1
|
Pérez-Henríquez P, Nagawa S, Liu Z, Pan X, Michniewicz M, Tang W, Rasmussen C, Cui X, Van Norman J, Strader L, Yang Z. PIN2-mediated self-organizing transient auxin flow contributes to auxin maxima at the tip of Arabidopsis cotyledons. Nat Commun 2025; 16:1380. [PMID: 39910050 PMCID: PMC11799338 DOI: 10.1038/s41467-024-55480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/09/2024] [Indexed: 02/07/2025] Open
Abstract
Directional auxin transport and formation of auxin maxima are critical for embryogenesis, organogenesis, pattern formation, and growth coordination in plants, but the mechanisms underpinning the initiation and establishment of these auxin dynamics are not fully understood. Here we show that a self-initiating and -terminating transient auxin flow along the marginal cells (MCs) contributes to the formation of an auxin maximum at the tip of Arabidopsis cotyledon that globally coordinates the interdigitation of puzzle-shaped pavement cells in the cotyledon epidermis. Prior to the interdigitation, indole butyric acid (IBA) is converted to indole acetic acid (IAA) to induce PIN2 accumulation and polarization in the marginal cells, leading to auxin flow toward and accumulation at the cotyledon tip. Once IAA levels at the cotyledon tip reaches a maximum, it activates pavement cell interdigitation as well as the accumulation of the IBA transporter TOB1 in MCs, which sequesters IBA to the vacuole and reduces IBA availability and IAA levels. The reduction of IAA levels results in PIN2 down-regulation and cessation of the auxin flow. Hence, our results elucidate a self-activating and self-terminating transient polar auxin transport system in cotyledons, contributing to the formation of localized auxin maxima that spatiotemporally coordinate pavement cell interdigitation.
Collapse
Affiliation(s)
- Patricio Pérez-Henríquez
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Shingo Nagawa
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongchi Liu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xue Pan
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON, M1C1A4, Canada
| | - Marta Michniewicz
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
- Bayer Crop Science, 700 W Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Wenxin Tang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Carolyn Rasmussen
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Jaimie Van Norman
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Lucia Strader
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Zhenbiao Yang
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China.
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Institute of Emerging Agricultural Technology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Zhang Y, Sun HR, Hu ZC, Dong Y. Cellular mechanism of polarized auxin transport on fruit shape determination revealed by time-lapse live imaging. PLANT REPRODUCTION 2024; 38:1. [PMID: 39570478 DOI: 10.1007/s00497-024-00513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
KEY MESSAGE Polarized auxin transport regulates fruit shape determination by promoting anisotropic cell growth. Angiosperms produce organs with distinct shape resultant from adaptive evolution. Understanding the cellular basis underlying the development of plant organ has been a central topic in plant biology as it is key to unlock the mechanisms leading to the diversification of plants. Variations in the location of synthesis, polarized auxin transport (PAT) have been proposed to account for the development of diverse organ shapes, but the exact cellular mechanism has yet to be elucidated. The Capsella rubella develops a perfect heart-shaped fruit from an ovate shape gynoecium that is tightly linked to the localized auxin synthesis in the valve tips and provides a unique opportunity to address this question. In this study, we studied auxin movement in the fruits and the cellular effect of N-1-Naphthylphthalamic Acid (NPA) on the fruit shape determination by constructing the pCrPIN3:PIN3:GFP reporter and live-imaging. We found PAT in the valve epidermis is in congruent with fruit shape development and NPA treatment disrupts the heat-shaped fruit development mainly by repressing cell anisotropic growth with minor effect on division. As the Capsella fruit is unusually big in size, we also included a detailed step-by-step protocol on how to conduct live-imaging experiment. We further test the utility of this protocol by conducting a live-imaging analysis of the gynophore in Arachis hypogaea. Collectively, the results of this study elucidated the mechanism on how auxin signal was translated into instructions guiding cell growth during organ shape determination. In addition, the description of the detailed live-imaging protocol will encourage further studies of the cellular mechanisms underlying shape diversification in angiosperms.