1
|
Czékus Z, Kukri A, Martics A, Pollák B, Molnár Á, Ördög A, Váradi G, Galgóczy L, Papp R, Tóth L, Kocsis KÁ, Faragó N, Bódi N, Bagyánszki M, Szalai G, Hamow KÁ, Poór P. Do guard cells have single or multiple defense mechanisms in response to flg22? PHYSIOLOGIA PLANTARUM 2025; 177:e70249. [PMID: 40351283 PMCID: PMC12067365 DOI: 10.1111/ppl.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 05/14/2025]
Abstract
Bacterial flagellin (flg22) induces rapid and permanent stomatal closure. However, its local and systemic as well as tissue- and cell-specific effects are less understood. Our results show that flg22 induced local and systemic stomatal closure in intact tomato plants, which was regulated by reactive oxygen- and nitrogen species, and also affected the photosynthetic activity of guard cells but not of mesophyll cells. Interestingly, rapid and extensive local expression of Ethylene response factor 1 was observed after exposure to flg22, whereas the relative transcript levels of Defensin increased only after six hours, especially in systemic leaves. Following local and systemic ethylene emission already after one and six hours, jasmonic acid levels increased in the local leaves after six hours of flg22 treatment. Using immunohistochemical methods, significant defensin accumulation was found in the epidermis and stomata of flg22-treated leaves and above them. Immunogold labelling revealed significant levels of defensins in the cell wall of the mesophyll parenchyma and guard cells. Furthermore, single cell qRT-PCR confirmed that guard cells are able to synthesise defensins. It can be concluded that guard cells are not only involved in the first line of plant defense by regulating stomatal pore size, but can also defend themselves and the plant by producing and accumulating antimicrobial defensins where phytopathogens can penetrate.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - András Kukri
- Department of Plant Biology, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
| | - Atina Martics
- Department of Plant Biology, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
| | - Boglárka Pollák
- Department of Plant Biology, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Árpád Molnár
- Department of Plant Biology, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Attila Ördög
- Department of Plant Biology, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Györgyi Váradi
- Department of Medical ChemistryUniversity of SzegedSzegedHungary
| | - László Galgóczy
- Department of Biotechnology, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Rebeka Papp
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
- Department of Biotechnology, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Liliána Tóth
- Department of Biotechnology, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Katalin Ágnes Kocsis
- Department of Physiology, Anatomy and Neuroscience, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | | | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | | | | | - Péter Poór
- Department of Plant Biology, Institute of Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| |
Collapse
|
2
|
Chang Y, Shi M, Wang X, Cheng H, Zhang J, Liu H, Wu H, Ou X, Yu K, Zhang X, Day B, Miao C, Zhao Y, Jiang K. A CRY1-HY5-MYB signaling cascade fine-tunes guard cell reactive oxygen species levels and triggers stomatal opening. THE PLANT CELL 2025; 37:koaf064. [PMID: 40139914 PMCID: PMC11973966 DOI: 10.1093/plcell/koaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Stomatal opening facilitates CO2 uptake and causes water loss via transpiration. Compared with the considerable progress made toward understanding phototropin-mediated blue light (BL) signaling in guard cells, the significance of cryptochromes (CRYs) in stomatal opening and their downstream elements remain largely unknown. Here, we show that 3 homologous MYB transcription factor genes, namely MYB11, MYB12, and MYB111, are rapidly transactivated in guard cells during the dark-to-light transition in Arabidopsis (Arabidopsis thaliana). Genetic characterization of myb mutants demonstrates that these proteins specifically mediate light-induced stomatal opening by promoting local flavonol accumulation, thereby controlling reactive oxygen species homeostasis in guard cells. In response to light, activation of the plasma membrane H+-ATPase is inhibited in the myb11 myb12 myb111 triple mutant, compromising transmembrane K+ influx in the mutant guard cells. Furthermore, we demonstrate that MYB11/12/111 expression in guard cells upon illumination is induced by a CRY1-specific signaling cascade involving ELONGATED HYPOCOTYL 5 (HY5), a direct transcriptional activator of these MYBs. Overall, our work reveals a mechanism by which the CRY1-HY5-MYB module facilitates light-induced stomatal opening, providing evidence that flavonoid metabolism in guard cells is crucial for plant stress tolerance.
Collapse
Affiliation(s)
- Yuankai Chang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Mianmian Shi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xiao Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hui Cheng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Junli Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hongrui Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Huiruo Wu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Xiaobin Ou
- Gansu Key laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province 745000, China
| | - Ke Yu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chen Miao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
3
|
Ahmad S, Fariduddin Q. GABA mitigates NaCl toxicity by enhancing photosynthesis, chloroplast structure, and redox balance in salt-tolerant and sensitive tomato varieties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9676-9696. [PMID: 40140201 DOI: 10.1007/s11356-025-36263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/08/2025] [Indexed: 03/28/2025]
Abstract
GABA serves as the major metabolite and signaling molecule for plant growth and development under fluctuating environmental conditions. In the present study, the effect of different concentrations of GABA (0, 0.25, 0.5, or 0.75 mM) as foliar spray or seed soaking treatment on K-21 and S-22 varieties of tomato (Solanum lycopersicum L.) under normal and NaCl stress (150 mM) was studied. At 40 days after transplantation (DAT), NaCl stress impaired the photosynthetic apparatus, elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and reduced photosynthetic traits and related enzymes, and consequently compromised plant growth and development. However, among the different concentrations of GABA tested 0.5 mM of GABA applied through foliar mode proved best in improving growth, photosynthetic traits (like PN of K-21 and S-22 varieties by 39.17% and 30.35%, gs by 40.11% and 32.37%; Ci by 39.48% and 33.67%; E by 37.98% and 30.08% respectively, compared to control group) and enzyme activities (Rubisco, succinate dehydrogenase, and fumarase activity) maintained organization of chloroplast in the leaves and also improved lycopene and β-carotene contents in fruits of tomato plants. Moreover, treatment of GABA (0.5 mM) reduced levels of ROS (such as decreased the contents of O2·- by 38.10% and 34.05%; and H2O2 by 35.95% and 30.36% respectively, in K-21 and S-22 varieties, as compared to their control) and cell death compared to non-treated tomato plants. Foliar application of GABA (0.5 mM) also was more effective than seed soaking to overcome the adverse effects of salt stress specifically in K-21 than S-22 variety. This study addresses this gap and uniquely investigates role of GABA in regulating photosynthetic (Rubisco), GABA shunt, and respiratory (fumarase, succinate dehydrogenase) enzyme activities under salt stress, offering new insights into its multifaceted stress-mitigating potential.
Collapse
Affiliation(s)
- Saif Ahmad
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Zheng Q, Teng Z, Zhang J, Ye N. ABA Inhibits Rice Seed Aging by Reducing H 2O 2 Accumulation in the Radicle of Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:809. [PMID: 38592812 PMCID: PMC10976155 DOI: 10.3390/plants13060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
The seed, a critical organ in higher plants, serves as a primary determinant of agricultural productivity, with its quality directly influencing crop yield. Improper storage conditions can diminish seed vigor, adversely affecting seed germination and seedling establishment. Therefore, understanding the seed-aging process and exploring strategies to enhance seed-aging resistance are paramount. In this study, we observed that seed aging during storage leads to a decline in seed vigor and can coincide with the accumulation of hydrogen peroxide (H2O2) in the radicle, resulting in compromised or uneven germination and asynchronous seedling emergence. We identified the abscisic acid (ABA) catabolism gene, abscisic acid 8'-hydroxylase 2 (OsABA8ox2), as significantly induced by aging treatment. Interestingly, transgenic seeds overexpressing OsABA8ox2 exhibited reduced seed vigor, while gene knockout enhanced seed vigor, suggesting its role as a negative regulator. Similarly, seeds pretreated with ABA or diphenyleneiodonium chloride (DPI, an H2O2 inhibitor) showed increased resistance to aging, with more robust early seedling establishment. Both OsABA8ox2 mutant seeds and seeds pretreated with ABA or DPI displayed lower H2O2 content during aging treatment. Overall, our findings indicate that ABA mitigates rice seed aging by reducing H2O2 accumulation in the radicle. This study offers valuable germplasm resources and presents a novel approach to enhancing seed resistance against aging.
Collapse
Affiliation(s)
- Qin Zheng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (Z.T.)
| | - Zhenning Teng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (Z.T.)
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong
| | - Nenghui Ye
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Q.Z.); (Z.T.)
- Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong
| |
Collapse
|
5
|
Kant K, Rigó G, Faragó D, Benyó D, Tengölics R, Szabados L, Zsigmond L. Mutation in Arabidopsis mitochondrial Pentatricopeptide repeat 40 gene affects tolerance to water deficit. PLANTA 2024; 259:78. [PMID: 38427069 PMCID: PMC10907415 DOI: 10.1007/s00425-024-04354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION The Arabidopsis Pentatricopeptide repeat 40 (PPR40) insertion mutants have increased tolerance to water deficit compared to wild-type plants. Tolerance is likely the consequence of ABA hypersensitivity of the mutants. Plant growth and development depend on multiple environmental factors whose alterations can disrupt plant homeostasis and trigger complex molecular and physiological responses. Water deficit is one of the factors which can seriously restrict plant growth and viability. Mitochondria play an important role in cellular metabolism, energy production, and redox homeostasis. During drought and salinity stress, mitochondrial dysfunction can lead to ROS overproduction and oxidative stress, affecting plant growth and survival. Alternative oxidases (AOXs) and stabilization of mitochondrial electron transport chain help mitigate ROS damage. The mitochondrial Pentatricopeptide repeat 40 (PPR40) protein was implicated in stress regulation as ppr40 mutants were found to be hypersensitive to ABA and high salinity during germination. This study investigated the tolerance of the knockout ppr40-1 and knockdown ppr40-2 mutants to water deprivation. Our results show that these mutants display an enhanced tolerance to water deficit. The mutants had higher relative water content, reduced level of oxidative damage, and better photosynthetic parameters in water-limited conditions compared to wild-type plants. ppr40 mutants had considerable differences in metabolic profiles and expression of a number of stress-related genes, suggesting important metabolic reprogramming. Tolerance to water deficit was also manifested in higher survival rates and alleviated growth reduction when watering was suspended. Enhanced sensitivity to ABA and fast stomata closure was suggested to lead to improved capacity for water conservation in such environment. Overall, this study highlights the importance of mitochondrial functions and in particular PPR40 in plant responses to abiotic stress, particularly drought.
Collapse
Affiliation(s)
- Kamal Kant
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Dóra Faragó
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Dániel Benyó
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Roland Tengölics
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
| | - Laura Zsigmond
- Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| |
Collapse
|
6
|
Qin H, Yang W, Liu Z, Ouyang Y, Wang X, Duan H, Zhao B, Wang S, Zhang J, Chang Y, Jiang K, Yu K, Zhang X. Mitochondrial VOLTAGE-DEPENDENT ANION CHANNEL 3 regulates stomatal closure by abscisic acid signaling. PLANT PHYSIOLOGY 2024; 194:1041-1058. [PMID: 37772952 DOI: 10.1093/plphys/kiad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.
