1
|
Farooq T, Hussain MD, Wang Y, Kamran A, Umar M, Tang Y, He Z, She X. Enhanced antiviral defense against begomoviral infection in Nicotiana benthamiana through strategic utilization of fluorescent carbon quantum dots to activate plant immunity. J Nanobiotechnology 2024; 22:707. [PMID: 39543670 PMCID: PMC11562592 DOI: 10.1186/s12951-024-02994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Owing to their unique physiochemical properties, low toxicity, antipathogenic effects and tunability, fluorescent carbon quantum dots (CQDs) represent a new generation of carbon-based nanomaterials. Despite the mounting research on the efficacy of CQDs against resilient plant pathogens, their potential ability to mitigate viral pathogens and the underlying molecular mechanism(s) remain understudied. In this study, we optimized the CQDs to maximize their antiviral effects against a highly pathogenic Begomovirus (cotton leaf curl Multan virus, CLCuMuV) and elucidated the mechanistic pathways associated with CQDs-mediated viral inhibition. To fine-tune the CQDs-induced antiviral effects against CLCuMuV and investigate the underlying molecular mechanisms,we used HR-TEM, XRD, FT-IR, XPS, and UV‒Vis spectrophotometry to characterize the CQDs. SPAD and FluorCam were used for physiological and photosynthetic performance analysis. Transcriptome, RT‒qPCR, integrated bioinformatics and molecular biology were employed to investigate gene expression, viral quantification and data validation. RESULTS The application of fluorescent, hexagonal crystalline, UV-absorptive and water-soluble CQDs (0.01 mg/ml) significantly reduced the CLCuMuV titer and mitigated viral symptoms in N. benthamiana at the early (5 dpi) and late (20 dpi) stages of infection. CQDs significantly increased the morphophysiological properties, relative chlorophyll contents and photosynthetic (Fv/Fm, QY_max, NPQ and Rfd) performance of the CLCuMuV-infected plants. While CLCuMuV infection disrupted plant immunity, the CQDs improved the antiviral defense response by regulating important immunity-related genes involved in endocytosis/necroptosis, Tam3-transposase, the ABC transporter/sphingolipid signaling pathway and serine/threonine protein kinase activities. CQDs potentially triggered TSS and TTS alternative splicing events in CLCuMuV-infected plants. CONCLUSIONS Overall, these findings underscore the antiviral potential of CQDs, their impact on plant resilience, and their ability to modulate gene expression in response to viral stress. This study's molecular insights provide a foundation for further research on nanomaterial applications in plant virology and crop protection, emphasizing the promising role of CQDs in enhancing plant health and combating viral infections.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Muhammad Dilshad Hussain
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, P. R. China
| | - Yuan Wang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Ali Kamran
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, P. R. China
| | - Muhammad Umar
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS, 7008, Australia
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China.
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China.
| |
Collapse
|
2
|
Hussain A, Liu J, Mohan B, Burhan A, Nasim Z, Bano R, Ameen A, Zaynab M, Mukhtar MS, Pajerowska-Mukhtar KM. A genome-wide comparative evolutionary analysis of zinc finger-BED transcription factor genes in land plants. Sci Rep 2022; 12:12328. [PMID: 35853967 PMCID: PMC9296551 DOI: 10.1038/s41598-022-16602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Zinc finger (Zf)-BED proteins are a novel superfamily of transcription factors that controls numerous activities in plants including growth, development, and cellular responses to biotic and abiotic stresses. Despite their important roles in gene regulation, little is known about the specific functions of Zf-BEDs in land plants. The current study identified a total of 750 Zf-BED-encoding genes in 35 land plant species including mosses, bryophytes, lycophytes, gymnosperms, and angiosperms. The gene family size was somewhat proportional to genome size. All identified genes were categorized into 22 classes based on their specific domain architectures. Of these, class I (Zf-BED_DUF-domain_Dimer_Tnp_hAT) was the most common in the majority of the land plants. However, some classes were family-specific, while the others were species-specific, demonstrating diversity at different classification levels. In addition, several novel functional domains were also predicated including WRKY and nucleotide-binding site (NBS). Comparative genomics, transcriptomics, and proteomics provided insights into the evolutionary history, duplication, divergence, gene gain and loss, species relationship, expression profiling, and structural diversity of Zf-BEDs in land plants. The comprehensive study of Zf-BEDs in Gossypium sp., (cotton) also demonstrated a clear footprint of polyploidization. Overall, this comprehensive evolutionary study of Zf-BEDs in land plants highlighted significant diversity among plant species.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Binoop Mohan
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Akif Burhan
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Zunaira Nasim
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Raveena Bano
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology, Lahore, 54770, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, Guangdong, China
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA.