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao-Ran Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Cheng Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Dong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Pérez-Henríquez P, Nagawa S, Liu Z, Pan X, Michniewicz M, Tang W, Rasmussen C, Van Norman J, Strader L, Yang Z. PIN2-mediated self-organizing transient auxin flow contributes to auxin maxima at the tip of Arabidopsis cotyledons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.599792. [PMID: 38979163 PMCID: PMC11230289 DOI: 10.1101/2024.06.24.599792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Directional auxin transport and formation of auxin maxima are critical for embryogenesis, organogenesis, pattern formation, and growth coordination in plants, but the mechanisms underpinning the initiation and establishment of these auxin dynamics are not fully understood. Here we show that a self-initiating and -terminating transient auxin flow along the marginal cells (MCs) contributes to the formation of an auxin maximum at the tip of Arabidopsis cotyledon that globally coordinates the interdigitation of puzzle-shaped pavement cells in the cotyledon epidermis. Prior to the interdigitation, indole butyric acid (IBA) is converted to indole acetic acid (IAA) to induce PIN2 accumulation and polarization in the marginal cells, leading to auxin flow toward and accumulation at the cotyledon tip. When IAA levels at the cotyledon tip reaches a maximum, it activates pavement cell interdigitation as well as the accumulation of the IBA transporter TOB1 in MCs, which sequesters IBA to the vacuole and reduces IBA availability and IAA levels. The reduction of IAA levels results in PIN2 down-regulation and cessation of the auxin flow. Hence, our results elucidate a self-activating and self-terminating transient polar auxin transport system in cotyledons, contributing to the formation of localized auxin maxima that spatiotemporally coordinate pavement cell interdigitation.
Collapse
Affiliation(s)
- Patricio Pérez-Henríquez
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shingo Nagawa
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongchi Liu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xue Pan
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C1A4, Canada
| | | | - Wenxin Tang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Carolyn Rasmussen
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jaimie Van Norman
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Zhenbiao Yang
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Khoso MA, Zhang H, Khoso MH, Poudel TR, Wagan S, Papiashvili T, Saha S, Ali A, Murtaza G, Manghwar H, Liu F. Synergism of vesicle trafficking and cytoskeleton during regulation of plant growth and development: A mechanistic outlook. Heliyon 2023; 9:e21976. [PMID: 38034654 PMCID: PMC10682163 DOI: 10.1016/j.heliyon.2023.e21976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The cytoskeleton is a fundamental component found in all eukaryotic organisms, serving as a critical factor in various essential cyto-biological mechanisms, particularly in the locomotion and morphological transformations of plant cells. The cytoskeleton is comprised of three main components: microtubules (MT), microfilaments (MF), and intermediate filaments (IF). The cytoskeleton plays a crucial role in the process of cell wall formation and remodeling throughout the growth and development of cells. It is a highly organized and regulated network composed of filamentous components. In the basic processes of intracellular transport, such as mitosis, cytokinesis, and cell polarity, the plant cytoskeleton plays a crucial role according to recent studies. The major flaws in the organization of the cytoskeletal framework are at the root of the aberrant organogenesis currently observed in plant mutants. The regulation of protein compartmentalization and abundance within cells is predominantly governed by the process of vesicle/membrane transport, which plays a crucial role in several signaling cascades.The regulation of membrane transport in eukaryotic cells is governed by a diverse array of proteins. Recent developments in genomics have provided new tools to study the evolutionary relationships between membrane proteins in different plant species. It is known that members of the GTPases, COP, SNAREs, Rabs, tethering factors, and PIN families play essential roles in vesicle transport between plant, animal, and microbial species. This Review presents the latest research on the plant cytoskeleton, focusing on recent developments related to the cytoskeleton and summarizing the role of various proteins in vesicle transport. In addition, the report predicts future research direction of plant cytoskeleton and vesicle trafficking, potential research priorities, and provides researchers with specific pointers to further investigate the significant link between cytoskeleton and vesicle trafficking.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mir Hassan Khoso
