1
|
Li X, Li B, Gu S, Pang X, Mason P, Yuan J, Jia J, Sun J, Zhao C, Henry R. Single-cell and spatial RNA sequencing reveal the spatiotemporal trajectories of fruit senescence. Nat Commun 2024; 15:3108. [PMID: 38600080 PMCID: PMC11006883 DOI: 10.1038/s41467-024-47329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
The senescence of fruit is a complex physiological process, with various cell types within the pericarp, making it highly challenging to elucidate their individual roles in fruit senescence. In this study, a single-cell expression atlas of the pericarp of pitaya (Hylocereus undatus) is constructed, revealing exocarp and mesocarp cells undergoing the most significant changes during the fruit senescence process. Pseudotime analysis establishes cellular differentiation and gene expression trajectories during senescence. Early-stage oxidative stress imbalance is followed by the activation of resistance in exocarp cells, subsequently senescence-associated proteins accumulate in the mesocarp cells at late-stage senescence. The central role of the early response factor HuCMB1 is unveiled in the senescence regulatory network. This study provides a spatiotemporal perspective for a deeper understanding of the dynamic senescence process in plants.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
- Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, The University of Queensland, St Lucia, QLD 4072, Australia
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, 471023, China
| | - Bairu Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xinyue Pang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Patrick Mason
- Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiangfeng Yuan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jingyu Jia
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jiaju Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Chunyan Zhao
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Robert Henry
- Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Sinha N, Patra SK, Sarkar TS, Ghosh S. Secretome analysis identified extracellular superoxide dismutase and catalase of Macrophomina phaseolina. Arch Microbiol 2021; 204:62. [PMID: 34940926 DOI: 10.1007/s00203-021-02631-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/24/2023]
Abstract
Macrophomina phaseolina, a necrotrophic fungal pathogen is known to cause charcoal rot disease in food crops, pulse crops, oil crops and cotton and fibre crops. Necrotrophic fungi survive on dead plant tissue. It is well known that reactive oxygen species (ROS) are produced by the host plant during plant-pathogen interaction. However, it is still unclear how M. phaseolina can overcome the ROS-induced cellular damage. To mimic the invasion of M. phaseolina inside the plant cell wall, we developed solid substrate fermentation where M. phaseolina spore suspension was inoculated on a wheat bran bed and incubated for vegetative growth. To analyse the secretome of M. phaseolina after different day interval, its secretory material was collected and concentrated. Both superoxide dismutase (SOD) and catalase were detected in the secretome by zymogram. The presence of SOD and catalase was further confirmed by liquid chromatography based mass spectrometry. The physicochemical properties of M. phaseolina catalase in terms of stability towards pH, temperature, metal ions and chaotropic agent and inhibitors indicated its fitness at different environmental conditions. Apart from the production of catalase in SSF, the studies on this particular microorganism may also have significance in necrotrophic fungal pathogen and their susceptible host plant interaction.
Collapse
Affiliation(s)
- Nilanjan Sinha
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sourav Kumar Patra
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Tuhin Subhra Sarkar
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.,Sister Nibedita Government General Degree College for Girls, Hastings House, 20B, Judges Court Road, Kolkata, West Bengal, 700027, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
3
|
Schoina C, Bouwmeester K, Govers F. Infection of a tomato cell culture by Phytophthora infestans; a versatile tool to study Phytophthora-host interactions. PLANT METHODS 2017; 13:88. [PMID: 29090012 PMCID: PMC5657071 DOI: 10.1186/s13007-017-0240-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND The oomycete Phytophthora infestans causes late blight on potato and tomato. Despite extensive research, the P. infestans-host interaction is still poorly understood. To find new ways to further unravel this interaction we established a new infection system using MsK8 tomato cells. These cells grow in suspension and can be maintained as a stable cell line that is representative for tomato. RESULTS MsK8 cells can host several Phytophthora species pathogenic on tomato. Species not pathogenic on tomato could not infect. Microscopy revealed that 16 h after inoculation up to 36% of the cells were infected. The majority were penetrated by a germ tube emerging from a cyst (i.e. primary infection) while other cells were already showing secondary infections including haustoria. In incompatible interactions, MsK8 cells showed defense responses, namely reactive oxygen species production and cell death leading to a halt in pathogen spread at the single cell level. In compatible interactions, several P. infestans genes, including RXLR effector genes, were expressed and in both, compatible and incompatible interactions tomato genes involved in defense were differentially expressed. CONCLUSIONS Our results show that P. infestans can prosper as a pathogen in MsK8 cells; it not only infects, but also makes haustoria and sporulates, and it receives signals that activate gene expression. Moreover, MsK8 cells have the ability to support pathogen growth but also to defend themselves against infection in a similar way as whole plants. An advantage of MsK8 cells compared to leaves is the more synchronized infection, as all cells have an equal chance of being infected. Moreover, analyses and sampling of infected tissue can be performed in a non-destructive manner from early time points of infection onwards and as such the MsK8 infection system offers a potential platform for large-scale omics studies and activity screenings of inhibitory compounds.
Collapse
Affiliation(s)
- Charikleia Schoina
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Xue R, Wu X, Wang Y, Zhuang Y, Chen J, Wu J, Ge W, Wang L, Wang S, Blair MW. Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:1-7. [PMID: 28554466 DOI: 10.1016/j.plantsci.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 05/24/2023]
Abstract
Plant peroxidases (POXs) are one of the most important redox enzymes in the defense responses. However, the large number of different plant POX genes makes it necessary to carefully confirm the function of each paralogous POX gene in specific tissues and disease interactions. Fusarium wilt is a devastating disease of common bean caused by Fusarium oxysporum f. sp. phaseoli. In this study, we evaluated a peroxidase gene, PvPOX1, from a resistant common bean genotype, CAAS260205 and provided direct evidence for PvPOX1's role in resistance by transforming the resistant allele into a susceptible common bean genotype, BRB130, via hairy root transformation using Agrobacterium rhizogenes. Analysis of PvPOX1 gene over-expressing hairy roots showed it increased resistance to Fusarium wilt both in the roots and the rest of transgenic plants. Meanwhile, the PvPOX1 expressive level, the peroxidase activity and hydrogen peroxide (H2O2) accumulation were also enhanced in the interaction. The result showed that the PvPOX1 gene played an essential role in Fusarium wilt resistance through the occurrence of reactive oxygen species (ROS) induced hypersensitive response. Therefore, PvPOX1 expression was proven to be a valuable gene for further analysis which can strengthen host defense response against Fusarium wilt through a ROS activated resistance mechanism.
