1
|
Dong X, Lu X, Zhu H, Zhu Z, Ji P, Li X, Li T, Zhang X, Ai G, Dou D. A typical NLR recognizes a family of structurally conserved effectors to confer plant resistance against adapted and non-adapted Phytophthora pathogens. MOLECULAR PLANT 2025; 18:485-500. [PMID: 39863922 DOI: 10.1016/j.molp.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the underlying molecular mechanisms remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of Nicotiana benthamiana (Nb), as a model and identified an RXLR effector that determines Nb incompatibility to Ps. Knockout of this RXLR effector in Ps enables successful infection of Nb, leading us to name it AvrNb (Avirulence gene in Nb). A systematic screening of Nb NLR genes further revealed that NbPrf, previously reported to be a receptor of bacterial avirulence proteins, is the NLR protein responsible for mediating AvrNb recognition and initiating the hypersensitive response (HR). Mutation in NbPrf makes Nb completely compatible to Ps. We found that AvrNb is structurally conserved among multiple Phytophthora pathogens, and its homologs also induce NbPrf-dependent HR. Remarkably, further inoculation assay showed that NbPrf is also involved in plant immunity to two adapted Phytophthora pathogens, Phytophthora infestans and Phytophthora capsici. Our findings suggest that NbPrf represents a promising resource for breeding resistance to Phytophthora pathogens and implicate that the conserved effectors present in both adapted and non-adapted pathogens may provide sufficient selective pressure to maintain the remarkably durable incompatibility between plants and non-adapted pathogens.
Collapse
Affiliation(s)
- Xiaohua Dong
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Xu Lu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Hai Zhu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Zhengxue Zhu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Peiyun Ji
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Xianglan Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Tianli Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Xiong Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Gan Ai
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| | - Daolong Dou
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Noah JM, Gorse M, Romain C, Gay EJ, Rouxel T, Balesdent M, Soyer JL. To be or not to be a nonhost species: A case study of the Leptosphaeria maculans and Brassica carinata interaction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70034. [PMID: 39606911 PMCID: PMC11603210 DOI: 10.1111/1758-2229.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Leptosphaeria maculans is one of the major fungal pathogens on oilseed rape (Brassica napus), causing stem canker disease. The closely related Brassica species B. nigra, B. juncea, and B. carinata display extreme resistance toward stem canker. In this study, we demonstrate the nonhost status of B. carinata toward L. maculans in France through field experiments and inoculations performed in controlled conditions. A few isolates moderately adapted to B. carinata in controlled conditions were recovered in the field on B. nigra leaves, allowing us to investigate the unusual B. carinata-L. maculans interactions using molecular, macroscopic, and microscopic analyses. A cross between a L. maculans isolate adapted to B. napus and an isolate moderately adapted to B. carinata allowed the generation, in the lab, of recombinant L. maculans strains better adapted to B. carinata than the natural parental isolate obtained from B. nigra, and highlighted the polygenic determinism of the adaptation of L. maculans to B. carinata and B. napus. This biological material will allow further investigation of the molecular determinants of the adaptation of L. maculans to nonhost species and elucidate the genetic resistance basis of B. carinata.
