1
|
Karunarathna KHT, Senathilake NHKS, Mewan KM, Weerasena OVDSJ, Perera SACN. In silico structural homology modelling of EST073 motif coding protein of tea Camellia sinensis (L). J Genet Eng Biotechnol 2020; 18:32. [PMID: 32685981 PMCID: PMC7370249 DOI: 10.1186/s43141-020-00038-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Background Tea (Camellia sinensis (L). O. Kuntze) is known as the oldest, mild stimulating caffeine containing non-alcoholic beverage. One of the major threats in south Asian tea industry is the blister blight leaf disease (BB), caused by the fungus Exobasidium vexans Masse. SSR DNA marker EST SSR 073 is used as a molecular marker to tag blister blight disease resistance trait of tea. The amino acid sequences were derived from cDNA sequences related to EST SSR 073 of BB susceptible (TRI 2023) and BB resistant (TRI 2043) cultivars. An attempt has been made to understand the structural characteristics and variations of EST SSR 073 locus that may reveal the factors influencing the BB resistance of tea with multiple bioinformatics tools such as ORF finder, ExPasy ProtParam tools, modeler V 9.17, Rampage server, UCSF-Chimera, and HADDOCK docking server. Results The primary, secondary, and tertiary structures of EST SSR 073 coding protein were analyzed using the amino acid sequences of both BB resistant TRI 2043 and BB susceptible TRI 2023 tea cultivars. The coding amino acid sequences of both the cultivars were homologous to photosystem I subunit protein (PsaD I) of Pisum sativum. The predicted 3D structures of proteins were validated and considered as an acceptable overall stereochemical quality. The BB resistant protein showed CT repeat extension and did not involve in topology of the PsaD I subunit. The C terminal truncation of BB resistance caused the formation of hydrogen bonds interacting with PsaD I and other subunits of photosystem I in the modeled three-dimensional protein structure. Conclusions Camellia sinensis EST 073 SSR motif coding protein was identified as the PsaD I subunit of photosystem I. The exact mechanism of PsaD I conferring the resistance for blister blight in tea needs to be further investigated.
Collapse
Affiliation(s)
- K H T Karunarathna
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka. .,Current address: Department of biosystems Technology, Faculty of Technology, University of Ruhuna, Matara, Sri Lanka.
| | - N H K S Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - K M Mewan
- Department of Biotechnology, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
| | - O V D S J Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - S A C N Perera
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| |
Collapse
|
2
|
Lysine Propionylation is a Widespread Post-Translational Modification Involved in Regulation of Photosynthesis and Metabolism in Cyanobacteria. Int J Mol Sci 2019; 20:ijms20194792. [PMID: 31561603 PMCID: PMC6801645 DOI: 10.3390/ijms20194792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Lysine propionylation is a reversible and widely distributed post-translational modification that is known to play a regulatory role in both eukaryotes and prokaryotes. However, the extent and function of lysine propionylation in photosynthetic organisms remains unclear. Cyanobacteria are the most ancient group of Gram-negative bacteria capable of oxygenic photosynthesis, and are of great importance to global carbon and nitrogen cycles. Here, we carried out a systematic study of lysine propionylaiton in cyanobacteria where we used Synechocystis sp. PCC 6803 (Synechocystis) as a model. Combining high-affinity anti-propionyllysine pan antibodies with high-accuracy mass spectrometry (MS) analysis, we identified 111 unique lysine propionylation sites on 69 proteins in Synechocystis. Further bioinformatic analysis showed that a large fraction of the propionylated proteins were involved in photosynthesis and metabolism. The functional significance of lysine propionylation on the enzymatic activity of fructose-1,6-bisphosphatase (FbpI) was studied by site-directed mutagenesis and biochemical studies. Further functional studies revealed that the propionylation level of subunit II of photosystem I (PsaD) was obviously increased after high light (HL) treatment, suggesting that propionylation may be involved in high light adaption in Synechocystis. Thus, our findings provide novel insights into the range of functions regulated by propionylation and reveal that reversible propionylation is a functional modification with the potential to regulate photosynthesis and carbon metabolism in Synechocystis, as well as in other photosynthetic organisms.
Collapse
|
3
|
Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc Natl Acad Sci U S A 2016; 113:14225-14230. [PMID: 27911807 DOI: 10.1073/pnas.1613340113] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.