Collapse
Affiliation(s)
- Haixia Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zile Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yi Ouyang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haiyang Duan
- State Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shujie Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuankai Chang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Lv M, Hou D, Wan J, Ye T, Zhang L, Fan J, Li C, Dong Y, Chen W, Rong S, Sun Y, Xu J, Cai L, Gao X, Zhu J, Huang Z, Xu Z, Li L. OsWRKY97, an Abiotic Stress-Induced Gene of Rice, Plays a Key Role in Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3338. [PMID: 37765501 PMCID: PMC10536077 DOI: 10.3390/plants12183338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Drought stress is one of the major causes of crop losses. The WRKY families play important roles in the regulation of many plant processes, including drought stress response. However, the function of individual WRKY genes in plants is still under investigation. Here, we identified a new member of the WRKY families, OsWRKY97, and analyzed its role in stress resistance by using a series of transgenic plant lines. OsWRKY97 positively regulates drought tolerance in rice. OsWRKY97 was expressed in all examined tissues and could be induced by various abiotic stresses and abscisic acid (ABA). OsWRKY97-GFP was localized to the nucleus. Various abiotic stress-related cis-acting elements were observed in the promoters of OsWRKY97. The results of OsWRKY97-overexpressing plant analyses revealed that OsWRKY97 plays a positive role in drought stress tolerance. In addition, physiological analyses revealed that OsWRKY97 improves drought stress tolerance by improving the osmotic adjustment ability, oxidative stress tolerance, and water retention capacity of the plant. Furthermore, OsWRKY97-overexpressing plants also showed higher sensitivity to exogenous ABA compared with that of wild-type rice (WT). Overexpression of OsWRKY97 also affected the transcript levels of ABA-responsive genes and the accumulation of ABA. These results indicate that OsWRKY97 plays a crucial role in the response to drought stress and may possess high potential value in improving drought tolerance in rice.
Collapse
Affiliation(s)
- Miaomiao Lv
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Dejia Hou
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jiale Wan
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Taozhi Ye
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Lin Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Jiangbo Fan
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Chunliu Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Yilun Dong
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Wenqian Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Songhao Rong
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Yihao Sun
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Jinghong Xu
- Crop Research Institute, Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Liangjun Cai
- Crop Research Institute, Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Xiaoling Gao
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Jianqing Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Zhengjian Huang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Zhengjun Xu
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Lihua Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
García-García AL, Matos AR, Feijão E, Cruz de Carvalho R, Boto A, Marques da Silva J, Jiménez-Arias D. The use of chitosan oligosaccharide to improve artemisinin yield in well-watered and drought-stressed plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1200898. [PMID: 37332721 PMCID: PMC10272596 DOI: 10.3389/fpls.2023.1200898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Artemisinin is a secondary metabolite well-known for its use in the treatment of malaria. It also displays other antimicrobial activities which further increase its interest. At present, Artemisia annua is the sole commercial source of the substance, and its production is limited, leading to a global deficit in supply. Furthermore, the cultivation of A. annua is being threatened by climate change. Specifically, drought stress is a major concern for plant development and productivity, but, on the other hand, moderate stress levels can elicit the production of secondary metabolites, with a putative synergistic interaction with elicitors such as chitosan oligosaccharides (COS). Therefore, the development of strategies to increase yield has prompted much interest. With this aim, the effects on artemisinin production under drought stress and treatment with COS, as well as physiological changes in A. annua plants are presented in this study. Methods Plants were separated into two groups, well-watered (WW) and drought-stressed (DS) plants, and in each group, four concentrations of COS were applied (0, 50,100 and 200 mg•L-1). Afterwards, water stress was imposed by withholding irrigation for 9 days. Results Therefore, when A. annua was well watered, COS did not improve plant growth, and the upregulation of antioxidant enzymes hindered the production of artemisinin. On the other hand, during drought stress, COS treatment did not alleviate the decline in growth at any concentration tested. However, higher doses improved the water status since leaf water potential (YL) improved by 50.64% and relative water content (RWC) by 33.84% compared to DS plants without COS treatment. Moreover, the combination of COS and drought stress caused damage to the plant's antioxidant enzyme defence, particularly APX and GR, and reduced the amount of phenols and flavonoids. This resulted in increased ROS production and enhanced artemisinin content by 34.40% in DS plants treated with 200 mg•L-1 COS, compared to control plants. Conclusion These findings underscore the critical role of ROS in artemisinin biosynthesis and suggest that COS treatment may boost artemisinin yield in crop production, even under drought conditions.
Collapse
Affiliation(s)
- Ana L. García-García
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
- Programa de Doctorado de Química e Ingeniería Química, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre and ARNET – Aquatic Research Infrastructure Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Cruz de Carvalho
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre and ARNET – Aquatic Research Infrastructure Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Alicia Boto
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Jorge Marques da Silva
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - David Jiménez-Arias
- ISOPlexis—Center for Sustainable Agriculture and Food Technology, Madeira University, Funchal, Portugal
| |
Collapse
|
9
|
Yao T, Ding C, Che Y, Zhang Z, Cui C, Ji G, Song J, Zhang H, Ao H, Zhang H. Heterologous expression of Zygophyllum xanthoxylon zinc finger protein gene (ZxZF) enhances the tolerance of poplar photosynthetic function to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107748. [PMID: 37178571 DOI: 10.1016/j.plaphy.2023.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
The ZxZF transcription factor (TF) of Zygophyllum xanthoxylon (Bunge) Maxim, an extremely drought-resistant woody plant, is a C2H2 zinc finger protein. Studies have shown that C2H2 zinc finger proteins play important roles in activating stress-related genes and enhancing plant resistance. However, their function in regulating plant photosynthesis under drought stress is not well understood. Since poplar is an important greening and afforestation tree species, it is particularly important to cultivate excellent drought-tolerant varieties. The ZxZF transcription factor (TF) was heterogeneously expressed in Euroamerican poplar (Populus × euroameracana cl.'Bofengl') by genetic transformation. Based on the mechanism and potential function of poplar photosynthesis regulated by ZxZF under drought stress, transcriptomic and physiological determinations were used to reveal the important role of this gene in improving the drought resistance of poplar. The results showed that the overexpression of ZxZF TF in transgenic poplars could improve the inhibition of Calvin cycle by regulating stomatal opening and increasing the concentration of intercellular CO2. The chlorophyll content, photosynthetic performance index, and photochemical efficiency of transgenic lines under drought stress were significantly higher than those of the wild type (WT). The overexpression of ZxZF TFs could alleviate the degree of photoinhibition of photosystems II and I under drought stress and maintain the efficiency of light energy capture and the photosynthetic electron transport chain. The transcriptomic data also showed that differentially expressed genes between the transgenic poplar and WT under drought stress were primarily enriched in metabolic pathways related to photosynthesis, such as photosynthesis, photosynthesis-antenna protein, porphyrin and chlorophyll metabolism, and photosynthetic carbon fixation, and the downregulation of genes related to chlorophyll synthesis, photosynthetic electron transport and Calvin cycle were alleviated. In addition, the overexpression of ZxZF TF can alleviate the inhibition of NADH dehydrogenase-like (NDH) cyclic electron flow of the poplar NDH pathway under drought stress, which plays an important role in reducing the excess pressure of electrons on the photosynthetic electron transport chain and maintaining the normal photosynthetic electron transport. In summary, the overexpression of ZxZF TFs can effectively alleviate the inhibition of drought on the assimilation of carbon in poplar and have a positive impact on light energy capture, the orderly transport of photosynthetic electron transport chain and the integrity of the photosystem, which is highly significant to acheivean in-depth understanding of the function of ZxZF TFs. This also provides an important basis for the breeding of new transgenic poplar varieties.
Collapse
Affiliation(s)
- Tongtong Yao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Yanhui Che
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Zhe Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Hong Ao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
10
|
El Amine B, Mosseddaq F, Naciri R, Oukarroum A. Interactive effect of Fe and Mn deficiencies on physiological, biochemical, nutritional and growth status of soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107718. [PMID: 37182277 DOI: 10.1016/j.plaphy.2023.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023]
Abstract
Iron (Fe) deficiency is one of the most common problems of soybean. It causes upper leaves yellowing, interveinal chlorosis, stunted growth and yield loss. Manganese (Mn) deficiency affects the reactions in the oxygen evolving complex (OEC) of photosystem II and increase the accumulation of reactive oxygen species (ROS). The aim of this research is to study the effect of Fe and Mn deficiencies applied separately and simultaneously on physiological, biochemical, nutritional and growth (morphological) parameters of soybean cultivars (Glycine max L.). The experiment was conducted in nutrient hydroponic solution lacking Fe or Mn or both Fe and Mn. Chlorophyll content index (CCI) and chlorophyll a fluorescence were measured through time to detect nutritional disorders at an early growth stage before the apparition of visual symptoms. The results showed that Fe and Mn deficiencies had a significant negative effect on the photosynthetic efficiency, CCI, stomatal conductance, protein content and shoot/root nutrient uptakes. Iron and manganese stress conditions were found to enhance the accumulation of secondary metabolites and increase the antioxidant activity such as total polyphenol content (TPC), malondialdehyde (MDA) and superoxide dismutase (SOD). These impacts were more accentuated when Fe and Mn stress were applied simultaneously than when any of the deficiencies was applied alone. More than that, Mn stress alone did not significantly affect the biomass accumulation. The obtained results showed that, in hydroponic conditions, iron and manganese rational fertilization can improve the studied parameters.
Collapse
Affiliation(s)
- Bouthayna El Amine
- Mohammed VI Polytechnic University, AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir, 43150, Morocco; Department of Plant Production, Protection and Biotechnology, Hassan II Institute of Agronomy and Veterinary Medicine, Madinate Al Irfane, Morocco.
| | - Fatema Mosseddaq
- Department of Plant Production, Protection and Biotechnology, Hassan II Institute of Agronomy and Veterinary Medicine, Madinate Al Irfane, Morocco
| | - Rachida Naciri
- Mohammed VI Polytechnic University, AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir, 43150, Morocco
| | - Abdallah Oukarroum
- Mohammed VI Polytechnic University, AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir, 43150, Morocco
| |
Collapse
|
11
|
Postiglione AE, Muday GK. Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. PLANT PHYSIOLOGY 2023; 192:469-487. [PMID: 36573336 PMCID: PMC10152677 DOI: 10.1093/plphys/kiac601] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/04/2022] [Indexed: 05/03/2023]
Abstract
Abscisic acid (ABA) drives stomatal closure to minimize water loss due to transpiration in response to drought. We examined the subcellular location of ABA-increased accumulation of reactive oxygen species (ROS) in guard cells, which drive stomatal closure, in Arabidopsis (Arabidopsis thaliana). ABA-dependent increases in fluorescence of the generic ROS sensor, dichlorofluorescein (DCF), were observed in mitochondria, chloroplasts, cytosol, and nuclei. The ABA response in all these locations was lost in an ABA-insensitive quintuple receptor mutant. The ABA-increased fluorescence in mitochondria of both DCF- and an H2O2-selective probe, Peroxy Orange 1, colocalized with Mitotracker Red. ABA treatment of guard cells transformed with the genetically encoded H2O2 reporter targeted to the cytoplasm (roGFP2-Orp1), or mitochondria (mt-roGFP2-Orp1), revealed H2O2 increases. Consistent with mitochondrial ROS changes functioning in stomatal closure, we found that guard cells of a mutant with mitochondrial defects, ABA overly sensitive 6 (abo6), have elevated ABA-induced ROS in mitochondria and enhanced stomatal closure. These effects were phenocopied with rotenone, which increased mitochondrial ROS. In contrast, the mitochondrially targeted antioxidant, MitoQ, dampened ABA effects on mitochondrial ROS accumulation and stomatal closure in Col-0 and reversed the guard cell closure phenotype of the abo6 mutant. ABA-induced ROS accumulation in guard cell mitochondria was lost in mutants in genes encoding respiratory burst oxidase homolog (RBOH) enzymes and reduced by treatment with the RBOH inhibitor, VAS2870, consistent with RBOH machinery acting in ABA-increased ROS in guard cell mitochondria. These results demonstrate that ABA elevates H2O2 accumulation in guard cell mitochondria to promote stomatal closure.