Collapse
Affiliation(s)
- Julie M. Noah
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | - Mathilde Gorse
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | | | - Elise J. Gay
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | - Thierry Rouxel
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | | | | |
Collapse
|
3
|
Zhang Y, Cai G, Zhang K, Sun H, Huang L, Ren W, Ding Y, Wang N. PdeERF114 recruits PdeWRKY75 to regulate callus formation in poplar by modulating the accumulation of H 2 O 2 and the relaxation of cell walls. THE NEW PHYTOLOGIST 2024; 241:732-746. [PMID: 37872751 DOI: 10.1111/nph.19349] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
Callus formation is important for numerous biological processes in plants. Previously, we revealed that the PdeWRKY75-PdeRBOHB module positively regulates hydrogen peroxide (H2 O2 ) accumulation, thereby affecting callus formation in poplar. In this study, we identified and confirmed a transcription factor, PdeERF114, that interacts with PdeWRKY75 both in vitro and in vivo. Gene expression analysis identified both PdeRBOHB and PdeEXPB2 as downstream genes of PdeERF114 and PdeWRKY75. Overexpression (OE) and reduced-expression (RE) transgenic poplar lines for these four genes were generated, and the observation of callus formation was also performed in all plant materials. We demonstrated that PdeERF114 and PdeWRKY75 formed a protein complex and that this complex could bind W-Box motifs in the promoters of PdeRBOHB and PdeEXPB2, thereby positively regulating the expression of PdeRBOHB and PdeEXPB2. The OE/RE transgenic lines for these four genes also showed enhanced/reduced callus formation. Overall, we revealed a novel gene regulatory network for the regulation of callus formation in plants that involves four genes and regulates callus formation through two pathways: the accumulation of H2 O2 in explants and the relaxation of cell walls. In the future, the four genes could be used to enhance transformation effectiveness in genetic engineering.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Guanghua Cai
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keai Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanxi Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyu Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyu Ren
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Ding
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| |
Collapse
|
4
|
Beesley A, Beyer SF, Wanders V, Levecque S, Bredenbruch S, Habash SS, Schleker ASS, Gätgens J, Oldiges M, Schultheiss H, Conrath U, Langenbach CJG. Engineered coumarin accumulation reduces mycotoxin-induced oxidative stress and disease susceptibility. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2490-2506. [PMID: 37578146 PMCID: PMC10651151 DOI: 10.1111/pbi.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/23/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Coumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY-2 suspension cells. We did so by overexpressing A. thaliana feruloyl-CoA 6-hydroxylase 1 (AtF6'H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin-accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root-parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil-borne pathogenic fungus Fusarium virguliforme. Because mycotoxin-induced accumulation of reactive oxygen species and cell death were reduced in the AtF6'H1-overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin-hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.
Collapse
Affiliation(s)
| | - Sebastian F. Beyer
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
- Present address:
BASF SE, Agricultural CenterLimburgerhofGermany
| | - Verena Wanders
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | - Sophie Levecque
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | | - Samer S. Habash
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Present address:
BASF Vegetable SeedsNunhemNetherlands
| | | | - Jochem Gätgens
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | - Marco Oldiges
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | | | - Uwe Conrath
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | |
Collapse
|
5
|
Lan X, Wang X, Tao Q, Zhang H, Li J, Meng Y, Shan W. Activation of the VQ Motif-Containing Protein Gene VQ28 Compromised Nonhost Resistance of Arabidopsis thaliana to Phytophthora Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070858. [PMID: 35406838 PMCID: PMC9002740 DOI: 10.3390/plants11070858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 06/01/2023]
Abstract
Nonhost resistance refers to resistance of a plant species to all genetic variants of a non-adapted pathogen. Such resistance has the potential to become broad-spectrum and durable crop disease resistance. We previously employed Arabidopsis thaliana and a forward genetics approach to identify plant mutants susceptible to the nonhost pathogen Phytophthora sojae, which resulted in identification of the T-DNA insertion mutant esp1 (enhanced susceptibility to Phytophthora). In this study, we report the identification of VQ motif-containing protein 28 (VQ28), whose expression was highly up-regulated in the mutant esp1. Stable transgenic A. thaliana plants constitutively overexpressing VQ28 compromised nonhost resistance (NHR) against P. sojae and P. infestans, and supported increased infection of P. parasitica. Transcriptomic analysis showed that overexpression of VQ28 resulted in six differentially expressed genes (DEGs) that are involved in the response to abscisic acid (ABA). High performance liquid chromatography-mass spectrometry (HPLC-MS) detection showed that the contents of endogenous ABA, salicylic acid (SA), and jasmonate (JA) were enriched in VQ28 overexpression lines. These findings suggest that overexpression of VQ28 may lead to an imbalance in plant hormone homeostasis. Furthermore, transient overexpression of VQ28 in Nicotiana benthamiana rendered plants more susceptible to Phytophthora pathogens. Deletion mutant analysis showed that the C-terminus and VQ-motif were essential for plant susceptibility. Taken together, our results suggest that VQ28 negatively regulates plant NHR to Phytophthora pathogens.