Collapse
|
4
|
Daddy S, Zhan J, Jantaro S, He C, He Q, Wang Q. A novel high light-inducible carotenoid-binding protein complex in the thylakoid membranes of Synechocystis PCC 6803. Sci Rep 2015; 5:9480. [PMID: 25820628 PMCID: PMC4377637 DOI: 10.1038/srep09480] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/27/2015] [Indexed: 11/09/2022] Open
Abstract
Synechocystis sp. PCC 6803 is a model cyanobacterium extensively used to study photosynthesis. Here we reveal a novel high light-inducible carotenoid-binding protein complex (HLCC) in the thylakoid membranes of Synechocystis PCC 6803 cells exposed to high intensity light. Zeaxanthin and myxoxanthophyll accounted for 29.8% and 54.8%, respectively, of the carotenoids bound to the complex. Using Blue-Native PAGE followed by 2D SDS-PAGE and mass spectrometry, we showed that the HLCC consisted of Slr1128, IsiA, PsaD, and HliA/B. We confirmed these findings by SEAD fluorescence cross-linking and anti-PsaD immuno-coprecipitation analyses. The expression of genes encoding the protein components of the HLCC was enhanced by high light illumination and artificial oxidative stress. Deletion of these proteins resulted in impaired state transition and increased sensitivity to oxidative and/or high light stress, as indicated by increased membrane peroxidation. Therefore, the HLCC protects thylakoid membranes from extensive photooxidative damage, likely via a mechanism involving state transition.
Collapse
Affiliation(s)
- Soumana Daddy
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204
| | - Jiao Zhan
- 1] Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China [2] University of Chinese Academy of Sciences, Beijing 100039, China
| | - Saowarath Jantaro
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Payathai Road, Patumwan, Bangkok 10330, Thailand
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qingfang He
- 1] Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204 [2] Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
5
|
Moal G, Lagoutte B. Photo-induced electron transfer from photosystem I to NADP(+): characterization and tentative simulation of the in vivo environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1635-45. [PMID: 22683536 DOI: 10.1016/j.bbabio.2012.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/28/2012] [Accepted: 05/30/2012] [Indexed: 12/01/2022]
Abstract
The photoproduction of NADPH in photosynthetic organisms requires the successive or concomitant interaction of at least three proteins: photosystem I (PSI), ferredoxin (Fd) and ferredoxin:NADP(+) oxidoreductase (FNR). These proteins and their surrounding medium have been carefully analysed in the cyanobacterium Synechocystis sp. PCC 6803. A high value of 550mg/ml was determined for the overall solute content of the cell soluble compartment. PSI and Fd are present at similar concentrations, around 500μM, whereas the FNR associated to phycobilisome is about 4 fold less concentrated. Membrane densities of FNR and trimeric PSI have been estimated to 2000 and 2550 per μm(2), respectively. An artificial confinement of Fd to PSI was designed using fused constructs between Fd and PsaE, a peripheral and stroma located PSI subunit. The best covalent system in terms of photocatalysed NADPH synthesis can be equivalent to the free system in a dilute medium. In a macrosolute crowded medium (375mg/ml), this optimized PSI/Fd covalent complex exhibited a huge superiority compared to the free system. This is a likely consequence of restrained diffusion constraints due to the vicinity of two out of the three protein partners. In vivo, Fd is the free partner, but the constant proximity between PSI and the phycobilisome associated FNR creates a similar situation, with two closely associated partners. This organization seems well adapted for an efficient in vivo production of the stable and fast diffusing NADPH.