Collapse
Affiliation(s)
- Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Xingbo Wu
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Yingjie Wang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Yan Zhuang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Jian Chen
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Jing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weide Ge
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Lanfen Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shumin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Matthew W Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
5
|
Nandi A, Bishayi B. CCR-2 neutralization augments murine fresh BMC activation by Staphylococcus aureus via two distinct mechanisms: at the level of ROS production and cytokine response. Innate Immun 2017; 23:345-372. [PMID: 28409543 DOI: 10.1177/1753425917697806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CCR-2 signaling regulates recruitment of monocytes from the bone marrow into the bloodstream and then to sites of infection. We sought to determine whether CCL-2/CCR-2 signaling is involved in the killing of Staphylococcus aureus by murine bone marrow cells (BMCs). The intermittent link of reactive oxygen species (ROS)-NF-κB/p38-MAPK-mediated CCL-2 production in CCR-2 signaling prompted us to determine whether neutralization of CCR-2 augments the response of murine fresh BMCs (FBMCs) after S. aureus infection. It was observed that anti-CCR-2 Ab-treated FBMCs released fewer ROS on encountering S. aureus infection than CCR-2 non-neutralized FBMCs, also correlating with reduced killing of S. aureus in CCR-2 neutralized FBMCs. Staphylococcal catalase and SOD were also found to play a role in protecting S. aureus from the ROS-mediated killing of FBMC. S. aureus infection of CCR-2 intact FBMCs pre-treated with either NF-κB or p-38-MAPK blocker induced less CCL-2, suggesting that NF-κB or p-38-MAPK is required for CCL-2 production by FBMCs. Moreover, blocking of CCR-2 along with NF-κB or p-38-MAPK resulted in elevated CCL-2 production and reduced CCR-2 expression. Inhibition of CCR-2 impairs the response of murine BMCs to S. aureus infection by attenuation ROS production and modulating the cytokine response.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, West Bengal, India
| |
Collapse
|
6
|
Lightfoot DJ, Mcgrann GRD, Able AJ. The role of a cytosolic superoxide dismutase in barley-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2017; 18:323-335. [PMID: 26992055 PMCID: PMC6638290 DOI: 10.1111/mpp.12399] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reactive oxygen species (ROS), including superoxide ( O2·-/ HO2·) and hydrogen peroxide (H2 O2 ), are differentially produced during resistance responses to biotrophic pathogens and during susceptible responses to necrotrophic and hemi-biotrophic pathogens. Superoxide dismutase (SOD) is responsible for the catalysis of the dismutation of O2·-/ HO2· to H2 O2 , regulating the redox status of plant cells. Increased SOD activity has been correlated previously with resistance in barley to the hemi-biotrophic pathogen Pyrenophora teres f. teres (Ptt, the causal agent of the net form of net blotch disease), but the role of individual isoforms of SOD has not been studied. A cytosolic CuZnSOD, HvCSD1, was isolated from barley and characterized as being expressed in tissue from different developmental stages. HvCSD1 was up-regulated during the interaction with Ptt and to a greater extent during the resistance response. Net blotch disease symptoms and fungal growth were not as pronounced in transgenic HvCSD1 knockdown lines in a susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2·-/ HO2· contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi-biotrophic rice blast pathogen Magnaporthe oryzae or the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei, but HvCSD1 also played a role in the regulation of lesion development by methyl viologen. Together, these results suggest that HvCSD1 could be important in the maintenance of the cytosolic redox status and in the differential regulation of responses to pathogens with different lifestyles.
Collapse
Affiliation(s)
- Damien J. Lightfoot
- School of Agriculture, Food and WineThe University of AdelaideWaite Research Institute, PMB 1Glen OsmondSA5064Australia
- Present address:
Biological and Environmental Sciences & Engineering DivisionKing Abdullah University of Science and TechnologyThuwal, 23955–6900 Saudi Arabia
| | - Graham R. D. Mcgrann
- Department of Crop GeneticsJohn Innes CentreNorwichNR4 7UHUK
- Present address:
Crop Protection Team, Crop and Soil Systems Group, SRUCEdinburghEH9 3JGUK
| | - Amanda J. Able
- School of Agriculture, Food and WineThe University of AdelaideWaite Research Institute, PMB 1Glen OsmondSA5064Australia
| |
Collapse
|
7
|
Nandi A, Bishayi B. Intracellularly survived Staphylococcus aureus after phagocytosis are more virulent in inducing cytotoxicity in fresh murine peritoneal macrophages utilizing TLR-2 as a possible target. Microb Pathog 2016; 97:131-47. [DOI: 10.1016/j.micpath.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 01/27/2023]
|
8
|
El-Argawy E, A. Adss I. Quantitative Gene Expression of Peroxidase, Polyphenoloxidase and Catalase as Molecular Markers for Resistance against <i>Ralstonia solanacearum</i>. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajmb.2016.62010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Deng XG, Zhu T, Zhang DW, Lin HH. The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6219-32. [PMID: 26175355 PMCID: PMC4588879 DOI: 10.1093/jxb/erv328] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Brassinosteroids (BRs), plant steroid hormones, play essential roles in modulating cell elongation, vascular differentiation, senescence, and stress responses. However, the mechanisms by which BRs regulate plant mitochondria and resistance to abiotic stress remain largely unclear. Mitochondrial alternative oxidase (AOX) is involved in the plant response to a variety of environmental stresses. In this report, the role of AOX in BR-induced tolerance against cold, polyethylene glycol (PEG), and high-light stresses was investigated. Exogenous applied brassinolide (BL, the most active BR) induced, while brassinazole (BRZ, a BR biosynthesis inhibitor) reduced alternative respiration and AOX1 expression in Nicotiana benthamiana. Chemical scavenging of H2O2 and virus-induced gene silencing (VIGS) of NbRBOHB compromised the BR-induced alternative respiratory pathway, and this result was further confirmed by NbAOX1 promoter analysis. Furthermore, inhibition of AOX activity by chemical treatment or a VIGS-based approach decreased plant resistance to environmental stresses and compromised BR-induced stress tolerance. Taken together, our results indicate that BR-induced AOX capability might contribute to the avoidance of superfluous reactive oxygen species accumulation and the protection of photosystems under stress conditions in N. benthamiana.