- Department of Biochemistry, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Pakistan
| | - Tika Ram Poudel
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sindho Wagan
- Laboratory of Pest Physiology Biochemistry and Molecular Toxicology Department of Forest Protection Northeast Forestry University Harbin 150040, China
| | - Tamar Papiashvili
- School of Economics and Management Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Sudipta Saha
- School of Forestry, Department of Silviculture, Northeast Forestry University, Harbin 150040, China
| | - Abid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ghulam Murtaza
- Department of Biochemistry and Molecular Biology Harbin Medical University China, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
5
|
Zhang Q, Wang B, Kong X, Li K, Huang Y, Peng L, Chen L, Liu J, Yu Q, He J, Yang Y, Li X, Wang J. Knockout of cyclase-associated protein CAP1 confers tolerance towards salt and osmotic stress in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153978. [PMID: 37087999 DOI: 10.1016/j.jplph.2023.153978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
As a regulator of actin filament turnover, Arabidopsis thaliana CAP1 plays an important role in plant growth and development. Here, we analyzed the phenotypes of two Arabidopsis cap1 mutants: cap1-1 (a T-DNA insertion mutant) and Cas9-CAP1 (generated by CRISPR-Cas9 gene editing). Phenotypic analysis demonstrated that loss of CAP1 results in defects in seed germination and seedling morphology, with some seedlings exhibiting one or three cotyledons. The cap1-1 mutant took longer than the wild type to complete its life cycle, but its flowering time was normal, indicating that loss of CAP1 prolongs reproductive but not vegetative growth. Moreover, loss of CAP1 severely reduces seed production in self-pollinated plants, due to disruption of pollen tube elongation. RNA-seq and qRT-PCR analyses demonstrated that CAP1 may be involved in osmotic stress responses. Indeed, the cap1-1 mutant showed increased tolerance of salt and mannitol treatment, indicating that CAP1 plays a negative role in osmotic stress tolerance in Arabidopsis. Taken together, our results demonstrate that CAP1 functions not only in plant growth and development, but also in Arabidopsis responses to osmotic stress.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Boya Wang
- Southwest University of Science and Technology, School of Life Science and Engineering, Mianyang, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Li Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jiajia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Aizezi Y, Xie Y, Guo H, Jiang K. New Wine in an Old Bottle: Utilizing Chemical Genetics to Dissect Apical Hook Development. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081285. [PMID: 36013464 PMCID: PMC9410295 DOI: 10.3390/life12081285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
The apical hook is formed by dicot seedlings to protect the tender shoot apical meristem during soil emergence. Regulated by many phytohormones, the apical hook has been taken as a model to study the crosstalk between individual signaling pathways. Over recent decades, the roles of different phytohormones and environmental signals in apical hook development have been illustrated. However, key regulators downstream of canonical hormone signaling have rarely been identified via classical genetics screening, possibly due to genetic redundancy and/or lethal mutation. Chemical genetics that utilize small molecules to perturb and elucidate biological processes could provide a complementary strategy to overcome the limitations in classical genetics. In this review, we summarize current progress in hormonal regulation of the apical hook, and previously reported chemical tools that could assist the understanding of this complex developmental process. We also provide insight into novel strategies for chemical screening and target identification, which could possibly lead to discoveries of new regulatory components in apical hook development, or unidentified signaling crosstalk that is overlooked by classical genetics screening.