Collapse
Affiliation(s)
- Gwenaëlle Moal
- Service de Bioenergetique, Biologie Structurale et Mecanismes, Gif sur Yvette, France
| | | |
Collapse
|
6
|
Jagannathan B, Shen G, Golbeck JH. The Evolution of Type I Reaction Centers: The Response to Oxygenic Photosynthesis. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Mukhopadhyay A, Kennelly PJ. A low molecular weight protein tyrosine phosphatase from Synechocystis sp. strain PCC 6803: enzymatic characterization and identification of its potential substrates. J Biochem 2011; 149:551-62. [PMID: 21288886 DOI: 10.1093/jb/mvr014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The predicted protein product of open reading frame slr0328 from Synechocystis sp. PCC 6803, SynPTP, possesses significant amino acid sequence similarity with known low molecular weight protein tyrosine phosphatases (PTPs). To determine the functional properties of this hypothetical protein, open reading frame slr0328 was expressed in Escherichia coli. The purified recombinant protein, SynPTP, displayed its catalytic phosphatase activity towards several tyrosine, but not serine, phosphorylated exogenous protein substrates. The protein phosphatase activity of SynPTP was inhibited by sodium orthovanadate, a known inhibitor of tyrosine phosphatases, but not by okadaic acid, an inhibitor for many serine/threonine phosphatases. Kinetic analysis indicated that the K(m) and V(max) values for SynPTP towards p-nitrophenyl phosphate are similar to those of other known bacterial low molecular weight PTPs. Mutagenic alteration of the predicted catalytic cysteine of PTP, Cys(7), to serine abolished enzyme activity. Using a combination of immunodetection, mass spectrometric analysis and mutagenically altered Cys(7)SerAsp(125)Ala-SynPTP, we identified PsaD (photosystem I subunit II), CpcD (phycocyanin rod linker protein) and phycocyanin-α and -β subunits as possible endogenous substrates of SynPTP in this cyanobacterium. These results indicate that SynPTP might be involved in the regulation of photosynthesis in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Archana Mukhopadhyay
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
8
|
Yu J, Ma PJ, Shi DJ, Li SM, Wang CL. Homologous comparisons of photosynthetic system I genes among cyanobacteria and chloroplasts. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:929-940. [PMID: 18713342 DOI: 10.1111/j.1744-7909.2008.00679.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It has now believed that chloroplasts arose from cyanobacteria, however, during endosymbiosis, the photosynthetic genes in chloroplasts have been reduced. How these changes occurred during plant evolution was the focus of the present study. Beginning with photosystem I (PSI) genes, a homologous comparison of amino acid sequences of 18 subunits of PSI from 10 species of cyanobacteria, chloroplasts in 12 species of eucaryotic algae, and 28 species of plants (including bryophytes, pteridophytes, gymnospermae, dicotyledon and monocotyledon) was undertaken. The data showed that 18 genes of PSI can be divided into two groups: Part I including seven genes (psaA, psaB, psaC, psaI, psaJ, ycf3 and ycf4) shared both by cyanobacteria and plant chloroplasts; Part II containing another 11 genes (psaD, psaE, psaF, psaK, psaL, psaM, btpA, ycf37, psaG, psaH and psaN) appeared to have diversified in different plant groups. Among Part I genes, psaC, psaA and psaB had higher homology in all species of cyanobacteria and chloroplasts. Among Part II genes, only psaG, psaH and psaN emerged in seed plants.
Collapse
Affiliation(s)
- Jie Yu
- School of Marin Science & Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | | | | | | | | |
Collapse
|
9
|
Van Hoewyk D, Abdel-Ghany SE, Cohu CM, Herbert SK, Kugrens P, Pilon M, Pilon-Smits EAH. Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS. Proc Natl Acad Sci U S A 2007; 104:5686-91. [PMID: 17372218 PMCID: PMC1838476 DOI: 10.1073/pnas.0700774104] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Indexed: 11/18/2022] Open
Abstract
NifS-like proteins provide the sulfur (S) for the formation of iron-sulfur (Fe-S) clusters, an ancient and essential type of cofactor found in all three domains of life. Plants are known to contain two distinct NifS-like proteins, localized in the mitochondria (MtNifS) and the chloroplast (CpNifS). In the chloroplast, five different Fe-S cluster types are required in various proteins. These plastid Fe-S proteins are involved in a variety of biochemical pathways including photosynthetic electron transport and nitrogen and sulfur assimilation. In vitro, the chloroplastic cysteine desulfurase CpNifS can release elemental sulfur from cysteine for Fe-S cluster biogenesis in ferredoxin. However, because of the lack of a suitable mutant allele, the role of CpNifS has not been studied thus far in planta. To study the role of CpNifS in Fe-S cluster biogenesis in vivo, the gene was silenced by using an inducible RNAi (interference) approach. Plants with reduced CpNifS expression exhibited chlorosis, a disorganized chloroplast structure, and stunted growth and eventually became necrotic and died before seed set. Photosynthetic electron transport and carbon dioxide assimilation were severely impaired in the silenced plant lines. The silencing of CpNifS decreased the abundance of all chloroplastic Fe-S proteins tested, representing all five Fe-S cluster types. Mitochondrial Fe-S proteins and respiration were not affected, suggesting that mitochondrial and chloroplastic Fe-S assembly operate independently. These findings indicate that CpNifS is necessary for the maturation of all plastidic Fe-S proteins and, thus, essential for plant growth.