Collapse
Affiliation(s)
- Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, PR China Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
10
|
Li X, Qiao J, Yang L, Li X, Qiao S, Pang X, Tian F, Chen H, He C. Mutation of alkyl hydroperoxide reductase gene ahpC of Xanthomonas oryzae pv. oryzae affects hydrogen peroxide accumulation during the rice-pathogen interaction. Res Microbiol 2014; 165:605-11. [PMID: 25084557 DOI: 10.1016/j.resmic.2014.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 07/22/2014] [Indexed: 01/16/2023]
Abstract
Hydrogen peroxide (H2O2) is usually generated by normal aerobic respiration of pathogens and by the host defense response during plant-pathogen interactions. In this study, histochemical localization of H2O2 accumulation in rice inoculated with the wild-type strain (PXO99(A)) and the gene deletion mutant (ΔahpC) of alkyl hydroperoxide reductase subunit C (AhpC) of Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen of rice, was analyzed. The ΔahpC mutant displayed a significant decrease in endogenous H2O2 accumulation which was induced by the compensatory increase in H2O2 scavenging activity. The change in the bacterial endogenous H2O2 level affected the total amount of H2O2 accumulation during the interaction with rice plants. These results suggested that Xoo contributes to H2O2 accumulation in rice in a compatible interaction, and pathogen-driving H2O2 is in association with cell collapse of rice.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaju Qiao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Lipeng Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Xinling Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Suyu Qiao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xinyue Pang
- Medical Technology and Engineering College, Henan University of Science and Technology, Luoyang 471003, China.
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Bishayi B, Bandyopadhyay D, Majhi A, Adhikary R. Possible Role of Toll-like Receptor-2 in the Intracellular Survival ofStaphylococcus aureusin Murine Peritoneal Macrophages: Involvement of Cytokines and Anti-Oxidant Enzymes. Scand J Immunol 2014; 80:127-43. [PMID: 24846691 DOI: 10.1111/sji.12195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- B. Bishayi
- Department of Physiology, Immunology Laboratory; University of Calcutta; University Colleges of Science and Technology; Calcutta West Bengal India
| | - D. Bandyopadhyay
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory; University of Calcutta; University Colleges of Science and Technology; Calcutta West Bengal India
| | - A. Majhi
- Department of Physiology, Immunology Laboratory; University of Calcutta; University Colleges of Science and Technology; Calcutta West Bengal India
| | - R. Adhikary
- Department of Physiology, Immunology Laboratory; University of Calcutta; University Colleges of Science and Technology; Calcutta West Bengal India
| |
Collapse
|
12
|
Liao YWK, Shi K, Fu LJ, Zhang S, Li X, Dong DK, Jiang YP, Zhou YH, Xia XJ, Liang WS, Yu JQ. The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection. PLANTA 2012; 235:225-38. [PMID: 21779957 DOI: 10.1007/s00425-011-1483-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/07/2011] [Indexed: 05/07/2023]
Abstract
The role of mitochondrial alternative oxidase (AOX) and the relationship between systemic AOX induction, ROS formation, and systemic plant basal defense to Tobacco mosaic virus (TMV) were investigated in tomato plants. The results showed that TMV inoculation significantly increased the level of AOX gene transcripts, ubiquinone reduction levels, pyruvate content, and cyanide-resistant respiration (CN-resistant R) in upper, un-inoculated leaves. Pretreatment with potassium cyanide (KCN, a cytochrome pathway inhibitor) greatly increased CN-resistant R and reduced reactive oxygen species (ROS) formation, while application of salicylhydroxamic acid (SHAM, an AOX inhibitor) blocked the AOX activity and enhanced the production of ROS in the plants. Furthermore, TMV systemic infection was enhanced by SHAM and reduced by KCN pretreatment, as compared with the un-pretreated TMV counterpart. In addition, KCN application significantly diminished TMV-induced increase in antioxidant enzyme activities and dehydroascorbate/total ascorbate pool, while an opposite change was observed with SHAM-pretreated plants. These results suggest that the systemic induction of the mitochondrial AOX pathway plays a critical role in the reduction of ROS to enhance basal defenses. Additional antioxidant systems were also coordinately regulated in the maintenance of the cellular redox homeostasis.
Collapse
Affiliation(s)
- Yang-Wen-Ke Liao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, 310058 Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang H, Huang J, Liang X, Bi Y. Involvement of hydrogen peroxide, calcium, and ethylene in the induction of the alternative pathway in chilling-stressed Arabidopsis callus. PLANTA 2012; 235:53-67. [PMID: 21814799 DOI: 10.1007/s00425-011-1488-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/15/2011] [Indexed: 05/22/2023]
Abstract
The roles of ethylene, hydrogen peroxide (H(2)O(2)), and calcium in inducing the capacity of the alternative respiratory pathway (AP) under chilling temperature in Arabidopsis thaliana calli were investigated. Exposure of wild-type (WT) calli, but not the calli of ethylene-insensitive mutants, etr1-3 and ein2-1, to chilling led to a marked increase of the AP capacity and triggered a rapid ethylene emission and H(2)O(2) generation. Increasing ethylene emission by applying 1-aminocyclopropane-1-carboxylic (an ethylene precursor) markedly enhanced the AP capacity in WT calli, but not in etr1-3 and ein2-1 calli, whereas suppressing ethylene emission by applying aminooxyacetic acid (an ethylene biosynthesis inhibitor) abolished the chilling-induced AP capacity in WT calli. Furthermore, exogenous H(2)O(2) treatment increased the AP capacity in WT calli, but not in etr1-3 and ein2-1 calli, while both catalase (H(2)O(2) scavenger) and diphenylene iodonium (DPI, an inhibitor of NADPH oxidase) completely inhibited the chilling-induced H(2)O(2) generation and largely inhibited the chilling-induced AP capacity. Interestingly, the chilling-induced AP capacity was completely inhibited by DPI and EGTA (calcium chelator). Further investigation demonstrated that H(2)O(2) and calcium induced ethylene emission under chilling stress. Ethylene modulated the chilling-induced increase of pyruvate content and the expression of alternative oxidase genes (AOX1a and AOX1c). Taken together, these results indicate that H(2)O(2)-, calcium- and ethylene-dependent pathways are required for chilling-induced increase in AP capacity. However, only ethylene is indispensable for the activation of the AP capacity.
Collapse
Affiliation(s)
- Huahua Wang
- Key Laboratory of Arid and Grassland Agroecology (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Kibinza S, Bazin J, Bailly C, Farrant JM, Corbineau F, El-Maarouf-Bouteau H. Catalase is a key enzyme in seed recovery from ageing during priming. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:309-15. [PMID: 21763542 DOI: 10.1016/j.plantsci.2011.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/02/2011] [Accepted: 06/06/2011] [Indexed: 05/20/2023]
Abstract
Ageing induces seed deterioration expressed as the loss of seed vigour and/or viability. Priming treatment, which consists in soaking of seeds in a solution of low water potential, has been shown to reinvigorate aged seeds. We investigate the importance of catalase in oxidation protection during accelerated ageing and repair during subsequent priming treatment of sunflower (Helianthus annuus L.) seeds. Seeds equilibrated to 0.29g H2Og(-1) dry matter (DM) were aged at 35°C for different durations and then primed by incubation for 7 days at 15°C in a solution of polyethylene glycol 8000 at -2MPa. Accelerated ageing affected seed germination and priming treatment reversed partially the ageing effect. The inhibition of catalase by the addition of aminotriazol during priming treatment reduced seed repair indicating that catalase plays a key role in protection and repair systems during ageing. Ageing was associated with H2O2 accumulation as showed by biochemical quantification and CeCl3 staining. Catalase was reduced at the level of gene expression, protein content and affinity. Interestingly, priming induced catalase synthesis by activating expression and translation of the enzyme. Immunocytolocalization of catalase showed that the enzyme co-localized with H2O2 in the cytosol. These results clearly indicate that priming induce the synthesis of catalase which is involved in seed recovery during priming.
