1
|
Schaefer K, Cairo Baza A, Huang T, Cioffi T, Elliott A, Shaw SL. WAVE-DAMPENED2-LIKE4 modulates the hyper-elongation of light-grown hypocotyl cells. PLANT PHYSIOLOGY 2023; 192:2687-2702. [PMID: 37096683 DOI: 10.1093/plphys/kiad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Light, temperature, water, and nutrient availability influence how plants grow to maximize access to resources. Axial growth, the linear extension of tissues by coordinated axial cell expansion, plays a central role in these adaptive morphological responses. Using Arabidopsis (Arabidopsis thaliana) hypocotyl cells to explore axial growth control mechanisms, we investigated WAVE-DAMPENED2-LIKE4 (WDL4), an auxin-induced, microtubule-associated protein and member of the larger WDL gene family shown to modulate hypocotyl growth under changing environmental conditions. Loss-of-function wdl4 seedlings exhibited a hyper-elongation phenotype under light conditions, continuing to elongate when wild-type Col-0 hypocotyls arrested and reaching 150% to 200% of wild-type length before shoot emergence. wdl4 seedling hypocotyls showed dramatic hyper-elongation (500%) in response to temperature elevation, indicating an important role in morphological adaptation to environmental cues. WDL4 was associated with microtubules under both light and dark growth conditions, and no evidence was found for altered microtubule array patterning in loss-of-function wdl4 mutants under various conditions. Examination of hormone responses showed altered sensitivity to ethylene and evidence for changes in the spatial distribution of an auxin-dependent transcriptional reporter. Our data provide evidence that WDL4 regulates hypocotyl cell elongation without substantial changes to microtubule array patterning, suggesting an unconventional role in axial growth control.
Collapse
Affiliation(s)
- Kristina Schaefer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Tina Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Timothy Cioffi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Andrew Elliott
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Li J, Szymanski DB, Kim T. Probing stress-regulated ordering of the plant cortical microtubule array via a computational approach. BMC PLANT BIOLOGY 2023; 23:308. [PMID: 37291489 DOI: 10.1186/s12870-023-04252-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Morphological properties of tissues and organs rely on cell growth. The growth of plant cells is determined by properties of a tough outer cell wall that deforms anisotropically in response to high turgor pressure. Cortical microtubules bias the mechanical anisotropy of a cell wall by affecting the trajectories of cellulose synthases in the wall that polymerize cellulose microfibrils. The microtubule cytoskeleton is often oriented in one direction at cellular length-scales to regulate growth direction, but the means by which cellular-scale microtubule patterns emerge has not been well understood. Correlations between the microtubule orientation and tensile forces in the cell wall have often been observed. However, the plausibility of stress as a determining factor for microtubule patterning has not been directly evaluated to date. RESULTS Here, we simulated how different attributes of tensile forces in the cell wall can orient and pattern the microtubule array in the cortex. We implemented a discrete model with transient microtubule behaviors influenced by local mechanical stress in order to probe the mechanisms of stress-dependent patterning. Specifically, we varied the sensitivity of four types of dynamic behaviors observed on the plus end of microtubules - growth, shrinkage, catastrophe, and rescue - to local stress. Then, we evaluated the extent and rate of microtubule alignments in a two-dimensional computational domain that reflects the structural organization of the cortical array in plant cells. CONCLUSION Our modeling approaches reproduced microtubule patterns observed in simple cell types and demonstrated that a spatial variation in the magnitude and anisotropy of stress can mediate mechanical feedback between the wall and of the cortical microtubule array.
Collapse
Affiliation(s)
- Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA
| | - Daniel B Szymanski
- Botany and Plant Pathology, Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA.