Collapse
Affiliation(s)
- Yalikunjiang Aizezi
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinpeng Xie
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.G.); (K.J.)
| | - Kai Jiang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.G.); (K.J.)
| |
Collapse
|
7
|
Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proc Natl Acad Sci U S A 2022; 119:e2206869119. [PMID: 35914172 PMCID: PMC9371723 DOI: 10.1073/pnas.2206869119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The phytohormone auxin, indole-3-acetic acid (IAA), plays a prominent role in plant development. Auxin homeostasis is coordinately regulated by auxin synthesis, transport, and inactivation; however, the physiological contribution of auxin inactivation to auxin homeostasis has not been determined. The GH3 IAA-amino acid conjugating enzymes play a central role in auxin inactivation. Chemical inhibition of GH3 proteins in planta is challenging because the inhibition of these enzymes leads to IAA overaccumulation that rapidly induces GH3 expression. Here, we report the characterization of a potent GH3 inhibitor, kakeimide, that selectively targets IAA-conjugating GH3 proteins. Chemical knockdown of the auxin inactivation pathway demonstrates that auxin turnover is very rapid (about 10 min) and indicates that both auxin biosynthesis and inactivation dynamically regulate auxin homeostasis.
Collapse
|
8
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
9
|
Yuan TT, Xiang ZX, Li W, Gao X, Lu YT. Osmotic stress represses root growth by modulating the transcriptional regulation of PIN-FORMED3. THE NEW PHYTOLOGIST 2021; 232:1661-1673. [PMID: 34420215 DOI: 10.1111/nph.17687] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Osmotic stress influences root system architecture, and polar auxin transport (PAT) is well established to regulate root growth and development. However, how PAT responds to osmotic stress at the molecular level remains poorly understood. In this study, we explored whether and how the auxin efflux carrier PIN-FORMED3 (PIN3) participates in osmotic stress-induced root growth inhibition in Arabidopsis (Arabidopsis thaliana). We observed that osmotic stress induces a HD-ZIP II transcription factor-encoding gene HOMEODOMAIN ARABIDOPSIS THALIANA2 (HAT2) expression in roots. The hat2 loss-of-function mutant is less sensitive to osmotic stress in terms of root meristem growth. Consistent with this phenotype, whereas the auxin response is downregulated in wild-type roots under osmotic stress, the inhibition of auxin response by osmotic stress was alleviated in hat2 roots. Conversely, transgenic lines overexpressing HAT2 (Pro35S::HAT2) had shorter roots and reduced auxin accumulation compared with wild-type plants. PIN3 expression was significantly reduced in the Pro35S::HAT2 lines. We determined that osmotic stress-mediated repression of PIN3 was alleviated in the hat2 mutant because HAT2 normally binds to the promoter of PIN3 and inhibits its expression. Taken together, our data revealed that osmotic stress inhibits root growth via HAT2, which regulates auxin activity by directly repressing PIN3 transcription.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
10
|
Balcerowicz M, Shetty KN, Jones AM. Fluorescent biosensors illuminating plant hormone research. PLANT PHYSIOLOGY 2021; 187:590-602. [PMID: 35237816 PMCID: PMC8491072 DOI: 10.1093/plphys/kiab278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/22/2021] [Indexed: 05/20/2023]
Abstract
Phytohormones act as key regulators of plant growth that coordinate developmental and physiological processes across cells, tissues and organs. As such, their levels and distribution are highly dynamic owing to changes in their biosynthesis, transport, modification and degradation that occur over space and time. Fluorescent biosensors represent ideal tools to track these dynamics with high spatiotemporal resolution in a minimally invasive manner. Substantial progress has been made in generating a diverse set of hormone sensors with recent FRET biosensors for visualising hormone concentrations complementing information provided by transcriptional, translational and degron-based reporters. In this review, we provide an update on fluorescent biosensor designs, examine the key properties that constitute an ideal hormone biosensor, discuss the use of these sensors in conjunction with in vivo hormone perturbations and highlight the latest discoveries made using these tools.