Collapse
Affiliation(s)
- Serge Kibinza
- UR5 EAC7180 CNRS, UPMC Univ. Paris 06, Bat C 2 ème étage, 4, place Jussieu, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
15
|
Wang H, Liang X, Huang J, Zhang D, Lu H, Liu Z, Bi Y. Involvement of ethylene and hydrogen peroxide in induction of alternative respiratory pathway in salt-treated Arabidopsis calluses. PLANT & CELL PHYSIOLOGY 2010; 51:1754-65. [PMID: 20801923 DOI: 10.1093/pcp/pcq134] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The role of ethylene and hydrogen peroxide (H₂O₂) in the induction of the alternative respiratory pathway (AP) in calluses from wild-type (WT) Arabidopsis and ethylene-insensitive mutant etr1-3 under salt stress was investigated. The capacity and the contribution of the AP to the total respiration were significantly induced by 100 mM sodium chloride (NaCl) in WT calluses but only slightly induced in etr1-3 calluses. Ethylene emission was enhanced in WT calluses under salt stress. Application of 1-aminocyclopropane-1-carboxylic acid (an ethylene precursor) further increased the AP capacity in WT calluses but not in etr1-3 calluses under salt stress. Reduction of ethylene production by aminooxyacetic acid (AOA, an ethylene biosynthesis inhibitor) in WT calluses eliminated the NaCl-induced increase of ethylene emission and inhibited AP induction under salt stress, suggesting that ethylene is required for AP induction. H₂O₂ enhanced ethylene production while ethylene reduced H₂O₂ generation in WT calluses under salt stress. In addition, ethylene and H₂O₂ modulated NaCl-induced alternative oxidase gene (AOX1a) expression and the increase in pyruvate content in WT calluses. Inhibition of the AP by salicylhydroxamic acid in WT calluses under salt stress resulted in severe cellular damage as indicated by the high content of H₂O₂, malondialdehyde and more electrolyte leakage. Taken together, ethylene and H₂O₂ are involved in the salt-induced increase of the AP, which plays an important role in salt tolerance in WT calluses, and ethylene may be acting downstream of H₂O₂.
Collapse
Affiliation(s)
- Huahua Wang
- Key Laboratory of Arid and Grassland Agroecology (Ministry of Education), School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Das D, Bishayi B. Staphylococcal catalase protects intracellularly survived bacteria by destroying H2O2 produced by the murine peritoneal macrophages. Microb Pathog 2009; 47:57-67. [PMID: 19439176 DOI: 10.1016/j.micpath.2009.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 01/04/2023]
Abstract
To determine the interrelationship between the hydrogen peroxide (H(2)O(2)) mediated killing and the potential role of bacterial catalase and SOD in the evasion of host defense, we examined three clinical isolates of Staphylococcus aureus and evaluated their intracellular survival mechanism within murine peritoneal macrophages. Fluorescent microscopy and bacterial colony-forming unit (cfu) count revealed that phagocytic capacity of murine peritoneal macrophages was highest after 2h of in vitro infection with S. aureus. To understand whether catalase and SOD contributing in the intracellular survival, were of bacterial origin or not, 3 amino 1,2,4 triazole (ATZ) and Diethyldithiocarbamic acid (DDC) were used to inhibit specifically macrophage derived catalase and SOD respectively. Catalase activity from the whole staphylococcal cell in presence of ATZ suggested that the released catalase were of extracellular origin. Scanning electron microscopy revealed the degraded host cell membrane integrity during prolonged infection. Purified bacterial catalase from the intracellularly survived S. aureus recovered after 5h of infection and its inhibition by ATZ in the zymography strengthened the scope of involvement of these anti-oxidants in the intracellular survival of S. aureus.
Collapse
Affiliation(s)
- Debaditya Das
- Department of Physiology, Immunology Laboratory, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India.
| | | |
Collapse
|
17
|
Belhaj K, Lin B, Mauch F. The chloroplast protein RPH1 plays a role in the immune response of Arabidopsis to Phytophthora brassicae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:287-298. [PMID: 19170932 DOI: 10.1111/j.1365-313x.2008.03779.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant immune responses to pathogens are often associated with enhanced production of reactive oxygen species (ROS), known as the oxidative burst, and with rapid hypersensitive host cell death (the hypersensitive response, HR) at sites of attempted infection. It is generally accepted that the oxidative burst acts as a promotive signal for HR, and that HR is highly correlated with efficient disease resistance. We have identified the Arabidopsis mutant rph1 (resistance to Phytophthora 1), which is susceptible to the oomycete pathogen Phytophthora brassicae despite rapid induction of HR. The susceptibility of rph1 was specific for P. brassicae and coincided with a reduced oxidative burst, a runaway cell-death response, and failure to properly activate the expression of defence-related genes. From these results, we conclude that, in the immune response to P. brassicae, (i) HR is not sufficient to stop the pathogen, (ii) HR initiation can occur in the absence of a major oxidative burst, (iii) the oxidative burst plays a role in limiting the spread of cell death, and (iv) RPH1 is a positive regulator of the P. brassicae-induced oxidative burst and enhanced expression of defence-related genes. Surprisingly, RPH1 encodes an evolutionary highly conserved chloroplast protein, indicating a function of this organelle in activation of a subset of immune reactions in response to P. brassicae. The disease resistance-related role of RPH1 was not limited to the Arabidopsis model system. Silencing of the potato homolog StRPH1 in a resistant potato cultivar caused susceptibility to the late blight pathogen Phytophthora infestans.