Collapse
Affiliation(s)
- Xingjie Lan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Xiaoxia Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Quandan Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Haotian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Jinyang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
6
|
Zhang Y, Yang X, Nvsvrot T, Huang L, Cai G, Ding Y, Ren W, Wang N. The transcription factor WRKY75 regulates the development of adventitious roots, lateral buds and callus by modulating hydrogen peroxide content in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1483-1498. [PMID: 34791155 DOI: 10.1093/jxb/erab501] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) plays important roles in plant development. Adventitious roots (AR), lateral buds (LB) and callus formation are important traits for plants. Here, a gene encoding RESPIRATORY BURST OXIDASE HOMOLOG B (PdeRBOHB) from poplar line 'NL895' (Populus. deltoides × P. euramericana) was predicted to be involved in H2O2 accumulation, and lines with reduced expression were generated. H2O2 content was decreased, and the development of adventitious roots, lateral buds, and callus was inhibited in reduced expression PdeRBOHB lines. A gene encoding PdeWRKY75 was identified as the upstream transcription factor positively regulating PdeRBOHB. This regulation was confirmed by dual luciferase reporter assay, GUS transient expression analysis and electrophoretic mobility shift assay. In the reduced expression PdeWRKY75 lines, H2O2 content was decreased and the development of adventitious roots, lateral buds, and callus development was inhibited, while in the overexpression lines, H2O2 content was increased and the development of adventitious roots and lateral buds was inhibited, but callus formation was enhanced. Additionally, reduced expression PdeRBOHB lines showed lowered expression of PdeWRKY75, while exogenous application of H2O2 showed the opposite effect. Together, these results suggest that PdeWRKY75 and PdeRBOHB are part of a regulatory module in H2O2 accumulation, which is involved in the regulation of multiple biological processes.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqing Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tashbek Nvsvrot
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyu Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanghua Cai
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Ding
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyu Ren
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Parween D, Sahu BB. An Arabidopsis nonhost resistance gene, IMPORTIN ALPHA 2 provides immunity against rice sheath blight pathogen, Rhizoctonia solani. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100109. [PMID: 35243446 PMCID: PMC8856995 DOI: 10.1016/j.crmicr.2022.100109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 12/23/2022] Open
Abstract
Rice sheath blight is caused by necrotrophic dreadful fungus Rhizoctonia solani. Forward genetics tools identified RSS1 (IMPA2; IMPORTIN ALPHA 2) as a NHR gene. Mutation in RSS1 at P65S in first exon compromise the immunity to R. solani. rss1 shows enhanced cell death, ROS, callose deposition and developmental defect. RSS1 activates early salicylic acid mediated defense response against R. solani.
There is neither resistant rice cultivar nor any control measure against Rhizoctonia solani AG-1 IA (RS), causal of sheath blight and a major threat to global rice production. Rice is a host and Arabidopsis is a nonhost with underlying nonhost resistance (NHR) gene which is largely untested. Using approaches of forward genetics and tools, cytology, and molecular biology, we identified homozygous mutants in Arabidopsis, mapped the NHR gene, and functionally characterized it in response to RS. Rss1 was mapped on Ch 4 between JAERI18 and Ch4_9.18 (844.6 Kb) and identified IMPORTIN ALPHA 2 as the candidate RSS1 gene. We found that breach of immunity in rss1 by RS activates defense responses whereas photosynthetic pigment biosynthesis and developmental processes are negatively regulated. In addition, a gradual decrease in PR1 by 3 dpi revealed that RSS1 positively regulated early SA-mediated resistance. Whereas increased expression of PDF1.2 by 3 dpi supported switching to necrotrophy, SA-mediated defense in Col-0 leading to immune response. Enhanced expression of ATG8a in rss1 supported autophagic cell death. IMPA2, IMPA1, and RAN1 function together to provide NHR against RS. These findings demonstrate that IMPA2 provides NHR against RS in Col-0 that evoke SA-mediated early immunity with boulevard for potential biotechnological application.