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
4
|
Wang J, Wang G, Liu W, Yang H, Wang C, Chen W, Zhang X, Tian J, Yu Y, Li J, Xue Y, Kong Z. Brassinosteroid signals cooperate with katanin-mediated microtubule severing to control stamen filament elongation. EMBO J 2023; 42:e111883. [PMID: 36546550 PMCID: PMC9929639 DOI: 10.15252/embj.2022111883] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Proper stamen filament elongation is essential for pollination and plant reproduction. Plant hormones are extensively involved in every stage of stamen development; however, the cellular mechanisms by which phytohormone signals couple with microtubule dynamics to control filament elongation remain unclear. Here, we screened a series of Arabidopsis thaliana mutants showing different microtubule defects and revealed that only those unable to sever microtubules, lue1 and ktn80.1234, displayed differential floral organ elongation with less elongated stamen filaments. Prompted by short stamen filaments and severe decrease in KTN1 and KTN80s expression in qui-2 lacking five BZR1-family transcription factors (BFTFs), we investigated the crosstalk between microtubule severing and brassinosteroid (BR) signaling. The BFTFs transcriptionally activate katanin-encoding genes, and the microtubule-severing frequency was severely reduced in qui-2. Taken together, our findings reveal how BRs can regulate cytoskeletal dynamics to coordinate the proper development of reproductive organs.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Houji Laboratory of Shanxi Province, Academy of AgronomyShanxi Agricultural UniversityTaiyuanChina
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Liu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- Institute of Feed ResearchChinese Academy of Agricultural SciencesBeijingChina
| | - Huanhuan Yang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chaofeng Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Weiyue Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Houji Laboratory of Shanxi Province, Academy of AgronomyShanxi Agricultural UniversityTaiyuanChina
| |
Collapse
|
5
|
Lan M, Liu X, Kang E, Fu Y, Zhu L. ARK2 stabilizes the plus-end of microtubules and promotes microtubule bundling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:100-116. [PMID: 36169006 DOI: 10.1111/jipb.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Microtubule dynamics and organization are important for plant cell morphogenesis and development. The microtubule-based motor protein kinesins are mainly responsible for the transport of some organelles and vesicles, although several have also been shown to regulate microtubule organization. The ARMADILLO REPEAT KINESIN (ARK) family is a plant-specific motor protein subfamily that consists of three members (ARK1, ARK2, and ARK3) in Arabidopsis thaliana. ARK2 has been shown to participate in root epidermal cell morphogenesis. However, whether and how ARK2 associates with microtubules needs further elucidation. Here, we demonstrated that ARK2 co-localizes with microtubules and facilitates microtubule bundling in vitro and in vivo. Pharmacological assays and microtubule dynamics analyses indicated that ARK2 stabilizes cortical microtubules. Live-cell imaging revealed that ARK2 moves along cortical microtubules in a processive mode and localizes both at the plus-end and the sidewall of microtubules. ARK2 therefore tracks and stabilizes the growing plus-ends of microtubules, which facilitates the formation of parallel microtubule bundles.
Collapse
Affiliation(s)
- Miao Lan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Erfang Kang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
7
|
Belteton SA, Li W, Yanagisawa M, Hatam FA, Quinn MI, Szymanski MK, Marley MW, Turner JA, Szymanski DB. Real-time conversion of tissue-scale mechanical forces into an interdigitated growth pattern. NATURE PLANTS 2021; 7:826-841. [PMID: 34112988 DOI: 10.1038/s41477-021-00931-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The leaf epidermis is a dynamic biomechanical shell that integrates growth across spatial scales to influence organ morphology. Pavement cells, the fundamental unit of this tissue, morph irreversibly into highly lobed cells that drive planar leaf expansion. Here, we define how tissue-scale cell wall tensile forces and the microtubule-cellulose synthase systems dictate the patterns of interdigitated growth in real time. A morphologically potent subset of cortical microtubules span the periclinal and anticlinal cell faces to pattern cellulose fibres that generate a patch of anisotropic wall. The subsequent local polarized growth is mechanically coupled to the adjacent cell via a pectin-rich middle lamella, and this drives lobe formation. Finite element pavement cell models revealed cell wall tensile stress as an upstream patterning element that links cell- and tissue-scale biomechanical parameters to interdigitated growth. Cell lobing in leaves is evolutionarily conserved, occurs in multiple cell types and is associated with important agronomic traits. Our general mechanistic models of lobe formation provide a foundation to analyse the cellular basis of leaf morphology and function.
Collapse
Affiliation(s)
- Samuel A Belteton
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Wenlong Li
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Faezeh A Hatam
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Madeline I Quinn
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Margaret K Szymanski
- Department of Biochemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - Matthew W Marley
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Joseph A Turner
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA.
- Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Takatani S, Verger S, Okamoto T, Takahashi T, Hamant O, Motose H. Microtubule Response to Tensile Stress Is Curbed by NEK6 to Buffer Growth Variation in the Arabidopsis Hypocotyl. Curr Biol 2020; 30:1491-1503.e2. [DOI: 10.1016/j.cub.2020.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/11/2020] [Accepted: 02/10/2020] [Indexed: 01/05/2023]
|
9
|
True JH, Shaw SL. Exogenous Auxin Induces Transverse Microtubule Arrays Through TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX Receptors. PLANT PHYSIOLOGY 2020; 182:892-907. [PMID: 31767691 PMCID: PMC6997688 DOI: 10.1104/pp.19.00928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/10/2019] [Indexed: 05/12/2023]
Abstract
Auxin plays a central role in controlling plant cell growth and morphogenesis. Application of auxin to light-grown seedlings elicits both axial growth and transverse patterning of the cortical microtubule cytoskeleton in hypocotyl cells. Microtubules respond to exogenous auxin within 5 min, although repatterning of the array does not initiate until 30 min after application and is complete by 2 h. To examine the requirements for auxin-induced microtubule array patterning, we used an Arabidopsis (Arabidopsis thaliana) double auxin f-box (afb) receptor mutant, afb4-8 afb5-5, that responds to conventional auxin (indole-3-acetic acid) but has a strongly diminished response to the auxin analog, picloram. We show that 5 µm picloram induces immediate changes to microtubule density and later transverse microtubule patterning in wild-type plants, but does not cause microtubule array reorganization in the afb4-8 afb5-5 mutant. Additionally, a dominant mutant (axr2-1) for the auxin coreceptor AUXIN RESPONSIVE2 (AXR2) was strongly suppressed for auxin-induced microtubule array reorganization, providing additional evidence that auxin functions through a transcriptional pathway for transverse patterning. We observed that brassinosteroid application mimicked the auxin response, showing both early and late microtubule array effects, and induced transverse patterning in the axr2-1 mutant. Application of auxin to the brassinosteroid synthesis mutant, diminuto1, induced transverse array patterning but did not produce significant axial growth. Thus, exogenous auxin induces transverse microtubule patterning through the TRANSPORT INHIBITOR 1/AUXIN F-BOX (TIR1/AFB) transcriptional pathway and can act independently of brassinosteroids.
Collapse
Affiliation(s)
- Jillian H True
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
10
|
Li X, Diao M, Zhang Y, Chen G, Huang S, Chen N. Guard Cell Microfilament Analyzer Facilitates the Analysis of the Organization and Dynamics of Actin Filaments in Arabidopsis Guard Cells. Int J Mol Sci 2019; 20:ijms20112753. [PMID: 31195605 PMCID: PMC6600335 DOI: 10.3390/ijms20112753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 11/29/2022] Open
Abstract
The actin cytoskeleton is involved in regulating stomatal movement, which forms distinct actin arrays within guard cells of stomata with different apertures. How those actin arrays are formed and maintained remains largely unexplored. Elucidation of the dynamic behavior of differently oriented actin filaments in guard cells will enhance our understanding in this regard. Here, we initially developed a program called ‘guard cell microfilament analyzer’ (GCMA) that enables the selection of individual actin filaments and analysis of their orientations semiautomatically in guard cells. We next traced the dynamics of individual actin filaments and performed careful quantification in open and closed stomata. We found that de novo nucleation of actin filaments occurs at both dorsal and ventral sides of guard cells from open and closed stomata. Interestingly, most of the nucleated actin filaments elongate radially and longitudinally in open and closed stomata, respectively. Strikingly, radial filaments tend to form bundles whereas longitudinal filaments tend to be removed by severing and depolymerization in open stomata. By contrast, longitudinal filaments tend to form bundles that are severed less frequently in closed stomata. These observations provide insights into the formation and maintenance of distinct actin arrays in guard cells in stomata of different apertures.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
- iHuman Institute, Shanghai Tech University, Shanghai 201210, China.
| | - Yanan Zhang
- OLYMPUS (CHINA) CO., LTD, Beijing 100027, China.
| | - Guanlin Chen
- Baidu Online Network Technology (Beijing) CO., LTD, Beijing 100193, China.