Collapse
Affiliation(s)
| | | | - Alexander M. Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Author for communication:
| |
Collapse
|
11
|
Malangisha GK, Li C, Yang H, Mahmoud A, Ali A, Wang C, Yang Y, Yang J, Hu Z, Zhang M. Permissive action of H 2O 2 mediated ClUGT75 expression for auxin glycosylation and Al 3+- tolerance in watermelon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:77-90. [PMID: 34340025 DOI: 10.1016/j.plaphy.2021.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Although Al3+-toxicity is one of the limiting factors for crop production in acidic soils, little is known about the Al3+-tolerance mechanism in watermelon, a fairly acid-tolerant crop. This work aimed to identify the interaction between the H2O2 scavenging pathway and auxin glycosylation relevant to watermelon Al3+-tolerance. By analyzing expressions of hormone-related ClUGTs and antioxidant enzyme genes in Al3+-tolerant (ZJ) and Al3+-sensitive (NBT) cultivars, we identified ClUGT75s (B1, B2, and D1) and ClSOD1-2-ClCAT as crucial components associated with Al3+-tolerance. Al3+-stress significantly increased H2O2 content by 92.7% in NBT and 42.3% in ZJ, accompanied by less Al3+-, auxin (IAA and IBA), and MDA contents in ZJ than NBT. These findings coincided with significant ClSOD1-2 expression and stable dismutation activity in NBT than ZJ. Hence, higher H2O2 content in the root apex of NBT than ZJ correlated with a significant increase in auxin content and ClSOD1-2 up-regulation. Moreover, Al3+-activated ClUGT75D1 and ClUGT75B2 in ZJ coincided with no considerable change in IBA content, suggesting that glycosylation-mediated changes in IBA content might be relevant to Al3+-tolerance in watermelon. Furthermore, exogenous H2O2 and IBA indicated ClUGT75D1 modulating IBA is likely dependent on H2O2 background. We hypothesize that a higher H2O2 level in NBT represses ClUGT75, resulting in increased auxin than those in ZJ roots. Thus, excess in both H2O2 and auxin aggravated the inhibition of root elongation under Al3+-stress. Our findings provide insights on the permissive action of H2O2 in the mediation of auxin glycosylation by ClUGT75 in root apex for Al3+-tolerance in watermelon.
Collapse
Affiliation(s)
- Guy Kateta Malangisha
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China; Faculté des Sciences Agronomiques, Université de Lubumbashi, /UNILU, Lubumbashi, République Démocratique Du Congo/PO Box 1825, PR China
| | - Cheng Li
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Haiyang Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Ahmed Mahmoud
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Chi Wang
- Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling, 317500, PR China
| | - Yubin Yang
- Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling, 317500, PR China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| |
Collapse
|
12
|
Narasimhan M, Gallei M, Tan S, Johnson A, Verstraeten I, Li L, Rodriguez L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. PLANT PHYSIOLOGY 2021; 186:1122-1142. [PMID: 33734402 PMCID: PMC8195513 DOI: 10.1093/plphys/kiab134] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/23/2021] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Collapse
Affiliation(s)
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Shutang Tan
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Alexander Johnson
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maciek Adamowski
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| |
Collapse
|
13
|
Abstract
Molecular genetic and structural studies have revealed the mechanisms of fundamental components of key auxin regulatory pathways consisting of auxin biosynthesis, transport, and signaling. Chemical biology methods applied in auxin research have been greatly expanded through the understanding of auxin regulatory pathways. Many small-molecule modulators of auxin metabolism, transport, and signaling have been generated on the basis of the outcomes of genetic and structural studies on auxin regulatory pathways. These chemical modulators are now widely used as essential tools for dissecting auxin biology in diverse plants. This review covers the structures, primary targets, modes of action, and applications of chemical tools in auxin biosynthesis, transport, and signaling.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama City 700-0005, Japan
| |
Collapse
|
14
|
Bai Y, Fernández-Calvo P, Ritter A, Huang AC, Morales-Herrera S, Bicalho KU, Karady M, Pauwels L, Buyst D, Njo M, Ljung K, Martins JC, Vanneste S, Beeckman T, Osbourn A, Goossens A, Pollier J. Modulation of Arabidopsis root growth by specialized triterpenes. THE NEW PHYTOLOGIST 2021; 230:228-243. [PMID: 33616937 DOI: 10.1111/nph.17144] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 05/21/2023]