Collapse
|
8
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
9
|
Kambakam S, Ngaki MN, Sahu BB, Kandel DR, Singh P, Sumit R, Swaminathan S, Muliyar-Krishna R, Bhattacharyya MK. Arabidopsis non-host resistance PSS30 gene enhances broad-spectrum disease resistance in the soybean cultivar Williams 82. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1432-1446. [PMID: 34171147 DOI: 10.1111/tpj.15392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 05/27/2023]
Abstract
Non-host resistance (NHR), which protects all members of a plant species from non-adapted or non-host plant pathogens, is the most common form of plant immunity. NHR provides the most durable and robust form of broad-spectrum immunity against non-adaptive pathogens pathogenic to other crop species. In a mutant screen for loss of Arabidopsis (Arabidopsis thaliana) NHR against the soybean (Glycine max (L.) Merr.) pathogen Phytophthora sojae, the Phytophthora sojae-susceptible 30 (pss30) mutant was identified. The pss30 mutant is also susceptible to the soybean pathogen Fusarium virguliforme. PSS30 encodes a folate transporter, AtFOLT1, which was previously localized to chloroplasts and implicated in the transport of folate from the cytosol to plastids. We show that two Arabidopsis folate biosynthesis mutants with reduced folate levels exhibit a loss of non-host immunity against P. sojae. As compared to the wild-type Col-0 ecotype, the steady-state folate levels are reduced in the pss1, atfolt1 and two folate biosynthesis mutants, suggesting that folate is required for non-host immunity. Overexpression of AtFOLT1 enhances immunity of transgenic soybean lines against two serious soybean pathogens, the fungal pathogen F. virguliforme and the soybean cyst nematode (SCN) Heterodera glycines. Transgenic lines showing enhanced SCN resistance also showed increased levels of folate accumulation. This study thus suggests that folate contributes to non-host plant immunity and that overexpression of a non-host resistance gene could be a suitable strategy for generating broad-spectrum disease resistance in crop plants.
Collapse
Affiliation(s)
- Sekhar Kambakam
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | | | - Binod B Sahu
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Devi R Kandel
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Prashant Singh
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Rishi Sumit
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | | | | | | |
Collapse
|
10
|
Panstruga R, Moscou MJ. What is the Molecular Basis of Nonhost Resistance? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1253-1264. [PMID: 32808862 DOI: 10.1094/mpmi-06-20-0161-cr] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.Nonhost resistance is typically considered the ability of a plant species to repel all attempts of a pathogen species to colonize it and reproduce on it. Based on this common definition, nonhost resistance is presumed to be very durable and, thus, of great interest for its potential use in agriculture. Despite considerable research efforts, the molecular basis of this type of plant immunity remains nebulous. We here stress the fact that "nonhost resistance" is a phenomenological rather than a mechanistic concept that comprises more facets than typically considered. We further argue that nonhost resistance essentially relies on the very same genes and pathways as other types of plant immunity, of which some may act as bottlenecks for particular pathogens on a given plant species or under certain conditions. Thus, in our view, the frequently used term "nonhost genes" is misleading and should be avoided. Depending on the plant-pathogen combination, nonhost resistance may involve the recognition of pathogen effectors by host immune sensor proteins, which might give rise to host shifts or host range expansions due to evolutionary-conditioned gains and losses in respective armories. Thus, the extent of nonhost resistance also defines pathogen host ranges. In some instances, immune-related genes can be transferred across plant species to boost defense, resulting in augmented disease resistance. We discuss future routes for deepening our understanding of nonhost resistance and argue that the confusing term "nonhost resistance" should be used more cautiously in the light of a holistic view of plant immunity.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringer Weg 1, 52056 Aachen, Germany
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, United Kingdom
| |
Collapse
|
11
|