Collapse
Affiliation(s)
- Anthony E Postiglione
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA 27109
| | - Gloria K Muday
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA 27109
| |
Collapse
|
12
|
John SP, Svihla ZT, Hasenstein KH. Changes in endogenous abscisic acid and stomata of the resurrection fern, Pleopeltis polypodioides, in response to de- and rehydration. AMERICAN JOURNAL OF BOTANY 2023; 110:e16152. [PMID: 36896495 DOI: 10.1002/ajb2.16152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 05/11/2023]
Abstract
PREMISE While angiosperms respond uniformly to abscisic acid (ABA) by stomatal closure, the response of ferns to ABA is ambiguous. We evaluated the effect of endogenous ABA, hydrogen peroxide (H2 O2 ), nitric oxide (NO), and Ca2+ , low and high light intensities, and blue light (BL) on stomatal opening of Pleopeltis polypodioides. METHODS Endogenous ABA was quantified using gas chromatography-mass spectrometry; microscopy results and stomatal responses to light and chemical treatments were analyzed with Image J. RESULTS The ABA content increases during initial dehydration, peaks at 15 h and then decreases to one fourth of the ABA content of hydrated fronds. Following rehydration, ABA content increases within 24 h to the level of hydrated tissue. The stomatal aperture opens under BL and remains open even in the presence of ABA. Closure was strongly affected by BL, NO, and Ca2+ , regardless of ABA, H2 O2 effect was weak. CONCLUSIONS The decrease in the ABA content during extended dehydration and insensitivity of the stomata to ABA suggests that the drought tolerance mechanism of Pleopeltis polypodioides is independent of ABA.
Collapse
Affiliation(s)
- Susan P John
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| | - Zachary T Svihla
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| | - Karl H Hasenstein
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| |
Collapse
|
13
|
Sai N, Bockman JP, Chen H, Watson-Haigh N, Xu B, Feng X, Piechatzek A, Shen C, Gilliham M. StomaAI: an efficient and user-friendly tool for measurement of stomatal pores and density using deep computer vision. THE NEW PHYTOLOGIST 2023; 238:904-915. [PMID: 36683442 DOI: 10.1111/nph.18765] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Using microscopy to investigate stomatal behaviour is common in plant physiology research. Manual inspection and measurement of stomatal pore features is low throughput, relies upon expert knowledge to record stomatal features accurately, requires significant researcher time and investment, and can represent a significant bottleneck to research pipelines. To alleviate this, we introduce StomaAI (SAI): a reliable, user-friendly and adaptable tool for stomatal pore and density measurements via the application of deep computer vision, which has been initially calibrated and deployed for the model plant Arabidopsis (dicot) and the crop plant barley (monocot grass). SAI is capable of producing measurements consistent with human experts and successfully reproduced conclusions of published datasets. SAI boosts the number of images that can be evaluated in a fraction of the time, so can obtain a more accurate representation of stomatal traits than is routine through manual measurement. An online demonstration of SAI is hosted at https://sai.aiml.team, and the full local application is publicly available for free on GitHub through https://github.com/xdynames/sai-app.
Collapse
Affiliation(s)
- Na Sai
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| | - James Paul Bockman
- The Australian Institute for Machine Learning, Adelaide, SA, 5005, Australia
- School of Computer Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hao Chen
- The Australian Institute for Machine Learning, Adelaide, SA, 5005, Australia
- School of Computer Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nathan Watson-Haigh
- South Australian Genomics Centre, SAHMRI, Adelaide, SA, 5000, Australia
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, Melbourne, Vic., 3000, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Xueying Feng
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Adriane Piechatzek
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Chunhua Shen
- The Australian Institute for Machine Learning, Adelaide, SA, 5005, Australia
- School of Computer Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5064, Australia
| |
Collapse
|
14
|
Dervisi I, Petropoulos O, Agalou A, Podia V, Papandreou N, Iconomidou VA, Haralampidis K, Roussis A. The SAH7 Homologue of the Allergen Ole e 1 Interacts with the Putative Stress Sensor SBP1 (Selenium-Binding Protein 1) in Arabidopsis thaliana. Int J Mol Sci 2023; 24:3580. [PMID: 36834990 PMCID: PMC9962204 DOI: 10.3390/ijms24043580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, we focused on a member of the Ole e 1 domain-containing family, AtSAH7, in Arabidopsis thaliana. Our lab reports for the first time on this protein, AtSAH7, that was found to interact with Selenium-binding protein 1 (AtSBP1). We studied by GUS assisted promoter deletion analysis the expression pattern of AtSAH7 and determined that the sequence 1420 bp upstream of the transcription start can act as a minimal promoter inducing expression in vasculature tissues. Moreover, mRNA levels of AtSAH7 were acutely increased under selenite treatment in response to oxidative stress. We confirmed the aforementioned interaction in vivo, in silico and in planta. Following a bimolecular fluorescent complementation approach, we determined that the subcellular localization of the AtSAH7 and the AtSAH7/AtSBP1 interaction occur in the ER. Our results indicate the participation of AtSAH7 in a biochemical network regulated by selenite, possibly associated with responses to ROS production.
Collapse
Affiliation(s)
- Irene Dervisi
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Orfeas Petropoulos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Adamantia Agalou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control & Phytopharmacy, Benaki Phytopathological Institute (BPI), 8 Stefanou Delta Street, Kifissia, 14561 Athens, Greece
| | - Varvara Podia
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Nikolaos Papandreou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Vassiliki A. Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Kosmas Haralampidis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
15
|
Kim JY, Lee SJ, Min WK, Cha S, Song JT, Seo HS. COP1 mutation causes low leaf temperature under various abiotic stresses in Arabidopsis thaliana. PLANT DIRECT 2022; 6:e473. [PMID: 36545005 PMCID: PMC9763638 DOI: 10.1002/pld3.473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Stomata are microscopic pores on epidermal cells of leaves and stems that regulate water loss and gas exchange between the plant and its environment. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase that is involved in plant growth and development and multiple abiotic stress responses by regulating the stability of various target proteins. However, little is known about how COP1 controls stomatal aperture and leaf temperature under various environmental conditions. Here, we show that COP1 participates in leaf temperature and stomatal closure regulation under normal and stress conditions in Arabidopsis. Leaf temperature of cop1 mutants was relatively lower than that of wild type (WT) under drought, salt, and heat stress and after abscisic acid (ABA), CaCl2, and H2O2 treatments. However, leaf temperature was generally higher in both WT and cop1 mutants after abiotic stress and chemical treatment than that of untreated WT and cop1 mutants. Stomatal aperture was wider in cop1 mutants than that in WT under all conditions tested, although the extent of stomatal closure varied between WT and cop1 mutants. Under dark conditions, leaf temperature was also lower in cop1 mutants than that in WT. Expression of the genes encoding ABA receptors, ABA biosynthesis proteins, positive regulators of stomatal closure and heat tolerance, and ABA-responsive proteins was lower in cop1 mutants that that in WT. In addition, expression of respiration-related genes was lower in cop1 mutants that that in WT. Taken together, the data provide evidence that mutations in COP1 lead to wider stomatal aperture and higher leaf temperature under normal and stress conditions, indicating that leaf temperature is highly correlated with stomatal aperture.
Collapse
Affiliation(s)
- Joo Yong Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Seung Ju Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Seoyeon Cha
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Jong Tae Song
- Department of Applied BiosciencesKyungpook National UniversityDaeguSouth Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
- Bio‐MAX InstituteSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
16
|
Guo J, Wang H, Liu S, Wang Y, Liu F, Li X. Parental drought priming enhances tolerance to low temperature in wheat ( Triticum aestivum) offspring. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:946-957. [PMID: 35871526 DOI: 10.1071/fp22043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is one of the major environmental stresses that limit crop growth and grain yield in wheat (Triticum aestivum L.). Drought priming at the vegetative stage could enhance wheat tolerance to later cold stress; however, the transgenerational effects of drought priming on wheat offspring's cold stress tolerance remains unclear. Here, the low temperature responses of offspring were tested after the parental drought priming treatment at grain filling stage. The offspring plants from parental drought priming treatment had a higher abscisic acid (ABA) level and lower osmotic potential (Ψo) than the control plants under cold conditions. Moreover, parental drought priming increased the antioxidant enzyme activities and decreased hydrogen peroxide (H2 O2 ) accumulation in offspring. In comparison to control plants, parental drought priming plants had a higher ATP concentration and higher activities of ATPase and the enzymes involved in sucrose biosynthesis and starch metabolism. The results indicated that parental drought priming induced low temperature tolerance in offspring by regulating endogenous ABA levels and maintaining the redox homeostasis and the balance of carbohydrate metabolism, which provided a potential approach for cold resistant cultivation in wheat.
Collapse
Affiliation(s)
- Junhong Guo
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Shengqun Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yongjun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agriculture Sciences/State Engineering Laboratory of Maize, Changchun 130033, China
| | - Fulai Liu
- University of Copenhagen, Faculty of Science, Department of Plant and Environmental Sciences, Højbakkegård Allé 13, Tåstrup DK-2630, Denmark
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; and University of Chinese Academy of Sciences, Beijing 100049, China; and CAS Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Science, Changchun 130102, China
| |
Collapse
|
17
|
Bi G, Hu M, Fu L, Zhang X, Zuo J, Li J, Yang J, Zhou JM. The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H 2O 2 that regulates plant immunity through a redox relay. NATURE PLANTS 2022; 8:1160-1175. [PMID: 36241731 DOI: 10.1038/s41477-022-01252-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Rapid production of H2O2 is a hallmark of plant responses to diverse pathogens and plays a crucial role in signalling downstream of various receptors that perceive immunogenic patterns. However, mechanisms by which plants sense H2O2 to regulate immunity remain poorly understood. We show that endogenous H2O2 generated upon immune activation is sensed by the thiol peroxidase PRXIIB via oxidation at Cys51, and this is essential for stomatal immunity against Pseudomonas syringae. We further show that in immune-stimulated cells, PRXIIB conjugates via Cys51 with the type 2C protein phosphatase ABA insensitive 2 (ABI2), subsequently transducing H2O2 signal to ABI2. This oxidation dramatically sensitizes H2O2-mediated inhibition of the ABI2 phosphatase activity in vitro and is required for stomatal immunity in plants. Together, our results illustrate a redox relay, with PRXIIB as a sensor for H2O2 and ABI2 as a target protein, that mediates reactive oxygen species signalling during plant immunity.