Collapse
Affiliation(s)
- Douglas Van Hoewyk
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Salah E. Abdel-Ghany
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Christopher M. Cohu
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Stephen K. Herbert
- Department of Botany, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071
| | - Paul Kugrens
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Marinus Pilon
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Elizabeth A. H. Pilon-Smits
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| |
Collapse
|
10
|
Palma PN, Lagoutte B, Krippahl L, Moura JJG, Guerlesquin F. Synechocystis ferredoxin/ferredoxin-NADP(+)-reductase/NADP+ complex: Structural model obtained by NMR-restrained docking. FEBS Lett 2005; 579:4585-90. [PMID: 16087182 DOI: 10.1016/j.febslet.2005.07.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 06/27/2005] [Accepted: 07/05/2005] [Indexed: 11/24/2022]
Abstract
Ferredoxin (Fd) and ferredoxin-NADP(+)-reductase (FNR) are two terminal physiological partners of the photosynthetic electron transport chain. Based on a nuclear magnetic resonance (NMR)-restrained-docking approach, two alternative structural models of the Fd-FNR complex in the presence of NADP+ are proposed. The protein docking simulations were performed with the software BiGGER. NMR titration revealed a 1:1 stoichiometry for the complex and allowed the mapping of the interacting residues at the surface of Fd. The NMR chemical shifts were encoded into distance constraints and used with theoretically calculated electronic coupling between the redox cofactors to propose experimentally validated docked complexes.
Collapse
Affiliation(s)
- P Nuno Palma
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2859-516 Caparica, Portugal
| | | | | | | | | |
Collapse
|
11
|
Guo J, Zhang Z, Bi Y, Yang W, Xu Y, Zhang L. Decreased stability of photosystem I in dgd1 mutant of Arabidopsis thaliana. FEBS Lett 2005; 579:3619-24. [PMID: 15961080 DOI: 10.1016/j.febslet.2005.05.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 03/22/2005] [Accepted: 05/18/2005] [Indexed: 11/17/2022]
Abstract
The dgd1 mutant of Arabidopsis thaliana provides us with a powerful tool for revealing the specific role of digalactosyldiacylglycerol (DGDG) in photosynthesis. Blue-native polyacrylamide gel electrophoresis analysis revealed that photosystem I (PSI) subunits are assembled into a PSI complex, and that a PSI subcomplex lacking stroma side subunits was also present. PSI subunits in the dgd1 mutant were decreased to a similar level compared with that in the wild type (WT) Arabidopsis. Further experiments showed that PSI subunits in the stroma side, PsaD and PsaE, in the dgd1 mutant were more susceptible to removal by chaotropic agents than those in the WT plant, indicating that the stability of PsaD and PsaE is impaired in the dgd1 mutant. These results provide evidence that DGDG is important for the stability of the PSI complex.
Collapse
Affiliation(s)
- Jinkui Guo
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
12
|
Sétif P, Meimberg K, Mühlenhoff U, Boussac A. Photoaccumulation of two ascorbyl free radicals per photosystem I at 200 K. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:203-13. [PMID: 15178481 DOI: 10.1016/j.bbabio.2004.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/11/2004] [Accepted: 03/15/2004] [Indexed: 11/16/2022]
Abstract
Illumination of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 at 200 K in the presence of ascorbate leads to the formation of two ascorbyl radicals per PSI, which are formed by P700(+) reduction by ascorbate. During photoaccumulation, one half of the ascorbyl radicals is formed with a halftime of 1 min and the other half with a halftime of 7 min. Pulsed electron paramagnetic resonance (EPR) experiments with protonated/deuterated PSI show that a PSI proton/deuteron is strongly coupled to the ascorbyl radical. Our data indicate that reactive ascorbate molecules bind to PSI at two specific locations, which might be symmetrically located with respect to the pseudo-C(2) axis of symmetry of the heterodimeric core of PSI. Reduction of P700(+) by ascorbate leads to multiple turnover of PSI photochemistry, resulting in partial photoaccumulation of the doubly reduced species (F(A)(-), F(B)(-)). A modified form of F(B)(-)-in accordance with Chamorovsky and Cammack [Biochim. Biophys. Acta 679 (1982) 146-155], but not of F(A)(-), is observed by EPR after illumination at 200 K, which indicates that reduction of F(B) at 200 K is followed by some relaxation process, in line with this cluster being the most exposed to the solvent.