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
11
|
Schneider R, Sampathkumar A, Persson S. Quantification of Cytoskeletal Dynamics in Time-Lapse Recordings. ACTA ACUST UNITED AC 2019; 4:e20091. [PMID: 31091014 DOI: 10.1002/cppb.20091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cytoskeleton is key to many essential processes in a plant cell, e.g., growth, division, and defense. Contrary to what "skeleton" implies, the cytoskeleton is highly dynamic, and is able to re-organize itself continuously. The advent of live-cell microscopy and the development of genetically encoded fluorophores enabled detailed observation of the organization and dynamics of the cytoskeleton. Despite the biological importance of the cytoskeletal dynamics, quantitative analyses remain laborious endeavors that only a handful of research teams regularly conduct. With this protocol, we provide a standardized step-by-step guide to analyze the dynamics of microtubules. We provide example data and code for post-processing in Fiji that enables researchers to modify and adapt the routine to their needs. More such tools are needed to quantitatively assess the cytoskeleton and thus to better understand cell biology. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- René Schneider
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Thoms D, Vineyard L, Elliott A, Shaw SL. CLASP Facilitates Transitions between Cortical Microtubule Array Patterns. PLANT PHYSIOLOGY 2018; 178:1551-1567. [PMID: 30327382 PMCID: PMC6288741 DOI: 10.1104/pp.18.00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/07/2018] [Indexed: 05/23/2023]
Abstract
Acentrosomal plant microtubule arrays form patterns at the cell cortex that influence cellular morphogenesis by templating the deposition of cell wall materials, but the molecular basis by which the microtubules form the cortical array patterns remains largely unknown. Loss of the Arabidopsis (Arabidopsis thaliana) microtubule-associated protein, CYTOPLASMIC LINKER ASSOCIATED PROTEIN (AtCLASP), results in cellular growth anisotropy defects in hypocotyl cells. We examined the microtubule array patterning in atclasp-1 null mutants and discovered a significant defect in the timing of transitions between array patterns but no substantive defect in the array patterns per se. Detailed analysis and computational modeling of the microtubule dynamics in two atclasp-1 fluorescent tubulin marker lines revealed marker-dependent effects on depolymerization and catastrophe frequency predicted to alter the steady-state microtubule population. Quantitative in vivo analysis of the underlying microtubule array architecture showed that AtCLASP is required to maintain the number of growing microtubule plus ends during transitions between array patterns. We propose that AtCLASP plays a critical role in cellular morphogenesis through actions on new microtubules that facilitate array transitions.
Collapse
Affiliation(s)
- David Thoms
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Laura Vineyard
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Andrew Elliott
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
13
|
Elliott A, Shaw SL. A Cycloheximide-Sensitive Step in Transverse Microtubule Array Patterning. PLANT PHYSIOLOGY 2018; 178:684-698. [PMID: 30154175 PMCID: PMC6181046 DOI: 10.1104/pp.18.00672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/19/2018] [Indexed: 05/21/2023]
Abstract
The growth properties of individual cells within a tissue determine plant morphology, and the organization of the cytoskeleton, particularly the microtubule arrays, determines cellular growth properties. We investigated the mechanisms governing the formation of transverse microtubule array patterns in axially growing Arabidopsis (Arabidopsis thaliana) epidermal hypocotyl cells. Using quantitative imaging approaches, we mapped the transition of the cortical microtubule arrays into a transverse coaligned pattern after induction with auxin and gibberellic acid. Hormone induction led to an early loss of microtubule plus end density and a rotation toward oblique patterns. Beginning 30 min after induction, transverse microtubules appeared at the cell's midzone concurrently with the loss of longitudinal polymers, eventually progressing apically and basally to remodel the array pattern. Based on the timing and known hormone-signaling pathways, we tested the hypothesis that the later events require de novo gene expression and, thus, constitute a level of genetic control over transverse patterning. We found that the presence of the translation inhibitor cycloheximide (CHX) resulted in a selective and reversible loss of transverse patterns that were replaced with radial-like pinwheel arrays exhibiting a split bipolar architecture centered at the cell's midzone. Experiments using hormone induction and CHX revealed that pinwheel arrays occur when transverse microtubules increase at the midzone but longitudinal microtubules in the split bipolar architecture are not suppressed. We propose that a key regulatory mechanism for creating the transverse microtubule coalignment in axially growing hypocotyls involves the expression of a CHX-sensitive factor that acts to suppress the nucleation of the longitudinally oriented polymers.
Collapse
Affiliation(s)
- Andrew Elliott
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
14
|
Szymanski D, Bassham D, Munnik T, Sakamoto W. Cellular Dynamics: Cellular Systems in the Time Domain. PLANT PHYSIOLOGY 2018; 176:12-15. [PMID: 29317523 PMCID: PMC5761760 DOI: 10.1104/pp.17.01777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|