Collapse
Affiliation(s)
- Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Man Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
18
|
Khandaker MM, Jamaludin R, Majrashi A, Rashid ZM, Karim SMR, Al-Yasi HM, Badaluddin NA, Alenazi MM, Mohd KS. Enhancing Rubisco gene expression and metabolites accumulation for better plant growth in Ficus deltoidea under drought stress using hydrogen peroxide. FRONTIERS IN PLANT SCIENCE 2022; 13:965765. [PMID: 36247640 PMCID: PMC9562100 DOI: 10.3389/fpls.2022.965765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Growth improvement of the medicinal plant, Ficus deltoidea (Mas Cotek) under drought conditions is a vital issue in Malaysia since it is a slow-growing plant and disposed to leaf damage under the stresses of drought. Therefore, investigation was done to examine the outcomes of hydrogen peroxide (H2O2) application on Rubisco gene expression and metabolites accumulation of stressed F. deltoidea plants, and thereby to record the changes in leaf histology, photosynthesis, biochemical properties, and the growth of the plant. H2O2 at the rates of 0, 5, 10, 15, and 20 mM were foliar sprayed biweekly on the drought stressed plants using a hand sprayer. The application of 20 mM H2O2 amplified leaf number, tallness, stomatal conductance, and photosynthetic yield by 143, 24, 88, and 18%, respectively, over the control plant. A reduced transpiration rate and improved chlorophyll fluorescence were also noted in H2O2-treated plants. The treatment produced a greater amount of chlorophyll a, total phenols, total flavonoids, sugar content, and antioxidant activities by 1.61-, 1.30-, 1.98-, 1.92-, and 1.53-fold, respectively. Application of 15 mM H2O2 enhanced net photosynthetic rate and internal CO2 concentrations by 1.05- and 1.25-fold, respectively. Additionally, H2O2 treatments promoted stomatal closure, increased stomata size, the number of stomata, improved vein structure, and reduced the damage of the leaf margin and mesophyll cells of drought stressed plants. The application of H2O2 also accumulated significantly higher contents of sodium (Na+), calcium (Ca2+), potassium (K+), magnesium (Mg+), and iron (Fe2+) in stressed plants. Although the amount of Arsenic (As+) and Antimony (Sb3+) increased to some extent, the increases were not at a toxic level. The use of H2O2 enhanced the Rubisco gene expression to a greater level and the ratio of Rubisco expression increased up to 16-fold. Finally, thirteen (13) identified and five (5) unmatched volatile compounds with a quality score above 70% were identified by gas chromatography-mass spectrometry (GCMS). The GCMS analysis showed that the foliar application of H2O2 accumulates a higher percentage of volatile components in plants which helps to mitigate the negative effects of drought stress. It is concluded that under drought stressed conditions the F. deltoidea plants should be treated with 10-15 mM of H2O2 twice a week to improve leaf histology, photosynthesis, the level of Rubisco gene expression and volatile compounds accumulation, and plant growth and development.
Collapse
Affiliation(s)
- Mohammad Moneruzzaman Khandaker
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Rosnah Jamaludin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Ali Majrashi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Zalilawati Mat Rashid
- School of Food Industry, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | | | - Hatim M. Al-Yasi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Noor Afiza Badaluddin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Mekhled Mutiran Alenazi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khamsah Suryati Mohd
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| |
Collapse
|
19
|
Perfluorobutanoic Acid (PFBA) Induces a Non-Enzymatic Oxidative Stress Response in Soybean (Glycine max L. Merr.). Int J Mol Sci 2022; 23:ijms23179934. [PMID: 36077331 PMCID: PMC9456126 DOI: 10.3390/ijms23179934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Short-chain perfluoroalkyl substances (PFAS) are generally considered to be of less environmental concern than long-chain analogues due to their comparatively shorter half-lives in biological systems. Perfluorobutanoic acid (PFBA) is a short-chain PFAS with the most root–shoot transfer factor of all PFAS. We investigated the impact of extended exposure of soybean plants to irrigation water containing environmentally relevant (100 pg–100 ng/L) to high (100 µg–1 mg/L) concentrations of PFBA using phenotypical observation, biochemical characterization, and transcriptomic analysis. The results showed a non-monotonous developmental response from the plants, with maximum stimulation and inhibition at 100 ng/L and 1 mg/L, respectively. Higher reactive oxygen species and low levels of superoxide dismutase (SOD) and catalase (CAT) activity were observed in all treatment groups. However transcriptomic analysis did not demonstrate differential expression of SOD and CAT coding genes, whereas non-enzymatic response genes and pathways were enriched in both groups (100 ng/L and 1 mg/L) with glycine betaine dehydrogenase showing the highest expression. About 18% of similarly downregulated genes in both groups are involved in the ethylene signaling pathway. The circadian rhythm pathway was the only differentially regulated pathway between both groups. We conclude that, similar to long chain PFAS, PFBA induced stress in soybean plants and that the observed hormetic stimulation at 100 ng/L represents an overcompensation response, via the circadian rhythm pathway, to the induced stress.
Collapse
|
20
|
Xu BQ, Wang JJ, Peng Y, Huang H, Sun LL, Yang R, Suo LN, Wang SH, Zhao WC. SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression. FRONTIERS IN PLANT SCIENCE 2022; 13:952758. [PMID: 35937339 PMCID: PMC9354244 DOI: 10.3389/fpls.2022.952758] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 05/27/2023]
Abstract
Drought stress limits plant development and reproduction. Multiple mechanisms in plants are activated to respond to stress. The MYC2 transcription factor is a core regulator of the jasmonate (JA) pathway and plays a vital role in the crosstalk between abscisic acid (ABA) and JA. In this study, we found that SlMYC2 responded to drought stress and regulated stomatal aperture in tomato (Solanum lycopersicum). Overexpression of SlMYC2 repressed SlCHS1 expression and decreased the flavonol content, increased the reactive oxygen species (ROS) content in guard cells and promoted the accumulation of JA and ABA in leaves. Additionally, silencing the SlCHS1 gene produced a phenotype that was similar to that of the MYC2-overexpressing (MYC2-OE) strain, especially in terms of stomatal dynamics and ROS levels. Finally, we confirmed that SlMYC2 directly repressed the expression of SlCHS1. Our study revealed that SlMYC2 drove stomatal closure by modulating the accumulation of flavonol and the JA and ABA contents, helping us decipher the mechanism of stomatal movement under drought stress.
Collapse
Affiliation(s)
- Bing-Qin Xu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Bei Jing Bei Nong Enterprise Management Co., Ltd., Beijing, China
| | - Jing-Jing Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yi Peng
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Lu-Lu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Lin-Na Suo
- Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Shao-Hui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Wen-Chao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
21
|
Liang Q, Lin X, Liu J, Feng Y, Niu X, Wang C, Song K, Yang C, Li L, Li Y. Genome-Wide Identification of MAPKK and MAPKKK Gene Family Members and Transcriptional Profiling Analysis during Bud Dormancy in Pear (Pyrus x bretschneideri). PLANTS 2022; 11:plants11131731. [PMID: 35807683 PMCID: PMC9269224 DOI: 10.3390/plants11131731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascade consisting of three types of reversibly major signal transduction module (MAPKKK, MAPKK, and MAPK) is distributed in eukaryotes. MAPK cascades participate in various aspects of plant development, including hormone responses, cell division and plant dormancy. Pear is one of the most economically important species worldwide, and its yield is directly affected by dormancy. In this study, genome-wide identification of MAPKK and MAPKKK gene family members in Pyrus x bretschneideri and transcriptional expression analysis of MAPK cascades during pear dormancy were performed. We identified 8 MAPKKs (PbrMKKs) and 100 MAPKKKs (PbrMAPKKKs) in Pyrus using recent genomic information. PbrMAPKKs were classified into four subgroups based on phylogenetic analysis, whereas PbrMAPKKKs were grouped into 3 subfamilies (MEKK, Raf, and ZIK). Most PbrMAPKKKs and PbrMAPKKs in the same subfamily had similar gene structures and conserved motifs. The genes were found on all 17 chromosomes. The comprehensive transcriptome analysis and quantitative real-time polymerase chain reaction (qRT–PCR) results showed that numerous MAPK cascade genes participated in pear bud dormancy. The interaction network and co-expression analyses indicated the crucial roles of the MAPK member-mediated network in pear bud dormancy. Overall, this study advances our understanding of the intricate transcriptional control of MAPKKK-MAPKK-MAPK genes and provides useful information on the functions of dormancy in perennial fruit trees.
Collapse
Affiliation(s)
- Qin Liang
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (X.L.); (J.L.); (Y.F.); (C.W.); (K.S.); (C.Y.)
- Guang’an Modern Agricultural Industrial Park Service Center, Guangan 638500, China
| | - Xiaojie Lin
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (X.L.); (J.L.); (Y.F.); (C.W.); (K.S.); (C.Y.)
| | - Jinhang Liu
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (X.L.); (J.L.); (Y.F.); (C.W.); (K.S.); (C.Y.)
| | - Yu Feng
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (X.L.); (J.L.); (Y.F.); (C.W.); (K.S.); (C.Y.)
| | - Xianqian Niu
- Fujian Institute of Tropical Crops, Zhangzhou 363001, China;
| | - Chao Wang
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (X.L.); (J.L.); (Y.F.); (C.W.); (K.S.); (C.Y.)
| | - Keke Song
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (X.L.); (J.L.); (Y.F.); (C.W.); (K.S.); (C.Y.)
| | - Chao Yang
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (X.L.); (J.L.); (Y.F.); (C.W.); (K.S.); (C.Y.)
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Correspondence: (L.L.); (Y.L.); Tel.: +86-591-8757-3907 (L.L.); +86-591-8378-9241 (Y.L.)
| | - Yongyu Li
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (X.L.); (J.L.); (Y.F.); (C.W.); (K.S.); (C.Y.)
- Correspondence: (L.L.); (Y.L.); Tel.: +86-591-8757-3907 (L.L.); +86-591-8378-9241 (Y.L.)
| |
Collapse
|
22
|
Liu Q, Wang S, Du Y, Yin K. Improved drought tolerance in soybean by protein elicitor AMEP412 induced ROS accumulation and scavenging. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2089596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Quan Liu
- Department of Biotechnology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Siwen Wang
- Department of Environmental Science, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yanli Du
- Department of Environmental Science, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Kuide Yin
- Department of Environmental Science, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| |
Collapse
|
23
|
Xiong J, Zhang W, Zheng D, Xiong H, Feng X, Zhang X, Wang Q, Wu F, Xu J, Lu Y. ZmLBD5 Increases Drought Sensitivity by Suppressing ROS Accumulation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1382. [PMID: 35631807 PMCID: PMC9144968 DOI: 10.3390/plants11101382] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Drought stress is known to significantly limit crop growth and productivity. Lateral organ boundary domain (LBD) transcription factors-particularly class-I members-play essential roles in plant development and biotic stress. However, little information is available on class-II LBD genes related to abiotic stress in maize. Here, we cloned a maize class-II LBD transcription factor, ZmLBD5, and identified its function in drought stress. Transient expression, transactivation, and dimerization assays demonstrated that ZmLBD5 was localized in the nucleus, without transactivation, and could form a homodimer or heterodimer. Promoter analysis demonstrated that multiple drought-stress-related and ABA response cis-acting elements are present in the promoter region of ZmLBD5. Overexpression of ZmLBD5 in Arabidopsis promotes plant growth under normal conditions, and suppresses drought tolerance under drought conditions. Furthermore, the overexpression of ZmLBD5 increased the water loss rate, stomatal number, and stomatal apertures. DAB and NBT staining demonstrated that the reactive oxygen species (ROS) decreased in ZmLBD5-overexpressed Arabidopsis. A physiological index assay also revealed that SOD and POD activities in ZmLBD5-overexpressed Arabidopsis were higher than those in wild-type Arabidopsis. These results revealed the role of ZmLBD5 in drought stress by regulating ROS levels.
Collapse
Affiliation(s)
- Jing Xiong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Weixiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Dan Zheng
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Hao Xiong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Xuanjun Feng
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang 611130, China
| | - Xuemei Zhang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Qingjun Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang 611130, China
| |
Collapse
|
24
|
Sarath NG, Manzil SA, Ali S, Alsahli AA, Puthur JT. Physio-anatomical modifications and elemental allocation pattern in Acanthus ilicifolius L. subjected to zinc stress. PLoS One 2022; 17:e0263753. [PMID: 35580091 PMCID: PMC9113579 DOI: 10.1371/journal.pone.0263753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Physio-anatomical modifications and elemental distribution pattern in Acanthus ilicifolius subjected to Zn stress were analysed in this study. Survival of A. ilicifolius plants under a high concentration of ZnSO4 was compensated by the reduction in the photosynthetic efficacy. Micro and macro-elemental distribution pattern in the root tissues was significantly influenced by heavy metal exposure. Tolerance towards the excess toxic metal ions in the tissue of A. ilicifolius was aided by the modified anatomical features. Moreover, the increased deposition of Zn around the central vasculature of the root confirms the complexation of Zn2+ in the xylem vessels. Metal induced molecular level changes of root and leaf samples indicate the presence of OH, NH2, and CH3 deformation as well as C-O-H and C-O-C stretch. A prominent band corresponding to CH3 deformation, pointing hemicellulose fortification, occurs in the cell walls of the xylem, aiding in Zn localization. The phytostabilisation potential of A. ilicifolius is dependent on the coordinated responses which endow with phenotypic plasticity necessary to cope with Zn toxicity.