Collapse
Affiliation(s)
- Pierre Sétif
- CEA Saclay, DBJC/Service de Bioenergetique and URA CNRS 2096, 91191 Gif sur Yvette, Cedex, France.
| | | | | | | |
Collapse
|
13
|
Montesano M, Scheller HV, Wettstein R, Palva ET. Down-regulation of photosystem I by Erwinia carotovora-derived elicitors correlates with H(2)O(2) accumulation in chloroplasts of potato. MOLECULAR PLANT PATHOLOGY 2004; 5:115-123. [PMID: 20565588 DOI: 10.1111/j.1364-3703.2004.00213.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Identification of Solanum tuberosum genes responsive to culture filtrates (CF) from Erwinia carotovora ssp. carotovora resulted in isolation of psaD, a nuclear gene encoding the PSI-D subunit of photosystem I (PSI). This gene was rapidly and markedly down-regulated in CF-treated or wounded plants. Down-regulation of psaD transcripts was also triggered by signal molecules involved in plant defence such as methyl jasmonate. The CF-induced down-regulation of psaD transcripts was correlated with an accumulation of hydrogen peroxide in chloroplasts and a down-regulation of the NADP(+) photoreduction activity mediated by PSI. These results suggest that the CF-induced down-regulation of PSI may be related to the accumulation of reactive oxygen species in chloroplasts of plant cells responding to E. c. carotovora.
Collapse
Affiliation(s)
- Marcos Montesano
- Department of Biosciences, Division of Genetics, University of Helsinki, Box 56, FIN-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
14
|
Ihnatowicz A, Pesaresi P, Varotto C, Richly E, Schneider A, Jahns P, Salamini F, Leister D. Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:839-52. [PMID: 14996217 DOI: 10.1111/j.1365-313x.2004.02011.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In Arabidopsis thaliana, the D-subunit of photosystem I (PSI-D) is encoded by two functional genes, PsaD1 and PsaD2, which are highly homologous. Knock-out alleles for each of the loci have been identified by a combination of forward and reverse genetics. The double mutant psad1-1 psad2-1 is seedling-lethal, high-chlorophyll-fluorescent and deficient for all tested PSI subunits, indicating that PSI-D is essential for photosynthesis. In addition, psad1-1 psad2-1 plants show a defect in the accumulation of thylakoid multiprotein complexes other than PSI. Of the single-gene mutations, psad2 plants behave like wild-type (WT) plants, whereas psad1-1 markedly affects the accumulation of PsaD mRNA and protein, and photosynthetic electron flow. Additional effects of the psad1-1 mutation include a decrease in growth rate under greenhouse conditions and downregulation of the mRNA expression of most genes involved in the light phase of photosynthesis. In the same mutant, a marked decrease in the levels of PSI and PSII polypeptides is evident, as well as a light-green leaf coloration and increased photosensitivity. Increased dosage of PsaD2 in the psad1-1 background restores the WT phenotype, indicating that PSI-D1 and PSI-D2 have redundant functions.
Collapse
Affiliation(s)
- Anna Ihnatowicz
- Abteilung für Pflanzenzüchtung und Ertragsphysiologie, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné Weg 10, D-50829 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Haldrup A, Lunde C, Scheller HV. Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes, and altered redox homeostasis in the chloroplast stroma. J Biol Chem 2003; 278:33276-83. [PMID: 12794067 DOI: 10.1074/jbc.m305106200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PSI-D subunit of photosystem I is a hydrophilic subunit of about 18 kDa, which is exposed to the stroma and has an important function in the docking of ferredoxin to photosystem I. We have used an antisense approach to obtain Arabidopsis thaliana plants with only 5-60% of PSI-D. No plants were recovered completely lacking PSI-D, suggesting that PSI-D is essential for a functional PSI in plants. Plants with reduced amounts of PSI-D showed a similar decrease in all other subunits of PSI including the light harvesting complex, suggesting that in the absence of PSI-D, PSI cannot be properly assembled and becomes degraded. Plants with reduced amounts of PSI-D became light-stressed even in low light although they exhibited high non-photochemical quenching (NPQ). The high NPQ was generated by upregulating the level of violaxanthin de-epoxidase and PsbS, which are both essential components of NPQ. Interestingly, the lack of PSI-D affected the redox state of thioredoxin. During the normal light cycle thioredoxin became increasingly oxidized, which was observed as decreasing malate dehydrogenase activity over a 4-h light period. This result shows that photosynthesis was close to normal the first 15 min, but after 2-4 h photoinhibition dominated as the stroma progressively became less reduced. The change in the thiol disulfide redox state might be fatal for the PSI-D-less plants, because reduction of thioredoxin is one of the main switches for the initiation of CO2 assimilation and photoprotection upon light exposure.