Collapse
Affiliation(s)
- Khaoula Belhaj
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | |
Collapse
|
18
|
|
19
|
Agrawal V, Zhang C, Shapiro AD, Dhurjati PS. A Dynamic Mathematical Model To Clarify Signaling Circuitry Underlying Programmed Cell Death Control in Arabidopsis Disease Resistance. Biotechnol Prog 2008; 20:426-42. [PMID: 15058987 DOI: 10.1021/bp034226s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant cells undergo programmed cell death in response to invading pathogens. This cell death limits the spread of the infection and triggers whole plant antimicrobial and immune responses. The signaling network connecting molecular recognition of pathogens to these responses is a prime target for manipulation in genetic engineering strategies designed to improve crop plant disease resistance. Moreover, as alterations to metabolism can be misinterpreted as pathogen infection, successful plant metabolic engineering will ultimately depend on controlling these signaling pathways to avoid inadvertent activation of cell death. Programmed cell death resulting from infection of Arabidopsis thaliana with Pseudomonas syringae bacterial pathogens was chosen as a model system. Signaling circuitry hypotheses in this model system were tested by construction of a differential-equations-based mathematical model. Model-based simulations of time evolution of signaling components matched experimental measurements of programmed cell death and associated signaling components obtained in a companion study. Simulation of systems-level consequences of mutations used in laboratory studies led to two major improvements in understanding of signaling circuitry: (1) Simulations supported experimental evidence that a negative feedback loop in salicylic acid biosynthesis postulated by others does not exist. (2) Simulations showed that a second negative regulatory circuit for which there was strong experimental support did not affect one of two pathways leading to programmed cell death. Simulations also generated testable predictions to guide future experiments. Additional testable hypotheses were generated by results of individually varying each model parameter over 2 orders of magnitude that predicted biologically important changes to system dynamics. These predictions will be tested in future laboratory studies designed to further elucidate the signaling network control structure.
Collapse
Affiliation(s)
- Vikas Agrawal
- Department of Plant and Soil Sciences, Delaware Agricultural Experiment Station, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
20
|
Blackman LM, Hardham AR. Regulation of catalase activity and gene expression during Phytophthora nicotianae development and infection of tobacco. MOLECULAR PLANT PATHOLOGY 2008; 9:495-510. [PMID: 18705863 PMCID: PMC6640254 DOI: 10.1111/j.1364-3703.2008.00478.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant defence against pathogen attack typically incorporates an oxidative burst involving elevated levels of reactive oxygen species such as hydrogen peroxide. In the present study, we have used an in-gel assay to monitor the activity of the hydrogen peroxide scavenging enzyme, catalase, during asexual development of Phytophthora nicotianae and during infection of host tobacco plants. In vitro, catalase activity is highest in sporulating hyphae; in planta, catalase activity increases dramatically about 8 h after host inoculation. We have cloned and characterized three catalase genes, designated PnCat1, PnCat2 and PnCat3, from P. nicotianae and identified their homologues in P. infestans, P. sojae and P. ramorum. In all three species, Cat2 is predicted to be targeted to the peroxisome and the other catalases are likely to be cytosolic. Quantitative real-time PCR assessment of catalase transcripts during development and infection indicates that peroxisomal PnCat2 is the gene predominantly expressed, with transcript levels peaking in vitro in sporulating hyphae and in planta increasing dramatically during the first 24 h after inoculation of susceptible tobacco seedlings. Levels of tobacco catalase gene expression are significantly down-regulated in susceptible tobacco 4, 8 and 24 h post-inoculation and in resistant plants at 24 h post-inoculation. Together, our results give evidence that during infection P. nicotianae increases its own peroxisomal catalase levels while concurrently down-regulating host catalase expression. This behaviour is consistent with a role of pathogen catalase in counterdefence and protection against oxidative stress and of pathogen-orchestrated enhanced plant cell death to support necrotrophic pathogen growth and plant colonization.
Collapse
Affiliation(s)
- Leila M Blackman
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
21
|
Elicitor and calatalse activity of conidia suspensions of various strains of Magnaporthe grisea in suspension-cultured cells of rice. Biosci Biotechnol Biochem 2008; 72:889-92. [PMID: 18323633 DOI: 10.1271/bbb.70684] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A conidia suspension of Magnaporthe grisea carried elicitor activity that induced the expression of defense-related genes and the production of H(2)O(2) in suspension-cultured rice cells. The levels of H(2)O(2) produced were dependent on fungal isolates and were correlated with the catalase activity in the supernatant fraction of each conidia suspension, not with gene-for-gene interactions.
Collapse
|
22
|
Li X, Feng HQ, Pang XY, Li HY. Mesosome formation is accompanied by hydrogen peroxide accumulation in bacteria during the rifampicin effect. Mol Cell Biochem 2007; 311:241-7. [PMID: 18163201 DOI: 10.1007/s11010-007-9690-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 12/16/2007] [Indexed: 11/25/2022]
Abstract
Ultrastructural alteration and hydrogen peroxide localization were examined in Xanthomonas campestris pv. phaseoli during rifampicin effect using transmission electron microscopy. Bacterial cells were treated with rifampicin and then were examined by electron microscopy to observe the changes of ultrastructure or hydrogen peroxide accumulation in living cells that took place before lysis. Intriguingly, rifampicin treatment led to presence of an additional location of hydrogen peroxide accumulation within the cells. There was an association between the frequency and size of the additional location of hydrogen peroxide accumulation and the concentration of rifampicin. Furthermore, an additional ultrastructure, mesosomes, was also present in cells during rifampicin effect. The frequency and size of mesosome increased with the increasing concentration of rifampicin. Result of multiple linear regression showed that the size of mesosome plays as a key factor in the quantity of excess hydrogen peroxide accumulation in cells during rifampicin effect. Linear correlation was confirmed between quantity of excess hydrogen peroxide accumulation and the size of mesosome in cells during rifampicin effect. This finding intensely indicated that mesosomes are just the additional location of hydrogen peroxide accumulation in cells under cellular injury caused by rifampicin treatment. The mesosome formation is always accompanied by excess hydrogen peroxide accumulation in X. campestris pv. phaseoli during rifampicin effect.
Collapse
Affiliation(s)
- Xin Li
- MOE Key Laboratory of Arid and Grassland Ecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | |
Collapse
|
23
|
Koehl J, Djulic A, Kirner V, Nguyen TT, Heiser I. Ethylene is required for elicitin-induced oxidative burst but not for cell death induction in tobacco cell suspension cultures. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1555-63. [PMID: 17913292 DOI: 10.1016/j.jplph.2007.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/05/2007] [Accepted: 05/22/2007] [Indexed: 05/17/2023]
Abstract
The signal compound ethylene and its relationships with oxidative burst and cell death were analyzed in cultured tobacco cells treated with the proteinaceous elicitor quercinin. Quercinin belongs to the protein family of elicitins and was isolated from the soil-born oak pathogen Phytophthora quercina. It was shown to induce a dose-dependent oxidative burst in tobacco cell culture in concentrations from 0.05 to 0.5 nM, and subsequently, cell death. The characteristics of quercinin-induced cell death included both membrane damage and DNA fragmentation in tobacco cell culture. At higher quercinin concentrations (2 nM), H(2)O(2) formation and ethylene biosynthesis were inhibited. Ethylene at low concentrations proved to be necessary for induction and maintenance of H(2)O(2) production in tobacco cells treated with quercinin. It was demonstrated that external addition of inhibitors of ethylene biosynthesis such as alpha-amino-oxy-acetic acid (AOA) and CoCl(2) also decreased or even inhibited the quercinin-induced oxidative burst, but did not influence cell death induction. These results demonstrate evidence for a requirement of the plant hormone ethylene for the onset of the quercinin-induced oxidative burst.