Collapse
Affiliation(s)
- Nair G. Sarath
- Department of Botany, Plant Physiology and Biochemistry Division, University of Calicut, Thenhipalam, Kerala, India
| | - Shackira A. Manzil
- Department of Botany, Sir Syed College, Taliparamba, Kannur, Kerala, India
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | | | - Jos T. Puthur
- Department of Botany, Plant Physiology and Biochemistry Division, University of Calicut, Thenhipalam, Kerala, India
| |
Collapse
|
25
|
12-Hydroxyjasmonic acid glucoside causes leaf-folding of Samanea saman through ROS accumulation. Sci Rep 2022; 12:7232. [PMID: 35508503 PMCID: PMC9068819 DOI: 10.1038/s41598-022-11414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Foliar nyctinasty, a circadian rhythmic movement in plants, is common among leguminous plants and has been widely studied. Biological studies on nyctinasty have been conducted using Samanea saman as a model plant. It has been shown that the circadian rhythmic potassium flux from/into motor cells triggers cell shrinking/swelling to cause nyctinastic leaf-folding/opening movement in S. saman. Recently, 12-hydroxyjasmonic acid glucoside (JAG) was identified as an endogenous chemical factor causing leaf-folding of S. saman. Additionally, SPORK2 was identified as an outward-rectifying potassium channel that causes leaf-movement in the same plant. However, the molecular mechanism linking JAG and SPORK2 remains elusive. Here, we report that JAG induces leaf-folding through accumulation of reactive oxygen species in the extensor motor cells of S. saman, and this occurs independently of plant hormone signaling. Furthermore, we show that SPORK2 is indispensable for the JAG-triggered shrinkage of the motor cell. This is the first report on JAG, which is believed to be an inactivated/storage derivative of JA, acting as a bioactive metabolite in plant.
Collapse
|
26
|
Sun G, Xia M, Li J, Ma W, Li Q, Xie J, Bai S, Fang S, Sun T, Feng X, Guo G, Niu Y, Hou J, Ye W, Ma J, Guo S, Wang H, Long Y, Zhang X, Zhang J, Zhou H, Li B, Liu J, Zou C, Wang H, Huang J, Galbraith DW, Song CP. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. THE PLANT CELL 2022; 34:1890-1911. [PMID: 35166333 PMCID: PMC9048877 DOI: 10.1093/plcell/koac047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/28/2022] [Indexed: 05/26/2023]
Abstract
The unique morphology of grass stomata enables rapid responses to environmental changes. Deciphering the basis for these responses is critical for improving food security. We have developed a planta platform of single-nucleus RNA-sequencing by combined fluorescence-activated nuclei flow sorting, and used it to identify cell types in mature and developing stomata from 33,098 nuclei of the maize epidermis-enriched tissues. Guard cells (GCs) and subsidiary cells (SCs) displayed differential expression of genes, besides those encoding transporters, involved in the abscisic acid, CO2, Ca2+, starch metabolism, and blue light signaling pathways, implicating coordinated signal integration in speedy stomatal responses, and of genes affecting cell wall plasticity, implying a more sophisticated relationship between GCs and SCs in stomatal development and dumbbell-shaped guard cell formation. The trajectory of stomatal development identified in young tissues, and by comparison to the bulk RNA-seq data of the MUTE defective mutant in stomatal development, confirmed known features, and shed light on key participants in stomatal development. Our study provides a valuable, comprehensive, and fundamental foundation for further insights into grass stomatal function.
Collapse
Affiliation(s)
- Guiling Sun
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Mingzhang Xia
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jieping Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Wen Ma
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Qingzeng Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jinjin Xie
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Shenglong Bai
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Shanshan Fang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Ting Sun
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Xinlei Feng
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Guanghui Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Yanli Niu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jingyi Hou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Wenling Ye
- School of Medicine, Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Henan University, Kaifeng 475004, China
| | - Jianchao Ma
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Siyi Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hongliang Wang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Yu Long
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hui Zhou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Baozhu Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jiong Liu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Changsong Zou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hai Wang
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinling Huang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | |
Collapse
|
27
|
Berrios L, Rentsch JD. Linking Reactive Oxygen Species (ROS) to Abiotic and Biotic Feedbacks in Plant Microbiomes: The Dose Makes the Poison. Int J Mol Sci 2022; 23:ijms23084402. [PMID: 35457220 PMCID: PMC9030523 DOI: 10.3390/ijms23084402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
In nature, plants develop in complex, adaptive environments. Plants must therefore respond efficiently to environmental stressors to maintain homeostasis and enhance their fitness. Although many coordinated processes remain integral for achieving homeostasis and driving plant development, reactive oxygen species (ROS) function as critical, fast-acting orchestrators that link abiotic and biotic responses to plant homeostasis and development. In addition to the suite of enzymatic and non-enzymatic ROS processing pathways that plants possess, they also rely on their microbiota to buffer and maintain the oxidative window needed to balance anabolic and catabolic processes. Strong evidence has been communicated recently that links ROS regulation to the aggregated function(s) of commensal microbiota and plant-growth-promoting microbes. To date, many reports have put forth insightful syntheses that either detail ROS regulation across plant development (independent of plant microbiota) or examine abiotic–biotic feedbacks in plant microbiomes (independent of clear emphases on ROS regulation). Here we provide a novel synthesis that incorporates recent findings regarding ROS and plant development in the context of both microbiota regulation and plant-associated microbes. Specifically, we discuss various roles of ROS across plant development to strengthen the links between plant microbiome functioning and ROS regulation for both basic and applied research aims.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC 29502, USA;
| |
Collapse
|
28
|
Czékus Z, Koprivanacz P, Kukri A, Iqbal N, Ördög A, POóR P. The role of photosynthetic activity in the regulation of flg22-induced local and systemic defence reaction in tomato. PHOTOSYNTHETICA 2022; 60:259-270. [PMID: 39650767 PMCID: PMC11558501 DOI: 10.32615/ps.2022.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/03/2022] [Indexed: 12/11/2024]
Abstract
Flagellin (flg22) induces rapid and long-lasting defence responses. It may also affect the photosynthetic activity depending on several internal and external factors, such as the phytohormone ethylene or the day/night time. Based on the results, flg22 treatment, neither in the light phase nor in the evening, caused any significant change in chlorophyll fluorescence induction parameters in the leaves of wild-type and ethylene-receptor mutant Never ripe tomato plants measured the next morning. However, flg22 in the light phase decreased the effective quantum yield and the photochemical quenching both locally and systemically in guard cells. In parallel, the production of reactive oxygen species and nitric oxide increased, which contributed to the stomatal closure and a decrease in CO2 assimilation the next day. A decrease in sugar content and elevated hexokinase activity measured after flg22 exposure can also contribute to local defence responses in intact tomato plants.
Collapse
Affiliation(s)
- Z. Czékus
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
- Doctoral School of Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - P. Koprivanacz
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - A. Kukri
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
- Doctoral School of Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - N. Iqbal
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - A. Ördög
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - P. POóR
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| |
Collapse
|
29
|
Lee BR, La VH, Park SH, Mamun MA, Bae DW, Kim TH. H2O2-Responsive Hormonal Status Involves Oxidative Burst Signaling and Proline Metabolism in Rapeseed Leaves. Antioxidants (Basel) 2022; 11:antiox11030566. [PMID: 35326216 PMCID: PMC8944793 DOI: 10.3390/antiox11030566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Drought alters the level of endogenous reactive oxygen species (ROS) and hormonal status, which are both involved in the regulation of stress responses. To investigate the interplay between ROS and hormones in proline metabolism, rapeseed (Brassica napus L.) plants were exposed to drought or exogenous H2O2 (Exo-H2O2) treatment for 10 days. During the first 5 days, the enhanced H2O2 concentrations in drought treatment were associated with the activation of superoxide dismutase (SOD) and NADPH oxidase, with enhanced ABA and SA levels, while that in Exo-H2O2 treatment was mainly associated with SA-responsive POX. During the latter 5 days, ABA-dependent ROS accumulation was predominant with an upregulated oxidative signal-inducible gene (OXI1) and MAPK6, leading to the activation of ABA synthesis and the signaling genes (NCED3 and MYC2). During the first 5 days, the enhanced levels of P5C and proline were concomitant with SA-dependent NDR1-mediated signaling in both drought and Exo-H2O2 treatments. In the latter 5 days of drought treatment, a distinct enhancement in P5CR and ProDH expression led to higher proline accumulation compared to Exo-H2O2 treatment. These results indicate that SA-mediated P5C synthesis is highly activated under lower endogenous H2O2 levels, and ABA-mediated OXI1-dependent proline accumulation mainly occurs with an increasing ROS level, leading to ProDH activation as a hypersensitive response to ROS and proline overproduction under severe stress.
Collapse
Affiliation(s)
- Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
| | - Van Hien La
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam
| | - Sang-Hyun Park
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
| | - Md Al Mamun
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
| | - Dong-Won Bae
- Central Instruments Facility, Gyeongsang National University, Jinju 52828, Korea;
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
- Correspondence: ; Tel.: +82-62-530-2126
| |
Collapse
|
30
|
Soboleva A, Frolova N, Bureiko K, Shumilina J, Balcke GU, Zhukov VA, Tikhonovich IA, Frolov A. Dynamics of Reactive Carbonyl Species in Pea Root Nodules in Response to Polyethylene Glycol (PEG)-Induced Osmotic Stress. Int J Mol Sci 2022; 23:2726. [PMID: 35269869 PMCID: PMC8910736 DOI: 10.3390/ijms23052726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023] Open
Abstract
Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants' response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Nadezhda Frolova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Kseniia Bureiko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Julia Shumilina
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Gerd U. Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany;
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, 196608 St. Petersburg, Russia; (V.A.Z.); or (I.A.T.)
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, 196608 St. Petersburg, Russia; (V.A.Z.); or (I.A.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
31
|
González-Villagra J, Reyes-Díaz MM, Tighe-Neira R, Inostroza-Blancheteau C, Escobar AL, Bravo LA. Salicylic Acid Improves Antioxidant Defense System and Photosynthetic Performance in Aristotelia chilensis Plants Subjected to Moderate Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050639. [PMID: 35270109 PMCID: PMC8912461 DOI: 10.3390/plants11050639] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) has been shown to ameliorate drought stress. However, physiological and biochemical mechanisms involved in drought stress tolerance induced by SA in plants have not been well understood. Thus, this study aimed to study the role of SA application on enzymatic and non-enzymatic antioxidants, photosynthetic performance, and plant growth in A. chilensis plants subjected to moderate drought stress. One-year-old A. chilensis plants were subjected to 100% and 60% of field capacity. When plants reached moderate drought stress (average of stem water potential of -1.0 MPa, considered as moderate drought stress), a single SA application was performed on plants. Then, physiological and biochemical features were determined at different times during 14 days. Our study showed that SA application increased 13.5% plant growth and recovered 41.9% AN and 40.7% gs in drought-stressed plants on day 3 compared to drought-stressed plants without SA application. Interestingly, SOD and APX activities were increased 85% and 60%, respectively, in drought-stressed SA-treated plants on day 3. Likewise, SA improved 30% total phenolic content and 60% antioxidant capacity in drought-stressed A. chilensis plants. Our study provides insight into the SA mechanism to tolerate moderate drought stress in A. chilensis plants.