Collapse
Affiliation(s)
- Anna Haldrup
- Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | | | |
Collapse
|
16
|
Sétif P, Fischer N, Lagoutte B, Bottin H, Rochaix JD. The ferredoxin docking site of photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:204-9. [PMID: 12206916 DOI: 10.1016/s0005-2728(02)00279-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction center of photosystem I (PSI) reduces soluble ferredoxin on the stromal side of the photosynthetic membranes of cyanobacteria and chloroplasts. The X-ray structure of PSI from the cyanobacterium Synechococcus elongatus has been recently established at a 2.5 A resolution [Nature 411 (2001) 909]. The kinetics of ferredoxin photoreduction has been studied in recent years in many mutants of the stromal subunits PsaC, PsaD and PsaE of PSI. We discuss the ferredoxin docking site of PSI using the X-ray structure and the effects brought by the PSI mutations to the ferredoxin affinity.
Collapse
Affiliation(s)
- Pierre Sétif
- CEA Saclay, Département de Biologie Joliot-Curie, Service de Bioénergétique and URA CNRS 2096, 91191 Gif sur Yvette, Cedex, France.
| | | | | | | | | |
Collapse
|
17
|
Ruffle SV, Mustafa AO, Kitmitto A, Holzenburg A, Ford RC. The location of plastocyanin in vascular plant photosystem I. J Biol Chem 2002; 277:25692-6. [PMID: 11976339 DOI: 10.1074/jbc.m202670200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the binding sites of the electron donor and acceptor proteins of vascular plant photosystem I by electron microscopy/crystallography. Previously, we identified the binding site for the electron acceptor (ferredoxin). In this paper we complete these studies with the characterization of the electron donor (plastocyanin) binding site. After cross-linking, plastocyanin is detected using Fourier difference analysis of two dimensionally ordered arrays of photosystem I located at the periphery of chloroplast grana. Plastocyanin binds in a small cavity on the lumenal surface of photosystem I, close to the center and with a slight bias toward the PsaL subunit of the complex. The recent release of the full coordinates for the cyanobacterial photosystem I reaction center has allowed a detailed comparison between the structures of the eukaryotic and prokaryotic systems. This reveals a very close homology, which is particularly striking for the lumenal side of photosystem I.
Collapse
Affiliation(s)
- Stuart V Ruffle
- School of Biological Sciences, University of Exeter, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Bottin H, Hanley J, Lagoutte B. Role of acidic amino acid residues of PsaD subunit on limiting the affinity of photosystem I for ferredoxin. Biochem Biophys Res Commun 2001; 287:833-6. [PMID: 11573938 DOI: 10.1006/bbrc.2001.5658] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PsaD subunit of photosystem I is one of the central polypeptides for the interaction with ferredoxin, its acidic electron acceptor. In the cyanobacterium Synechocystis 6803, this role is partly performed by a sequence extending approximately from histidine 97 to arginine 119, close to the C-terminus. In the present work, acidic amino acids D100, E105, and E109 are shown to moderate the affinity of Photosystem I for ferredoxin. Most single replacements of these residues by neutral amino acids increased the affinity for ferredoxin, resulting in a dissociation constant as low as 0.015 microM for the E105Q mutant (wild-type K(D) = 0.4 microM). This is the first report on the limitation of photosystem I affinity for ferredoxin due to acidic amino acids from PsaD subunit. It highlights the occurrence of a negative control on the binding during the formation of transient complexes between electron carriers.
Collapse
Affiliation(s)
- H Bottin
- Département de Biologie Cellulaire et Moléculaire, Service de Bioénergétique, CEA, CNRS URA 2096, CE de Saclay, 91191 Gif sur Yvette Cedex, France.
| | | | | |
Collapse
|