| | | |
Collapse
|
3
|
Peng Z, Bredeson JV, Wu GA, Shu S, Rawat N, Du D, Parajuli S, Yu Q, You Q, Rokhsar DS, Gmitter FG, Deng Z. A chromosome-scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance, cold tolerance and genome evolution in Citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1215-1232. [PMID: 32985030 PMCID: PMC7756384 DOI: 10.1111/tpj.14993] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/17/2020] [Indexed: 05/19/2023]
Abstract
Trifoliate orange (Poncirus trifoliata), a deciduous close relative of evergreen Citrus, has important traits for citrus production, including tolerance/resistance to citrus greening disease (Huanglongbing, HLB) and other major diseases, and cold tolerance. It has been one of the most important rootstocks, and one of the most valuable sources of resistance and tolerance genes for citrus. Here we present a high-quality, chromosome-scale genome assembly of P. trifoliata. The 264.9-Mb assembly contains nine chromosomal pseudomolecules with 25 538 protein-coding genes, covering 97.2% of the estimated gene space. Comparative analyses of P. trifoliata and nine Citrus genomes revealed 605 species-specific genes and six rapidly evolving gene families in the P. trifoliata genome. Poncirus trifoliata has evolved specific adaptation in the C-repeat/DREB binding factor (CBF)-dependent and CBF-independent cold signaling pathways to tolerate cold. We identified candidate genes within quantitative trait loci for HLB tolerance, and at the loci for resistance to citrus tristeza virus and citrus nematode. Genetic diversity analysis of Poncirus accessions and Poncirus/Citrus hybrids shows a narrow genetic base in the US germplasm collection, and points to the importance of collecting and preserving more natural genetic variation. Two phenotypically divergent Poncirus accessions are found to be clonally related, supporting a previous conjecture that dwarf Flying Dragon originated as a mutant of a non-dwarfing type. The high-quality genome reveals features and evolutionary insights of Poncirus, and it will serve as a valuable resource for genetic, genomic and molecular research and manipulation in citrus.
Collapse
Affiliation(s)
- Ze Peng
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Jessen V. Bredeson
- Molecular and Cell Biology DepartmentUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Guohong A. Wu
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Shengqiang Shu
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Nidhi Rawat
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Dongliang Du
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Saroj Parajuli
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Qibin Yu
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Qian You
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Daniel S. Rokhsar
- Molecular and Cell Biology DepartmentUniversity of California, BerkeleyBerkeleyCA94720USA
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Frederick G. Gmitter
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Zhanao Deng
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| |
Collapse
|
4
|
Grund E, Tremousaygue D, Deslandes L. Plant NLRs with Integrated Domains: Unity Makes Strength. PLANT PHYSIOLOGY 2019; 179:1227-1235. [PMID: 30530739 PMCID: PMC6446777 DOI: 10.1104/pp.18.01134] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/29/2018] [Indexed: 05/19/2023]
Abstract
Integration of unusual domains in plant immune receptors is a widespread mechanism of NLR diversification enabling specific pathogen detection.
Collapse
Affiliation(s)
- Elisabeth Grund
- LIPM, Université de Toulouse, INRA, CNRS, 31320 Castanet-Tolosan, France
| | | | - Laurent Deslandes
- LIPM, Université de Toulouse, INRA, CNRS, 31320 Castanet-Tolosan, France
| |
Collapse
|
5
|
Zhou H, Kishima Y. Alternative plant host defense against transposon activities occurs at the post-translational stage. PLANT SIGNALING & BEHAVIOR 2017; 12:e1318238. [PMID: 28426280 PMCID: PMC5501231 DOI: 10.1080/15592324.2017.1318238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
The Antirrhinum DNA transposon Tam3 uniquely demonstrates low temperature-dependent transposition (LTDT), so transposition does not occur at high temperatures. We previously showed that the detainment of Tam3 transposase (TPase) at the plasma membrane occurs when transposition is inactive, and that TPase is released at the permissive state of Tam3 transposition. LTDT of Tam3 is attributed to interactions between Tam3 and its host. In this addendum, we propose a model to explain the LTDT of Tam3, which is regarded as an equilibrium state reached between the host and parasite to maximize the fitness of both.
Collapse
Affiliation(s)
- Hua Zhou
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|