Collapse
Affiliation(s)
- Jorge González-Villagra
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4781312, Chile; (J.G.-V.); (R.T.-N.); (C.I.-B.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4781312, Chile
| | - Marjorie M. Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile;
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Ricardo Tighe-Neira
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4781312, Chile; (J.G.-V.); (R.T.-N.); (C.I.-B.)
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4781312, Chile; (J.G.-V.); (R.T.-N.); (C.I.-B.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4781312, Chile
| | - Ana Luengo Escobar
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4811230, Chile
| | - León A. Bravo
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
32
|
Chen P, Liu P, Zhang Q, Zhao L, Hao X, Liu L, Bu C, Pan Y, Zhang D, Song Y. Dynamic physiological and transcriptome changes reveal a potential relationship between the circadian clock and salt stress response in Ulmus pumila. Mol Genet Genomics 2022; 297:303-317. [PMID: 35089426 DOI: 10.1007/s00438-021-01838-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022]
Abstract
Despite the important role the circadian clock plays in numerous critical physiological responses in plants, such as hypocotyl elongation, leaf movement, stomatal opening, flowering, and stress responses, there have been no investigations into the effect of the circadian clock on physiological and transcriptional networks under salt stress. Ulmus pumila L. has been reported to tolerate 100-150 mM NaCl treatment. We measured the diurnal variation in photosynthesis and chlorophyll fluorescence parameters and performed a time-course transcriptome analysis of 2-years-old U. pumila seedlings under salt treatment to dissect the physiological regulation and potential relationship between the circadian network and the salt stress response. Seedlings in 150 mM NaCl treatment exhibited salt-induced physiological enhancement compared to the control group. A total of 7009 differentially expressed unigenes (DEGs) were identified under salt stress, of which 16 DEGs were identified as circadian rhythm-related DEGs (crDEGs). Further analysis of dynamic expression changes revealed that DEGs involved in four crucial pathways-photosynthesis, thiamine metabolism, abscisic acid synthesis and metabolism, and the hormone-MAPK signal crosstalk pathway-are closely related to the circadian clock. Finally, we constructed a co-expression network between the circadian clock and these four crucial pathways. Our results help shed light on the molecular link between the circadian network and salt stress tolerance in U. pumila.
Collapse
Affiliation(s)
- Panfei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Peng Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Quanfeng Zhang
- Hebei Academy of Forestry Sciences, No. 75, Xuefu Road, Hebei, 050072, People's Republic of China
| | - Lei Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Xuri Hao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Lei Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Chenhao Bu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Yanjun Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
| |
Collapse
|
33
|
Yin X, Bai YL, Ye T, Yu M, Wu Y, Feng YQ. Cinnamoyl coA: NADP oxidoreductase-like 1 regulates abscisic acid response by modulating phaseic acid homeostasis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:860-872. [PMID: 34718526 DOI: 10.1093/jxb/erab474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Phaseic acid (PA), a main catabolite of abscisic acid (ABA), is structurally related to ABA and possesses ABA-like hormonal activity. However, the comprehensive metabolism pathway and roles of PA are not well understood. Here, using homologous alignment and expression pattern analysis, we identified in Arabidopsis the previously named CRL1 (Cinnamoyl coA: NADP oxidoreductase-like 1) as a PA reductase that catalyses PA to dihydrophaseic acid. The function of CRL1 and the potential role of PA were studied in transgenic CRL1 plants. Overexpression of CRL1 resulted in decreased ABA sensitivity in seed germination and attenuated drought tolerance. In contrast, increased ABA sensitivity and elevated drought tolerance was observed in down-regulated and loss-of-function crl1 mutants. Tyr162 in the conserved motif is the key residue in CRL1 to catalyse PA. Accelerated seed germination and earlier flowering phenotype were also observed in overexpressing lines, while retarded seed germination and delayed flowering occurred in crl1 mutants which accumulated more PA, but less dihydrophaseic acid than the wild type. This study demonstrates that PA plays diverse functions in drought tolerance, seed germination and flowering in an ABA-like manner, which may increase the adaptive plasticity of plants.
Collapse
Affiliation(s)
- Xiaoming Yin
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Ya-Li Bai
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Tiantian Ye
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Min Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, PR China
| |
Collapse
|
34
|
Berrío RT, Nelissen H, Inzé D, Dubois M. Increasing yield on dry fields: molecular pathways with growing potential. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:323-341. [PMID: 34695266 PMCID: PMC7612350 DOI: 10.1111/tpj.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 05/02/2023]
Abstract
Drought stress constitutes one of the major constraints to agriculture all over the world, and its devastating effect is only expected to increase in the following years due to climate change. Concurrently, the increasing food demand in a steadily growing population requires a proportional increase in yield and crop production. In the past, research aimed to increase plant resilience to severe drought stress. However, this often resulted in stunted growth and reduced yield under favorable conditions or moderate drought. Nowadays, drought tolerance research aims to maintain plant growth and yield under drought conditions. Overall, recently deployed strategies to engineer drought tolerance in the lab can be classified into a 'growth-centered' strategy, which focuses on keeping growth unaffected by the drought stress, and a 'drought resilience without growth penalty' strategy, in which the main aim is still to boost drought resilience, while limiting the side effects on plant growth. In this review, we put the scope on these two strategies and some molecular players that were successfully engineered to generate drought-tolerant plants: abscisic acid, brassinosteroids, cytokinins, ethylene, ROS scavenging genes, strigolactones, and aquaporins. We discuss how these pathways participate in growth and stress response regulation under drought. Finally, we present an overview of the current insights and future perspectives in the development of new strategies to improve drought tolerance in the field.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Corresponding Author: Dirk Inzé VIB Center for Plant Systems Biology Ghent University, Department of Plant Biotechnology Technologiepark 71 B-9052 Ghent (Belgium) Tel.: +32 9 3313800; Fax: +32 9 3313809;
| | - Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
35
|
Mohandass S, Ragavan M, Gnanasekaran D, Lakshmanan U, Dharmar P, Saha SK. Overexpression of Cu/Zn Superoxide Dismutase (Cu/Zn SOD) in Synechococcus elongatus PCC 7942 for Enhanced Azo Dye Removal through Hydrogen Peroxide Accumulation. BIOLOGY 2021; 10:1313. [PMID: 34943228 PMCID: PMC8698522 DOI: 10.3390/biology10121313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 12/07/2022]
Abstract
Discharge of recalcitrant azo dyes to the environment poses a serious threat to environmental health. However certain microorganisms in nature have developed their survival strategies by degrading these toxic dyes. Cyanobacteria are one such prokaryotic, photosynthetic group of microorganisms that degrade various xenobiotic compounds, due to their capability to produce various reactive oxygen species (ROS), and particularly the hydrogen peroxide (H2O2) when released in their milieu. The accumulation of H2O2 is the result of the dismutation of superoxide radicals by the enzyme superoxide dismutase (SOD). In this study, we have genetically modified the cyanobacterium Synechococcus elongatus PCC 7942 by integrating Cu/Zn SOD gene (sodC) from Synechococcus sp. PCC 9311 to its neutral site through homologous recombination. The overexpression of sodC in the derivative strain was driven using a strong constitutive promoter of the psbA gene. The derivative strain resulted in constitutive production of sodC, which was induced further during dye-treated growth. The genetically engineered Synechococcus elongatus PCC 7942 (MS-sodC+) over-accumulated H2O2 during azo dye treatment with a higher dye removal rate than the wild-type strain (WS-sodC-). Therefore, enhanced H2O2 accumulation through SODs overexpression in cyanobacteria may serve as a valuable bioremediation tool.
Collapse
Affiliation(s)
- ShylajaNaciyar Mohandass
- Department of Marine Biotechnology, National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), School of Marine Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; (S.M.); (M.R.); (D.G.); (U.L.); (P.D.)
| | - Mangalalakshmi Ragavan
- Department of Marine Biotechnology, National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), School of Marine Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; (S.M.); (M.R.); (D.G.); (U.L.); (P.D.)
| | - Dineshbabu Gnanasekaran
- Department of Marine Biotechnology, National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), School of Marine Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; (S.M.); (M.R.); (D.G.); (U.L.); (P.D.)
| | - Uma Lakshmanan
- Department of Marine Biotechnology, National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), School of Marine Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; (S.M.); (M.R.); (D.G.); (U.L.); (P.D.)
| | - Prabaharan Dharmar
- Department of Marine Biotechnology, National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), School of Marine Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; (S.M.); (M.R.); (D.G.); (U.L.); (P.D.)
| | - Sushanta Kumar Saha
- Shannon Applied Biotechnology Centre, Technological University of Shannon, Moylish Park, V94 E8YF Limerick, Ireland
| |
Collapse
|
36
|
Liu Y, Zhang H. Reactive oxygen species and nitric oxide as mediators in plant hypersensitive response and stomatal closure. PLANT SIGNALING & BEHAVIOR 2021; 16:1985860. [PMID: 34668846 PMCID: PMC9208772 DOI: 10.1080/15592324.2021.1985860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 05/31/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) have attracted considerable interest from plant pathologists since they regulate plant defenses via the hypersensitive response (HR) and stomatal closure. Here, we introduce the regulatory mechanisms of NO and ROS bursts and discuss the role of such bursts in HR and stomatal closure. It showed that epidermal sections of leaves respond to pathogens by the rapid and intense production of intracellular ROS and NO. Oxidative stress and H2O2 induce stomatal closure. Catalase and peroxidase-deficient plants are also hyperresponsive to pathogen invasion, suggesting a role for H2O2 in HR-mediated cell death. The analysis reveals that ROS and NO play important roles in stomatal closure and HR that involves multiple pathways. Therefore, multi-disciplinary and multi-omics combined analysis is crucial to the advancement of ROS and NO research and their role in plant defense mechanism.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Huajian Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| |
Collapse
|
37
|
Involvement of Reactive Oxygen Species in ABA-Induced Increase in Hydraulic Conductivity and Aquaporin Abundance. Int J Mol Sci 2021; 22:ijms22179144. [PMID: 34502052 PMCID: PMC8431682 DOI: 10.3390/ijms22179144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
The role of reactive oxygen species (ROS) in ABA-induced increase in hydraulic conductivity was hypothesized to be dependent on an increase in aquaporin water channel (AQP) abundance. Single ABA application or its combination with ROS manipulators (ROS scavenger ascorbic acid and NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI)) were studied on detached roots of barley plants. We measured the osmotically driven flow rate of xylem sap and calculated root hydraulic conductivity. In parallel, immunolocalization of ABA and HvPIP2;2 AQPs was performed with corresponding specific antibodies. ABA treatment increased the flow rate of xylem, root hydraulic conductivity and immunostaining for ABA and HvPIP2;2, while the addition of antioxidants prevented the effects of this hormone. The obtained results confirmed the involvement of ROS in ABA effect on hydraulic conductivity, in particular, the importance of H2O2 production by ABA-treated plants for the effect of this hormone on AQP abundance.