Collapse
Affiliation(s)
- Julia Koehl
- Institute of Pathology of Woody Plants, Life Science Center Weihenstephan, Technische Universität München, Am Hochanger 13, 85350 Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
24
|
Li X, Li H, Pang X, Feng H, Zhi D, Wen J, Wang J. Localization changes of endogenous hydrogen peroxide during cell division cycle of Xanthomonas. Mol Cell Biochem 2007; 300:207-13. [PMID: 17375266 DOI: 10.1007/s11010-006-9385-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Production and localization of endogenous hydrogen peroxide (H2O2) were investigated in strains of Xanthomonas by histochemical analysis under electron microscopy. Even though the levels of endogenous H2O2 production were different among various strains, the produced H2O2 was localized in the cell wall of all Xanthomonas strains tested. The impairment of the level of endogenous H2O2 accumulation resulted in a significantly decreased growth rate of bacteria, regardless if the difference of the H2O2 level is originally present between wild type strains or caused by mutation of the ahpC gene of Xanthomonas. The endogenous accumulation of H2O2 positively correlates with the cell division. Interestingly, the accumulated H2O2 was also localized in the mesosome-like structure and nucleoids during the cell division cycle. Furthermore, results revealed quantitative and dimensional changes of H2O2 accumulation in the two additional locations. These findings indicated that the additional locations of the accumulated H2O2 were closely associated with the process of cell division. Together, these results suggest that the endogenous H2O2 production plays an important role in cell proliferation of Xanthomonas.
Collapse
Affiliation(s)
- Xin Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Feng H, Li H, Li X, Duan J, Liang H, Zhi D, Ma J. The flexible interrelation between AOX respiratory pathway and photosynthesis in rice leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:228-35. [PMID: 17408956 DOI: 10.1016/j.plaphy.2007.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 01/15/2007] [Indexed: 05/14/2023]
Abstract
Alternative respiratory pathway was investigated in rice seedlings grown under total darkness, light/dark cycle, or continuous light. The capacity of the alternative pathway was relatively higher in leaves that had longer light exposure. An analysis of rice AOX1 multigene family revealed that AOX1c, but not AOX1a and AOX1b, had a light-independent expression. The alternative oxidase (AOX) inhibitor, salicylhydroxamic acid (SHAM, 1mM), inhibited nearly 68% of the capacity of the alternative pathway in leaves grown under different light conditions. The plants grown under different light periods were treated with SHAM and then were exposed to illumination for 4h. The transition from dark to 4h of light stimulated the capacity of alternative pathway in etiolated rice seedlings and in those grown under light/dark cycle, whereas the capacity of the alternative pathway was constant in seedlings grown under continuous light with additional 4h of illumination. Etiolated leaves did not show any CO(2) fixation after 4h of illumination, and the increase in chlorophyll content was delayed by the SHAM pretreatment. When seedlings grown under light/dark cycle were moved from dark and exposed to 4h of light, increases in chlorophyll content and CO(2) fixation rate were reduced by SHAM. Although these parameters were stable in plants grown under continuous light, SHAM decreased CO(2) fixation rate but not the chlorophyll content. These results indicate that the role and regulation of AOX in light are determined by the developmental stage of plant photosynthetic apparatus.
Collapse
Affiliation(s)
- Hanqing Feng
- Department of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 298 Tian Shui Road, 730000 Lanzhou, Gansu, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Ahn IP, Kim S, Lee YH, Suh SC. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:838-48. [PMID: 17158583 PMCID: PMC1803731 DOI: 10.1104/pp.106.092627] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Thiamine confers systemic acquired resistance (SAR) on susceptible plants through priming, leading to rapid counterattack against pathogen invasion and perturbation of disease progress. Priming reduces the metabolic cost required for constitutive expression of acquired resistance. To investigate the effects of priming by thiamine on defense-related responses, Arabidopsis (Arabidopsis thaliana) was treated with thiamine and effects of pathogen challenge on the production of active oxygen species, callose deposition, hypersensitive cell death, and pathogenesis-related 1 (PR1)/Phe ammonia-lyase 1 (PAL1) gene expression was analyzed. Thiamine did not induce cellular and molecular defense responses except for transient expression of PR1 per se; however, subsequent Pseudomonas syringae pv tomato challenge triggered pronounced cellular defense responses and advanced activation of PR1/PAL1 gene transcription. Thiamine treatment and subsequent pathogen invasion triggered hydrogen peroxide accumulation, callose induction, and PR1/PAL1 transcription activation in Arabidopsis mutants insensitive to jasmonic acid (jar1), ethylene (etr1), or abscisic acid (abi3-3), but not in plants expressing bacterial NahG and lacking regulation of SAR (npr1 [nonexpressor of PR genes 1]). Moreover, removal of hydrogen peroxide by catalase almost completely nullified cellular and molecular defense responses as well as SAR abolishing bacterial propagation within plants. Our results indicated that priming is an important cellular mechanism in SAR by thiamine and requires hydrogen peroxide and intact NPR1.
Collapse
Affiliation(s)
- Il-Pyung Ahn
- National Institute of Agricultural Biotechnology, Suwon 441-100, Korea.
| | | | | | | |
Collapse
|
27
|
Le Deunff E, Davoine C, Le Dantec C, Billard JP, Huault C. Oxidative burst and expression of germin/oxo genes during wounding of ryegrass leaf blades: comparison with senescence of leaf sheaths. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:421-31. [PMID: 15086803 DOI: 10.1111/j.1365-313x.2004.02056.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two bursts of H(2)O(2) production have been detected by in situ 3,3'-diaminobenzidine (DAB) staining after cutting of Lolium perenne L. leaf blades. The first burst, which occurred immediately after wounding was inhibited by Na-diethydithiocarbamate (DIECA), a Cu/Zn-superoxide dismutase (SOD) inhibitor. The second burst, which was initiated several hours later, coincided with the induction of oxalate oxidase (G-OXO) activity detected in vitro or visualized in situ by the alpha-chloronaphtol assay. Four genes encoding G-OXO have been identified from cDNA obtained from wounded L. perenne L. leaf blades. Comparison of protein sequences revealed more than 91% homology in the coding region between G-OXOs of the true cereals and G-OXOs of ryegrass, which is a Gramineae belonging to the tribe of Festucaceae. The wound-dependent increase of G-OXO activity in floated cut leaf blades was the result of differential induction of the four g-oxo genes. The involvement of G-OXOs in wound-induced H(2)O(2) production coincided with the presence in leaf tissues of oxalate throughout the period of increase of G-OXO synthesis. Moreover, expression of g-oxo genes was enhanced by an exogenous supply of H(2)O(2) or methyljasmonate (MeJa). Expression of the four g-oxo genes was also induced after in planta stinging of leaf blades. The pattern of their expression in planta was identical to that occuring in senescing leaf sheaths. These results emphasize the importance of G-OXOs in H(2)O(2) production in oxalate-producing plant species such as ryegrass. G-OXOs might be crucial during critical events in the life of plants such as cutting and senescence by initiating H(2)O(2)-mediated defences against pathogens and foraging animals.