Summanwar A, Basu U, Rahman H, Kav NNV. Non-coding RNAs as emerging targets for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110521. [PMID: 32563460 DOI: 10.1016/j.plantsci.2020.110521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Food security is affected by climate change, population growth, as well as abiotic and biotic stresses. Conventional and molecular marker assisted breeding and genetic engineering techniques have been employed extensively for improving resistance to biotic stress in crop plants. Advances in next-generation sequencing technologies have permitted the exploration and identification of parts of the genome that extend beyond the regions with protein coding potential. These non-coding regions of the genome are transcribed to generate many types of non-coding RNAs (ncRNAs). These ncRNAs are involved in the regulation of growth, development, and response to stresses at transcriptional and translational levels. ncRNAs, including long ncRNAs (lncRNAs), small RNAs and circular RNAs have been recognized as important regulators of gene expression in plants and have been suggested to play important roles in plant immunity and adaptation to abiotic and biotic stresses. In this article, we have reviewed the current state of knowledge with respect to lncRNAs and their mechanism(s) of action as well as their regulatory functions, specifically within the context of biotic stresses. Additionally, we have provided insights into how our increased knowledge about lncRNAs may be used to improve crop tolerance to these devastating biotic stresses.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
12
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
13
|
Ayliffe M, Sørensen CK. Plant nonhost resistance: paradigms and new environments. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:104-113. [PMID: 31075541 DOI: 10.1016/j.pbi.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 05/25/2023]
Abstract
Nonhost resistance (NHR) protects plants from a large and diverse array of potential phytopathogens. Each phytopathogen can parasitise some plant species, but most plant species are nonhosts that are innately immune due to a series of physical, chemical and inducible defenses these nonadapted pathogens cannot overcome. New evidence supports the NHR paradigm that posits the inability of potential pathogens to colonise nonhost plants is frequently due to molecular incompatibility between pathogen virulence factors and plant cellular targets. While NHR is durable, it is not insurmountable. Environmental changes can facilitate pathogen host jumps or alternatively result in new encounters between previously isolated plant species and pathogens. Climate change is predicted to substantially alter the current distribution of plants and their pathogens which could result in parasitism of new plant species.
Collapse
Affiliation(s)
- Michael Ayliffe
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia.
| | - Chris K Sørensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| |
Collapse
|
14
|
Deb D, Shrestha A, Maiti IB, Dey N. Recombinant Promoter (MUASCsV8CP) Driven Totiviral Killer Protein 4 (KP4) Imparts Resistance Against Fungal Pathogens in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2018; 9:278. [PMID: 29556246 PMCID: PMC5844984 DOI: 10.3389/fpls.2018.00278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/16/2018] [Indexed: 05/19/2023]
Abstract
Development of disease-resistant plant varieties achieved by engineering anti-microbial transgenes under the control of strong promoters can suffice the inhibition of pathogen growth and simultaneously ensure enhanced crop production. For evaluating the prospect of such strong promoters, we comprehensively characterized the full-length transcript promoter of Cassava Vein Mosaic Virus (CsVMV; -565 to +166) and identified CsVMV8 (-215 to +166) as the highest expressing fragment in both transient and transgenic assays. Further, we designed a new chimeric promoter 'MUASCsV8CP' through inter-molecular hybridization among the upstream activation sequence (UAS) of Mirabilis Mosaic Virus (MMV; -297 to -38) and CsVMV8, as the core promoter (CP). The MUASCsV8CP was found to be ∼2.2 and ∼2.4 times stronger than the CsVMV8 and CaMV35S promoters, respectively, while its activity was found to be equivalent to that of the CaMV35S2 promoter. Furthermore, we generated transgenic tobacco plants expressing the totiviral 'Killer protein KP4' (KP4) under the control of the MUASCsV8CP promoter. Recombinant KP4 was found to accumulate both in the cytoplasm and apoplast of plant cells. The agar-based killing zone assays revealed enhanced resistance of plant-derived KP4 against two deuteromycetous foliar pathogenic fungi viz. Alternaria alternata and Phoma exigua var. exigua. Also, transgenic plants expressing KP4 inhibited the growth progression of these fungi and conferred significant fungal resistance in detached-leaf and whole plant assays. Taken together, we establish the potential of engineering "in-built" fungal stress-tolerance in plants by expressing KP4 under a novel chimeric caulimoviral promoter in a transgenic approach.
Collapse
Affiliation(s)
- Debasish Deb
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Ankita Shrestha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Indu B. Maiti
- Department of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- *Correspondence: Nrisingha Dey, ;
| |
Collapse
|