Collapse
|
38
|
Czékus Z, Iqbal N, Pollák B, Martics A, Ördög A, Poór P. Role of ethylene and light in chitosan-induced local and systemic defence responses of tomato plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153461. [PMID: 34217837 DOI: 10.1016/j.jplph.2021.153461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Plant defence responses can be triggered by the application of elicitors for example chitosan (β-1,4-linked glucosamine; CHT). It is well-known that CHT induces rapid, local production of reactive oxygen species (ROS) and nitric oxide (NO) resulting in fast stomatal closure. Systemic defence responses are based primarily on phytohormones such as ethylene (ET) and salicylic acid (SA), moreover on the expression of hormone-mediated defence genes and proteins. At the same time, these responses can be dependent also on external factors, such as light but its role was less-investigated. Based on our result in intact tomato plants (Solanum lycopersicum L.), CHT treatment not only induced significant ET emission and stomatal closure locally but also promoted significant production of superoxide which was also detectable in the distal, systemic leaves. However, these changes in ET and superoxide accumulation were detected only in wild type (WT) plants kept in light and were inhibited under darkness as well as in ET receptor Never ripe (Nr) mutants suggesting pivotal importance of ET and light in inducing resistance both locally and systemically upon CHT. Interestingly, CHT-induced NO production was mostly independent of ET or light. At the same time, expression of Pathogenesis-related 3 (PR3) was increased locally in both genotypes in the light and in WT leaves under darkness. This was also observed in distal leaves of WT plants. The CHT-induced endoplasmic reticulum (ER) stress, as well as unfolded protein response (UPR) were examined for the first time, via analysis of the lumenal binding protein (BiP). Whereas local expression of BiP was not dependent on the availability of light or ET, systemically it was mediated by ET.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Boglárka Pollák
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Atina Martics
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép Fasor 52, Hungary.
| |
Collapse
|
39
|
Sedaghat M, Emam Y, Mokhtassi-Bidgoli A, Hazrati S, Lovisolo C, Visentin I, Cardinale F, Tahmasebi-Sarvestani Z. The Potential of the Synthetic Strigolactone Analogue GR24 for the Maintenance of Photosynthesis and Yield in Winter Wheat under Drought: Investigations on the Mechanisms of Action and Delivery Modes. PLANTS 2021; 10:plants10061223. [PMID: 34208497 PMCID: PMC8233996 DOI: 10.3390/plants10061223] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022]
Abstract
Strigolactones (SLs) have been implicated in many plant biological and physiological processes, including the responses to abiotic stresses such as drought, in concert with other phytohormones. While it is now clear that exogenous SLs may help plants to survive in harsh environmental condition, the best, most effective protocols for treatment have not been defined yet, and the mechanisms of action are far from being fully understood. In the set of experiments reported here, we contrasted two application methods for treatment with a synthetic analog of SL, GR24. A number of morphometric, physiological and biochemical parameters were measured following foliar application of GR24 or application in the residual irrigation water in winter wheat plants under irrigated and drought stress conditions. Depending on the concentration and the method of GR24 application, differentiated photosynthesis and transpiration rate, stomatal conductance, leaf water potential, antioxidant enzyme activities and yield in drought conditions were observed. We present evidence that different methods of GR24 application led to increased photosynthesis and yield under stress by a combination of drought tolerance and escape factors, which should be considered for future research exploring the potential of this new family of bioactive molecules for practical applications.
Collapse
Affiliation(s)
- Mojde Sedaghat
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Correspondence:
| | - Yahya Emam
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115111, Iran; (A.M.-B.); (Z.T.-S.)
| | - Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714161, Iran;
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | - Ivan Visentin
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | - Francesca Cardinale
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | | |
Collapse
|
40
|
Pérez FJ, Noriega X, Rubio S. Hydrogen Peroxide Increases during Endodormancy and Decreases during Budbreak in Grapevine ( Vitis vinifera L.) Buds. Antioxidants (Basel) 2021; 10:antiox10060873. [PMID: 34072287 PMCID: PMC8228137 DOI: 10.3390/antiox10060873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/04/2022] Open
Abstract
Changes in the level of hydrogen peroxide (H2O2) is a good indicator to monitor fluctuations in cellular metabolism and in the stress responses. In this study, the changes in H2O2 content during bud endodormancy (ED) and budbreak were analysed in grapevine (Vitis vinifera L.). The results showed a gradual increase in the H2O2 content during the development of bud ED, which was mainly due to an increase in the activity of peroxidases (PODs). The maximum H2O2 content reached in the grapevine buds coincided with the maximum depth of bud ED. In contrast, during budbreak, the H2O2 content decreased. As the plant hormones cytokinin (CK) and auxin play an important role in budbreak and growth resumption in grapevine, the effect of exogenous applications of H2O2 on the expression of genes involved in CK and auxin metabolism was analysed. The results showed that H2O2 represses the expression of the CK biosynthesis genes VvIPT3a and VvLOG1 and induces the expression of the CK-inactivating gene VvCKX3, thus reducing potentially the CK content in the grapevine bud. On the other hand, H2O2 induced the expression of the auxin biosynthesis genes VvAMI1 and VvYUC3 and of the auxin transporter gene VvPIN3, thus increasing potentially the auxin content and auxin transport in grapevine buds. In general, the results suggest that H2O2 in grapevine buds is associated with the depth of ED and negatively regulates its budbreak.
Collapse
|
41
|
Liu H, Shen J, Yuan C, Lu D, Acharya BR, Wang M, Chen D, Zhang W. The Cyclophilin ROC3 Regulates ABA-Induced Stomatal Closure and the Drought Stress Response of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:668792. [PMID: 34113366 PMCID: PMC8186832 DOI: 10.3389/fpls.2021.668792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/28/2021] [Indexed: 05/28/2023]
Abstract
Drought causes a major constraint on plant growth, development, and crop productivity. Drought stress enhances the synthesis and mobilization of the phytohormone abscisic acid (ABA). Enhanced cellular levels of ABA promote the production of reactive oxygen species (ROS), which in turn induce anion channel activity in guard cells that consequently leads to stomatal closure. Although Cyclophilins (CYPs) are known to participate in the biotic stress response, their involvement in guard cell ABA signaling and the drought response remains to be established. The Arabidopsis thaliana gene ROC3 encodes a CYP. Arabidopsis roc3 T-DNA mutants showed a reduced level of ABA-activated S-type anion currents, and stomatal closure than wild type (WT). Also, roc3 mutants exhibited rapid loss of water in leaf than wild type. Two complementation lines of roc3 mutants showed similar stomatal response to ABA as observed for WT. Both complementation lines also showed similar water loss as WT by leaf detached assay. Biochemical assay suggested that ROC3 positively regulates ROS accumulation by inhibiting catalase activity. In response to ABA treatment or drought stress, roc3 mutant show down regulation of a number of stress responsive genes. All findings indicate that ROC3 positively regulates ABA-induced stomatal closure and the drought response by regulating ROS homeostasis and the expression of various stress-activated genes.
Collapse
Affiliation(s)
- Huiping Liu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Jianlin Shen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Chao Yuan
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Dongxue Lu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Biswa R. Acharya
- College of Natural and Agricultural Sciences, University of California, Riverside, Riverside, CA, United States
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
42
|
Sequential Antioxidants Foliar Application Can Alleviate Negative Consequences of Salinity Stress in Vicia faba L. PLANTS 2021; 10:plants10050914. [PMID: 34063267 PMCID: PMC8147453 DOI: 10.3390/plants10050914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
Salinity is one of the most limiting abiotic stresses in agricultural productivity. Exogenously applied antioxidants successfully enabled salt-stressed plants to cope with stress. Two-season field experiments were conducted consecutively in 2016/17 and 2017/18 to study the effects of foliar applications of singular (ascorbate, AsA; proline, Pro; and glutathione, GSH) or sequential (AsA-Pro-GSH and GSH-Pro-AsA) antioxidants on growth, yield, physio-biochemical attributes, and enzymatic and non-enzymatic antioxidative defense system of Vicia faba L. (CV. Sakha-1) plants grown under saline soil conditions (EC = 4.53 dS m−1). Under soil salinity conditions, AsA, Pro, or GSH-Pro-ASA improved growth and productivity, photosynthesis efficiency, stomatal conductance (gs), plant water status, as well as enzymatic and non-enzymatic antioxidants. However, sequential AsA-Pro-GSH foliar application followed by singular GSH significantly exceeded all other treatments (i.e., AsA, Pro, and GSH-Pro-AsA), improving growth characteristics (shoot length, shoot fresh and dry weights, and leaves area), photosynthesis efficiency, stomatal conductance, plant water status, and yield and its components (green pods weight/plant−1, green pods yield/hectare−1, and seed yield/hectare−1), as well as enzymatic (ascorbate peroxidase, catalase, superoxide dismutase, and glutathione reductase) and non-enzymatic (AsA, GSH, Pro, phenolic aglycone, phenolic glycosides) antioxidants compared to control. Overall, our results clearly demonstrate that sequential AsA-Pro-GSH foliar application has a positive effect on salt-stressed Vicia faba plants.
Collapse
|
43
|
Balmant KM, Lawrence SR, Duong BV, Zhu F, Zhu N, Nicklay J, Chen S. Guard cell redox proteomics reveals a role of lipid transfer protein in plant defense. J Proteomics 2021; 242:104247. [PMID: 33940245 DOI: 10.1016/j.jprot.2021.104247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Redox-based post-translational modifications (PTMs) involving protein cysteine residues as redox sensors are important to various physiological processes. However, little is known about redox-sensitive proteins in guard cells and their functions in stomatal immunity. In this study, we applied an integrative protein labeling method cysTMTRAQ, and identified guard cell proteins that were altered by thiol redox PTMs in response to a bacterial flagellin peptide flg22. In total, eight, seven and 20 potential redox-responsive proteins were identified in guard cells treated with flg22 for 15, 30 and 60 min, respectively. The proteins fall into several functional groups including photosynthesis, lipid binding, oxidation-reduction, and defense. Among the proteins, a lipid transfer protein (LTP)-II was confirmed to be redox-responsive and involved in plant resistance to Pseudomonas syringe pv. tomato DC3000. This study not only creates an inventory of potential redox-sensitive proteins in flg22 signal transduction in guard cells, but also highlights the biological relevance of the lipid transfer protein in plant defense against bacterial pathogens. SIGNIFICANCE: Protein redox modifications play important roles in many physiological processes. However, redox proteomics has rarely been studied in plant single cell-types. In this study, isobaric tandem mass tag-based redox proteomics technology was applied to discover redox-sensitive proteins and corresponding cysteine residues in guard cell response to a bacterial flagellin peptide flg22. Many redox-responsive proteins related to photosynthesis, lipid binding, oxidation-reduction, and defense were identified. Using reverse genetics and biochemical analyses, a lipid transfer protein was functionally characterized to be involved in plant defense against pathogens. The study highlights the utility of redox proteomics in discovering new proteins and redox modifications in important stomatal guard cell functions. Furthermore, detailed functional characterization demonstrates the biological relevance of the redox-responsive lipid transfer protein in plant pathogen defense.
Collapse
Affiliation(s)
- Kelly M Balmant
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sheldon R Lawrence
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Benjamin V Duong
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Fanzhao Zhu
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Ning Zhu
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | | | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
44
|
Movahedi M, Zoulias N, Casson SA, Sun P, Liang YK, Hetherington AM, Gray JE, Chater CCC. Stomatal responses to carbon dioxide and light require abscisic acid catabolism in Arabidopsis. Interface Focus 2021; 11:20200036. [PMID: 33633834 DOI: 10.1098/rsfs.2020.0036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 11/12/2022] Open
Abstract
In plants, stomata control water loss and CO2 uptake. The aperture and density of stomatal pores, and hence the exchange of gases between the plant and the atmosphere, are controlled by internal factors such as the plant hormone abscisic acid (ABA) and external signals including light and CO2. In this study, we examine the importance of ABA catabolism in the stomatal responses to CO2 and light. By using the ABA 8'-hydroxylase-deficient Arabidopsis thaliana double mutant cyp707a1 cyp707a3, which is unable to break down and instead accumulates high levels of ABA, we reveal the importance of the control of ABA concentration in mediating stomatal responses to CO2 and light. Intriguingly, our experiments suggest that endogenously produced ABA is unable to close stomata in the absence of CO2. Furthermore, we show that when plants are grown in short day conditions ABA breakdown is required for the modulation of both elevated [CO2]-induced stomatal closure and elevated [CO2]-induced reductions in leaf stomatal density. ABA catabolism is also required for the stomatal density response to light intensity, and for the full range of light-induced stomatal opening, suggesting that ABA catabolism is critical for the integration of stomatal responses to a range of environmental stimuli.