Collapse
Affiliation(s)
- Erwan Le Deunff
- Laboratoire d'Ecophysiologie Végétale et Agronomie, UMR INRA-UCBN 950, Institut de Recherche en Biologie Appliquée, Université de Caen, 14032 Caen Cedex, France.
| | | | | | | | | |
Collapse
|
28
|
Zhang C, Gutsche AT, Shapiro AD. Feedback control of the Arabidopsis hypersensitive response. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:357-365. [PMID: 15077668 DOI: 10.1094/mpmi.2004.17.4.357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The plant hypersensitive response (HR) to avirulent bacterial pathogens results from programmed cell death of plant cells in the infected region. Ion leakage and changes in signaling components associated with HR progression were measured. These studies compared Arabidopsis mutants affecting feedback loops with wild-type plants, with timepoints taken hourly. In response to Pseudomonas syringae pv. tomato DC3000 x avrB, npr1-2 mutant plants showed increased ion leakage relative to wild-type plants. Hydrogen peroxide accumulation was similar to that in wild type, but salicylic acid accumulation was reduced at some timepoints. With DC3000 x avrRpt2, similar trends were seen. In response to DC3000 x avrB, ndr1-1 mutant plants showed more ion leakage than wild-type or npr1-2 plants. Hydrogen peroxide accumulation was delayed by approximately 1 h and reached half the level seen with wild-type plants. Salicylic acid accumulation was similar to npr1-2 mutant plants. With DC3000 x avrRpt2, ndr1-1 mutant plants showed no ion leakage, no hydrogen peroxide accumulation, and minimal salicylic acid accumulation. Results with a ndr1-1 and npr1-2 double mutant were similar to ndr1-1. A model consistent with these data is presented, in which one positive and two negative regulatory circuits control HR progression. Understanding this circuitry will facilitate HR manipulation for enhanced disease resistance.
Collapse
Affiliation(s)
- Chu Zhang
- Department of Plant and Soil Sciences, Delaware Agricultural Experiment Station, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19716-2170, USA
| | | | | |
Collapse
|
29
|
Jang CS, Kim JY, Haam JW, Lee MS, Kim DS, Li YW, Seo YW. Expressed sequence tags from a wheat-rye translocation line (2BS/2RL) infested by larvae of Hessian fly [Mayetiola destructor (Say)]. PLANT CELL REPORTS 2003; 22:150-158. [PMID: 12845472 DOI: 10.1007/s00299-003-0641-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Revised: 04/04/2003] [Accepted: 04/10/2003] [Indexed: 05/24/2023]
Abstract
Of the 16 known biotypes of the Hessian fly [ Mayetiola destructor (Say)], biotype L is recognized as being the most virulent. We have previously reported the development of near-isogenic lines (NILs) (BC(3)F(3:4)) by backcross introgression (Coker797*4/Hamlet) that differed by the presence or absence of the H21 gene on 2RL chromatin. Florescence in situ hybridization analysis revealed introgressed 2RLs in NILs possessing the H21 gene, but no signal was detected in NILs lacking 2RL. As part of an approach to elucidate molecular interactions between plants and the Hessian fly, a cDNA library from NILs with H21 infested by larvae of biotype L of the Hessian fly was constructed for expressed sequence tag (EST) analysis. Of 1,056 sequenced reactions attempted, 919 ESTs produced some lengths of readable sequences. Based on their putative identification, 730 ESTs that showed significant similarity with amino acid sequences registered in the gene bank were divided into 13 functional categories. Defense- and stress-related genes represented about 16.1%, including protease inhibition, oxidative burst, lignin synthesis, and phenylpropanoid metabolism. EST clones obtained from the cDNA library may provide a clue to the molecular interactions between plant and larva of the Hessian fly larval infestation.
Collapse
Affiliation(s)
- C S Jang
- Department of Crop Science, Division of Biotechnology and Genetic Engineering, Korea University, Anam-Dong, Seongbuk-Gu, 136-701 Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Olivain C, Trouvelot S, Binet MN, Cordier C, Pugin A, Alabouvette C. Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum. Appl Environ Microbiol 2003. [PMID: 12957934 DOI: 10.1128/aem.69.9.5453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Fusarium oxysporum includes nonpathogenic strains and pathogenic strains that can induce necrosis or tracheomycosis in plants. The objective of this study was to compare the abilities of a pathogenic strain (Foln3) and a nonpathogenic strain (Fo47) to colonize flax roots and to induce early physiological responses in flax cell culture suspensions. Both strains colonized the outer cortex of the root; however, plant defense reactions, i.e., the presence of wall appositions, osmiophilic material, and collapsed cells, were less frequent and less intense in a root colonized by Foln3 than by Fo47. Early physiological responses were measured in flax cell suspensions confronted with germinated microconidia of both strains. Both pathogenic (Foln3) and nonpathogenic strains (Fo47) triggered transient H(2)O(2) production in the first few minutes of the interaction, but the nonpathogenic strain also induced a second burst 3 h postinoculation. Ca(2+) influx was more intense in cells inoculated with Fo47 than in cells inoculated with Foln3. Similarly, alkalinization of the extracellular medium was higher with Fo47 than with Foln3. Inoculation of the fungi into flax cell suspensions induced cell death 10 to 20 h postinoculation, with a higher percentage of dead cells observed with Fo47 than with Foln3 beginning at 14 h. This is the first report showing that early physiological responses of flax cells can be used to distinguish pathogenic and nonpathogenic strains of the soil-borne fungus F. oxysporum.
