT-deficient cells exhibited depletion of cortical microtubules, accompanied by a reduction in cellular α- and β-tubulin levels due to protein degradation. Cycloheximide-chase assays suggested that CCT is involved in the folding of tubulins in plants. Furthermore, CCT interacted with PPX1, the catalytic subunit of protein phosphatase 4, and may participate in the folding of PPX1 as its substrate. CCT also interacted with Tap46, a regulatory subunit of PP2A family phosphatases, but Tap46 appeared to function in PPX1 stabilization, rather than as a CCT substrate. Collectively, our findings reveal the essential functions of CCT chaperonin in plants and its conserved and novel substrates.
Collapse
Affiliation(s)
- Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Joong-Tak Yoon
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Sumin Kim
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Ho-Seok Lee
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, Korea
| |
Collapse
|
3
|
Krtková J, Benáková M, Schwarzerová K. Multifunctional Microtubule-Associated Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:474. [PMID: 27148302 PMCID: PMC4838777 DOI: 10.3389/fpls.2016.00474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of WashingtonSeattle, WA, USA
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martina Benáková
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- Department of Biology, Faculty of Science, University of Hradec KrálovéRokitanského, Czech Republic
| | - Kateřina Schwarzerová
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
4
|
Kamal AHM, Komatsu S. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol Biol Rep 2016; 43:73-89. [PMID: 26754663 DOI: 10.1007/s11033-015-3940-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/31/2015] [Indexed: 01/15/2023]
Abstract
To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan.
| |
Collapse
|
5
|
McKew BA, Lefebvre SC, Achterberg EP, Metodieva G, Raines CA, Metodiev MV, Geider RJ. Plasticity in the proteome of Emiliania huxleyi CCMP 1516 to extremes of light is highly targeted. THE NEW PHYTOLOGIST 2013; 200:61-73. [PMID: 23750769 DOI: 10.1111/nph.12352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/01/2013] [Indexed: 05/22/2023]
Abstract
Optimality principles are often applied in theoretical studies of microalgal ecophysiology to predict changes in allocation of resources to different metabolic pathways, and optimal acclimation is likely to involve changes in the proteome, which typically accounts for > 50% of cellular nitrogen (N). We tested the hypothesis that acclimation of the microalga Emiliania huxleyi CCMP 1516 to suboptimal vs supraoptimal light involves large changes in the proteome as cells rebalance the capacities to absorb light, fix CO2 , perform biosynthesis and resist photooxidative stress. Emiliania huxleyi was grown in nutrient-replete continuous culture at 30 (LL) and 1000 μmol photons m(-2) s(-1) (HL), and changes in the proteome were assessed by LC-MS/MS shotgun proteomics. Changes were most evident in proteins involved in the light reactions of photosynthesis; the relative abundance of photosystem I (PSI) and PSII proteins was 70% greater in LL, light-harvesting fucoxanthin-chlorophyll proteins (Lhcfs) were up to 500% greater in LL and photoprotective LI818 proteins were 300% greater in HL. The marked changes in the abundances of Lhcfs and LI818s, together with the limited plasticity in the bulk of the E. huxleyi proteome, probably reflect evolutionary pressures to provide energy to maintain metabolic capabilities in stochastic light environments encountered by this species in nature.
Collapse
Affiliation(s)
- Boyd A McKew
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | | | - Eric P Achterberg
- National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Gergana Metodieva
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Christine A Raines
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Richard J Geider
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|
6
|
Fleischer A, Duhamel M, Lopez-Fernandez LA, Muñoz M, Rebollo MP, Alvarez-Franco F, Rebollo A. Cascade of transcriptional induction and repression during IL-2 deprivation-induced apoptosis. Immunol Lett 2007; 112:9-29. [PMID: 17651815 DOI: 10.1016/j.imlet.2007.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/05/2007] [Accepted: 06/07/2007] [Indexed: 11/21/2022]
Abstract
Apoptosis of mature T lymphocytes is an essential process for maintaining immune system homeostasis. However, the details of the molecular signaling pathways leading to T cell apoptosis are poorly understood. We used cDNA microarrays containing 15,630 murine genes to study the gene expression profile in T lymphocytes at different time points of IL-2 withdrawal. Comparison of the gene expression profiles revealed that 2% of the genes were affected by cytokine starvation. Interestingly, the apoptotic program rather seems to activate gene expression in the early phase of cell death. On the contrary, transcription was strongly repressed in later stages of apoptosis. Self-organizing map clustering of the 270 differentially expressed transcripts revealed specific temporal expression patterns supporting the idea that IL-2 deprivation triggers a tightly regulated transcriptional program to induce cell death. To validate microarray results, changes in gene expression following IL-2 deprivation were confirmed for selected genes by Northern blot. In addition, the signaling pathways created can explain the molecular events leading to T cell apoptosis, even if the T cell line used in this study might not reflect individual T cell subpopulations expressing different level of IL-2 receptor or IL-2 dependence. Taken together, these results provide novel insights into the temporal regulation of gene expression during T lymphocyte death.
Collapse
Affiliation(s)
- Aarne Fleischer
- Immunologie Cellulaire et Tissulaire, INSERM U543, 83 Bd de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
An examination of the Arabidopsis thaliana genome sequence led to the identification of 29 predicted genes with the potential to encode members of the chaperonin family of chaperones (CPN60 and CCT), their associated cochaperonins, and the cytoplasmic chaperonin cofactor prefoldin. These comprise the first complete set of plant chaperonin protein sequences and indicate that the CPN family is more diverse than previously described. In addition to surprising sequence diversity within CPN subclasses, the genomic data also suggest the existence of previously undescribed family members, including a 10-kDa chloroplast cochaperonin. Consideration of the sequence data described in this review prompts questions about the complexities of plant CPN systems and the evolutionary relationships and functions of the component proteins, most of which have not been studied experimentally.
Collapse
Affiliation(s)
- J E Hill
- National Research Council, Plant Biotechnology Institute, Saskatoon, SK, Canada
| | | |
Collapse
|
8
|
Hill JE, Hemmingsen SM. Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperones 2001; 6:190-200. [PMID: 11599560 DOI: 10.2307/1601760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
An examination of the Arabidopsis thaliana genome sequence led to the identification of 29 predicted genes with the potential to encode members of the chaperonin family of chaperones (CPN60 and CCT), their associated cochaperonins, and the cytoplasmic chaperonin cofactor prefoldin. These comprise the first complete set of plant chaperonin protein sequences and indicate that the CPN family is more diverse than previously described. In addition to surprising sequence diversity within CPN subclasses, the genomic data also suggest the existence of previously undescribed family members, including a 10-kDa chloroplast cochaperonin. Consideration of the sequence data described in this review prompts questions about the complexities of plant CPN systems and the evolutionary relationships and functions of the component proteins, most of which have not been studied experimentally.
Collapse
Affiliation(s)
- J E Hill
- National Research Council, Plant Biotechnology Institute, Saskatoon, SK, Canada
| | | |
Collapse
|