Collapse
Affiliation(s)
- Mahsa Movahedi
- Clinical Biomanufacturing Facility, Old Road, Headington, Oxford OX3 7JT, UK
| | - Nicholas Zoulias
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Stuart A Casson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Peng Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Caspar C C Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.,Department of Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
| |
Collapse
|
45
|
Du B, Nie N, Sun S, Hu Y, Bai Y, He S, Zhao N, Liu Q, Zhai H. A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110802. [PMID: 33568301 DOI: 10.1016/j.plantsci.2020.110802] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 05/16/2023]
Abstract
Arabidopsis Toxicos en Levadura (ATL) proteins compose a subfamily of E3 ubiquitin ligases and play major roles in regulating plant growth, cold, drought, oxidative stresses response and pathogen defense in plants. However, the role in enhancing salt tolerance has not been reported to date. Here, we cloned a novel RING-H2 type E3 ubiquitin ligase gene, named IbATL38, from sweetpotato cultivar Lushu 3. This gene was highly expressed in the leaves of sweetpotato and strongly induced by NaCl and abscisic acid (ABA). This IbATL38 was localized to nucleus and plasm membrane and possessed E3 ubiquitin ligase activity. Overexpression of IbATL38 in Arabidopsis significantly enhanced salt tolerance, along with inducible expression of a series of stress-responsive genes and prominently decrease of H2O2 content. These results suggest that IbATL38 as a novel E3 ubiquitin ligase may play an important role in salt stress response.
Collapse
Affiliation(s)
- Bing Du
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nan Nie
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sifan Sun
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanfeng Hu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yidong Bai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Yoon JS, Kim JY, Kim DY, Seo YW. A novel wheat ASR gene, TaASR2D, enhances drought tolerance in Brachypodium distachyon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:400-414. [PMID: 33229191 DOI: 10.1016/j.plaphy.2020.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid-, stress-, and ripening-induced (ASR) proteins play an important role in protecting plants against adverse environmental conditions. Here, we identified 24 ASR genes in the wheat genome and analyzed their characteristics. Among these, five ASR genes highly induced by abscisic acid (ABA) and polyethylene glycol were cloned and further characterized. The TaASR genes were expressed in response to different abiotic stresses and ABA and were found to be localized in the nucleus and plasma membrane of transformed tobacco cells. Brachypodium distachyon transgenic plants overexpressing TaASR2D showed enhanced drought tolerance by regulating leaf transpiration. The expression levels of stress-related and ABA-responsive genes were higher in transgenic plants than in wild-type plants under drought stress conditions. Moreover, overexpression of TaASR2D increased the levels of both endogenous ABA and hydrogen peroxide in response to drought stress, and these plants showed hypersensitivity to exogenous ABA at the germination stage. Furthermore, plants overexpressing TaASR2D showed increased stomatal closure. Further analysis revealed that TaASR2D interacts with ABA biosynthesis and stress-related proteins in yeast and tobacco plants. Collectively, these findings indicate that TaASR2D plays an important role in the response of plants to drought stress by regulating the ABA biosynthesis pathway and redox homeostasis system.
Collapse
Affiliation(s)
- Jin Seok Yoon
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jae Yoon Kim
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea; Department of Plant Resources, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
47
|
Tan Z, Wen X, Wang Y. Betula platyphylla BpHOX2 transcription factor binds to different cis-acting elements and confers osmotic tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1762-1779. [PMID: 32681705 DOI: 10.1111/jipb.12994] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/16/2020] [Indexed: 05/22/2023]
Abstract
The homeodomain-leucine zipper (HD-Zip) proteins play crucial roles in plant developmental and environmental responses. However, how they mediate gene expression to facilitate abiotic stress tolerance remains unknown. In the present study, we characterized BpHOX2 (encoding a HD-Zip I family protein) from birch (Betula platyphylla). BpHOX2 is predominately expressed in mature stems and leaves, but expressed at a low level in apical buds and roots, suggesting that it has tissue-specific characteristics. BpHOX2 expression was highly induced by osmotic and salt, but only slightly induced by abscisic acid. Overexpression of BpHOX2 markedly improved osmotic tolerance, while knockdown of BpHOX2 increased sensitivity to osmotic stress. BpHOX2 could induce the expression of pyrroline-5-carboxylate synthase, peroxidase, and superoxide dismutase genes to improve proline levels and the reactive oxygen species scavenging capability. Chromatin immunoprecipitation sequencing combined with RNA sequencing showed that BpHOX2 could bind to at least four cis-acting elements, including dehydration-responsive element "RCCGAC", Myb-p binding box "CCWACC," and two novel cis-acting elements with the sequences of "AAGAAG" and "TACGTG" (termed HBS1 and HBS2, respectively) to regulate gene expression. Our results suggested that BpHOX2 is a transcription factor that binds to different cis-acting elements to regulate gene expression, ultimately improving osmotic tolerance in birch.
Collapse
Affiliation(s)
- Zilong Tan
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejing Wen
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yucheng Wang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
48
|
Huang HE, Ho MH, Chang H, Chao HY, Ger MJ. Overexpression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:136-146. [PMID: 32750653 DOI: 10.1016/j.plaphy.2020.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 05/02/2023]
Abstract
High-salinity stress is one of the major limiting factors on crop productivity. Physiological strategies against high-salinity stress include generation of reactive oxygen species (ROS), induction of stress-related genes expression, accumulation of abscisic acid (ABA) and up-regulation of antiporters. ROS are metabolism by-products and involved in signal transduction pathway. Constitutive expression of plant ferrodoxin-like protein (PFLP) gene enhances pathogen-resistance activities and root-hair growth through promoting ROS generation. However, the function of PFLP in abiotic stress responses is unclear. In this study, PFLP-1 and PFLP-2-transgenic rice plants were generated to elucidate the role of PFLP under salinity stress. PFLP overexpression significantly increased salt tolerance in PFLP-transgenic rice plants compared with non-transgenic plants (Oryza sativa japonica cv. Tainung 67, designated as TNG67). In high-salinity conditions, PFLP-transgenic plants exhibited earlier ROS production, higher antioxidant enzyme activities, higher ABA accumulation, up-regulated expression of stress-related genes (OsRBOHa, Cu/Zn SOD, OsAPX, OsNCED2, OsSOS1, OsCIPK24, OsCBL4, and OsNHX2), and leaf sodium ion content was lower compared with TNG67 plant. In addition, transgenic lines maintained electron transport rates and contained lower malondialdhyde (MDA) content than TNG67 plant did under salt-stress conditions. Overall results indicated salinity tolerance was improved by PFLP overexpression in transgenic rice plant. The PFLP gene is a potential candidate for improving salinity tolerance for valuable agricultural crops.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan.
| | - Mei-Hsuan Ho
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
| | - Hsien-Yu Chao
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
49
|
Adamipour N, Khosh-Khui M, Salehi H, Razi H, Karami A, Moghadam A. Regulation of stomatal aperture in response to drought stress mediating with polyamines, nitric oxide synthase and hydrogen peroxide in Rosa canina L. PLANT SIGNALING & BEHAVIOR 2020; 15:1790844. [PMID: 32657206 PMCID: PMC8550291 DOI: 10.1080/15592324.2020.1790844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 05/31/2023]
Abstract
To assess the role of genes involved in polyamines synthesis, nitric oxide synthase (NOS), copper amine oxidase activity (CuAO) and hydrogen peroxide (H2O2) in regulation of stomatal aperture to drought stress in Rosa canina L., a study was performed at three irrigating levels (25%, 50%, and 100% field capacity) with three replications at 1, 3, 6 and 12 days. The results showed that putrescine (Put) accumulation occurred under both 50% and 25% FC at 1 d. Furthermore, the role of the Put direct biosynthesis pathway ornithine decarboxylase (ODC) was more effective under 50% FC whereas in the 25% FC the Put indirect production pathway (agmatine iminohydrolase (AIH), N-carbamoyl putrescine amidohydrolase (CPA) and arginine decarboxylase (ADC)) was more effective. HPLC results showed that the accumulation of spermidine (Spd) and spermine (Spm) is consistent with the expression of S-adenosyl methionine decarboxylase (SAMDC), spermidine synthase (SPDS) and spermine synthase (SPMS) genes. Spd accumulation under both 50% and 25% FC occurred on the 3 d and then decreased in the other days. Spm content showed an increasing trend from 6 d under 50% FC and from 3 d under 25% FC. Our results suggest that among the measured polyamines, Put oxidation through CuAO activity increased resulted in an increase in H2O2 production. The H2O2 accumulation also as a secondary messenger led to enhance in NOS gene expression. Increase in NOS gene expression can act as a signal resulting in stomatal closure.
Collapse
Affiliation(s)
- Nader Adamipour
- Department of Horticulture Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Morteza Khosh-Khui
- Department of Horticulture Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Salehi
- Department of Horticulture Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Hooman Razi
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karami
- Department of Horticulture Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
50
|
Maheshwari P, Assmann SM, Albert R. A Guard Cell Abscisic Acid (ABA) Network Model That Captures the Stomatal Resting State. Front Physiol 2020; 11:927. [PMID: 32903539 PMCID: PMC7438572 DOI: 10.3389/fphys.2020.00927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Stomatal pores play a central role in the control of carbon assimilation and plant water status. The guard cell pair that borders each pore integrates information from environmental and endogenous signals and accordingly swells or deflates, thereby increasing or decreasing the stomatal aperture. Prior research shows that there is a complex cellular network underlying this process. We have previously constructed a signal transduction network and a Boolean dynamic model describing stomatal closure in response to signals including the plant hormone abscisic acid (ABA), calcium or reactive oxygen species (ROS). Here, we improve the Boolean network model such that it captures the biologically expected response of the guard cell in the absence or following the removal of a closure-inducing signal such as ABA or external Ca2+. The expectation from the biological system is reversibility, i.e., the stomata should reopen after the closing signal is removed. We find that the model's reversibility is obstructed by the previously assumed persistent activity of four nodes. By introducing time-dependent Boolean functions for these nodes, the model recapitulates stomatal reopening following the removal of a signal. The previous version of the model predicts ∼20% closure in the absence of any signal due to uncertainty regarding the initial conditions of multiple network nodes. We systematically test and adjust these initial conditions to find the minimally restrictive combinations that appropriately result in open stomata in the absence of a closure signal. We support these results by an analysis of the successive stabilization of feedback motifs in the network, illuminating the system's dynamic progression toward the open or closed stomata state. This analysis particularly highlights the role of cytosolic calcium oscillations in causing and maintaining stomatal closure. Overall, we illustrate the strength of the Boolean network modeling framework to efficiently capture cellular phenotypes as emergent outcomes of intracellular biological processes.
Collapse
Affiliation(s)
- Parul Maheshwari
- Department of Physics, Penn State University, University Park, PA, United States
| | - Sarah M. Assmann
- Department of Biology, Penn State University, University Park, PA, United States
| | - Reka Albert
- Department of Physics, Penn State University, University Park, PA, United States
- Department of Biology, Penn State University, University Park, PA, United States
| |
Collapse
|