Collapse
|
31
|
Olivain C, Trouvelot S, Binet MN, Cordier C, Pugin A, Alabouvette C. Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum. Appl Environ Microbiol 2003; 69:5453-62. [PMID: 12957934 PMCID: PMC194917 DOI: 10.1128/aem.69.9.5453-5462.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 06/10/2003] [Indexed: 11/20/2022] Open
Abstract
Fusarium oxysporum includes nonpathogenic strains and pathogenic strains that can induce necrosis or tracheomycosis in plants. The objective of this study was to compare the abilities of a pathogenic strain (Foln3) and a nonpathogenic strain (Fo47) to colonize flax roots and to induce early physiological responses in flax cell culture suspensions. Both strains colonized the outer cortex of the root; however, plant defense reactions, i.e., the presence of wall appositions, osmiophilic material, and collapsed cells, were less frequent and less intense in a root colonized by Foln3 than by Fo47. Early physiological responses were measured in flax cell suspensions confronted with germinated microconidia of both strains. Both pathogenic (Foln3) and nonpathogenic strains (Fo47) triggered transient H(2)O(2) production in the first few minutes of the interaction, but the nonpathogenic strain also induced a second burst 3 h postinoculation. Ca(2+) influx was more intense in cells inoculated with Fo47 than in cells inoculated with Foln3. Similarly, alkalinization of the extracellular medium was higher with Fo47 than with Foln3. Inoculation of the fungi into flax cell suspensions induced cell death 10 to 20 h postinoculation, with a higher percentage of dead cells observed with Fo47 than with Foln3 beginning at 14 h. This is the first report showing that early physiological responses of flax cells can be used to distinguish pathogenic and nonpathogenic strains of the soil-borne fungus F. oxysporum.
Collapse
|
32
|
Dayakar BV, Lin HJ, Chen CH, Ger MJ, Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC, Feng TY. Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin(pss)-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). PLANT MOLECULAR BIOLOGY 2003; 51:913-24. [PMID: 12777051 DOI: 10.1023/a:1023061303755] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The hypersensitive response (HR) is a form of cell death associated with plant resistance to pathogen infection. Harpin(pss), an elicitor from the bacterium Pseudomonas syringae pv. syringae, induces a HR in non-host plants. Previously, we reported an amphipathic protein from sweet pepper interfering with harpin(pss)-mediated HR. In this report, we isolated and characterized a cDNA clone encoded that amphipathic protein from sweet pepper. This protein is designated as PFLP (plant ferredoxin-like protein) by virtue of its high homology with plant ferredoxin protein containing an N-terminal signal peptide responsible for chloroplast targeting and a putative 2Fe-2S domain responsible for redox activity. Recombinant PFLP obtained from Escherichia coli was able to significantly increase active oxygen species (AOS) generation when mixed with harpin(pss) in tobacco suspension cells. It also showed enhanced HR when co-infiltrated with harpin(pss) in tobacco leaves. We used a transgenic tobacco suspension cells system that constitutively expresses the Pflp gene driven by the CaMV 35S promoter to study the function of PFLP in enhancing harpin(pss)-mediated hypersensitive cell death in vivo. In response to harpin(pss), suspension cells derived from Pflp transgenic tobacco showed a significant increase both in the generation of AOS and in cell death as compared to the wild type. AOS inhibitors diphenylene iodonium chloride (DPI) and lanthanum chlorate (LaCl3) were used to study the involvement of AOS in harpin(pss)-induced cell death. Our results demonstrate enhanced generation of AOS is necessary to cause enhanced hypersensitive cell death in Pflp transgenic tobacco cells and it is plasma membrane-bound NADPH-oxidase-dependent. Sub-cellular localization studies showed that PFLP is present in the cytoplasm and chloroplast of Pflp transgenic tobacco cells, but only in the chloroplast, not in the cytoplasm, of wild-type tobacco cells. It is possible that PFLP can change the redox state of the cell upon harpin(pss) inoculation to increase AOS generation and hypersensitive cell death. Overall, this study will provide a new insight in the functional properties of ferredoxin in hypersensitive cell death.
Collapse
|
33
|
Resende MLV, Salgado SML, Chaves ZM. Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos. ACTA ACUST UNITED AC 2003. [DOI: 10.1590/s0100-41582003000200001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A explosão oxidativa é uma resposta de defesa da planta após o reconhecimento do patógeno, conduzindo à reação de hipersensibilidade (HR). Esta resposta é devido à geração de espécies ativas de oxigênio (ROS ou EAO's), tais como H2O2, O2-, e OH- As espécies ativas de oxigênio possuem várias funções na resposta de defesa da planta. Peróxido de higrogênio (H2O2) pode ser diretamente tóxico ao patógeno e está envolvido com o fortalecimento da parede celular, uma vez que o H2O2 é necessário para a biossíntese de lignina. Peróxido de hidrogênioatua também como mensageiro secundário, sendo responsável pela ativação da hidrolase do ácido benzóico, enzima responsável pela conversão do ácido benzóico em ácido salicílico. A explosão oxidativa não está confinada somente à HR macroscópica, uma vez que explosões oxidativas secundárias poderão ocorrer nos tecidos distantes, causando micro-HR's e conduzindo à resistência sistêmica adquirida (SAR), a qual é mediada pelo ácido salicílico como um sinal. Portanto, a ocorrência de HR e SAR é dependente da cascata de sinalização derivada da explosão oxidativa, que por sua vez é um evento inicial na resposta da planta contra a invasão do patógeno.
Collapse
|
34
|
Do HM, Hong JK, Jung HW, Kim SH, Ham JH, Hwang BK. Expression of peroxidase-like genes, H2O2 production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. vesicatoria in Capsicum annuum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:196-205. [PMID: 12650451 DOI: 10.1094/mpmi.2003.16.3.196] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pepper ascorbate peroxidase-like (CAPOA1), thioredoxin peroxidase-like (CAPOT1), and peroxidase-like (CAPO1) clones were isolated from pepper leaves inoculated with avirulent strain Bv5-4a of Xanthomonas campestris pv. vesicatoria. CAPOA1, CAPOT1, and CAPO1 mRNA disappeared 18 to 30 h after the bacterial infection when the hypersensitive response (HR) was visible. In contrast, peroxidase activity reached a peak at 18 h after infection and then declined at 24 and 30 h when H2O2 accumulation level was maximal. These results suggest that the striking accumulation of H2O2 and strong decrease in peroxidase activity during the programmed cell death may be due to the strong suppression of CAPOA1, CAPOT1, and CAPO1 gene expression. Infection by Phytophthora capsici or Colletotricum gloeosporioides also induced the expression of the three putative peroxidase genes in pepper tissues. CAPOA1 mRNAs were in situ localized in phloem areas of vascular bundles in pepper tissues infected by Colletotricum. coccodes, P. capsici, or C. gloeosporioides. Exogenous treatment with H2O2 strongly induced the CAPOA1 and CAPOT1 transcription 1 h after treatment, while the CAPO1 transcripts accumulated 12 h after H2O2 treatment. We suggest that pepper ascorbate peroxidase and thioredoxin peroxidase genes may function as regulators of H2O2 level and total peroxidase activity in the oxidative burst during the HR to incompatible pathogen interaction in pepper plant.
Collapse
Affiliation(s)
- Hyun Mee Do
- Laboratory of Molecular Plant Pathology, College of Life and Environmental Sciences, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|