Abstract
Plant roots are specialized belowground organs that spatiotemporally shape their development in function of varying soil conditions. This root plasticity relies on intricate molecular networks driven by phytohormones, such as auxin and jasmonate (JA). Loss-of-function of the NOVEL INTERACTOR OF JAZ (NINJA), a core component of the JA signaling pathway, leads to enhanced triterpene biosynthesis, in particular of the thalianol gene cluster, in Arabidopsis thaliana roots. We have investigated the biological role of thalianol and its derivatives by focusing on Thalianol Synthase (THAS) and Thalianol Acyltransferase 2 (THAA2), two thalianol cluster genes that are upregulated in the roots of ninja mutant plants. THAS and THAA2 activity was investigated in yeast, and metabolite and phenotype profiling of thas and thaa2 loss-of-function plants was carried out. THAA2 was shown to be responsible for the acetylation of thalianol and its derivatives, both in yeast and in planta. In addition, THAS and THAA2 activity was shown to modulate root development. Our results indicate that the thalianol pathway is not only controlled by phytohormonal cues, but also may modulate phytohormonal action itself, thereby affecting root development and interaction with the environment.
Collapse
Affiliation(s)
- Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Ancheng C Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich,, NR4 7UH, UK
| | - Stefania Morales-Herrera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven, 3000, Belgium
- VIB Center for Microbiology, Kasteelpark Arenberg 31, Leuven, 3000, Belgium
| | - Keylla U Bicalho
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-060, Brazil
| | - Michal Karady
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Dieter Buyst
- Department of Organic Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Karen Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - José C Martins
- Department of Organic Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, 21985, Korea
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich,, NR4 7UH, UK
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| |
Collapse
|
15
|
Sharma P, Kumar V, Khosla R, Guleria P. Exogenous naringenin improved digestible protein accumulation and altered morphology via VrPIN and auxin redistribution in Vigna radiata. 3 Biotech 2020; 10:431. [PMID: 32999809 PMCID: PMC7492357 DOI: 10.1007/s13205-020-02428-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/05/2020] [Indexed: 01/15/2023] Open
Abstract
Naringenin exposure altered auxin redistribution via VrPIN1 leading to morphological alterations and significantly reduced the protein precipitable tannins that further enhanced the protein accumulation and bioavailability. Flavonoid exposure is known to affect the antioxidant profile of legumes. However, a detailed study evaluating the effect of flavonoid naringenin on morphology and biochemical profile of legume is lacking. The present study is a novel report of improved in planta protein bioavailability and antioxidant potential of legume mungbean on naringenin exposure. The quantitative evaluation revealed significant protein accumulation (64-122 μg/g FW) on naringenin exposure. Further, an increase in protein solubility and digestibility compared to control was evident. Naringenin mediated altered α-amylase activity improved the mungbean seed germination rate. Naringenin induced auxin redistribution and altered PIN formed transcript expression reduced lateral root density and increased stem length that was subsequently reverted on exogenous indole acetic acid application. Naringenin enhanced polyphenolic accumulation and improved the antioxidant potential of mungbean. Additionally, the responsiveness of the early gene of the flavonoid biosynthetic pathway, Chalcone isomerase to naringenin concentration was revealed indicating a probable feedback regulation. Further, the presence of alternate liquiritigenin biosynthesis was also evident. The present study, thus reveals the probable potential of phytochemical naringenin towards agricultural sustainability in the changing environmental conditions.
Collapse
Affiliation(s)
- Priya Sharma
- Plant Biotechnology and Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab 144012 India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144111 India
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar, Punjab 144001 India
| | - Praveen Guleria
- Plant Biotechnology and Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab 144012 India
| |
Collapse
|
16
|
Dindas J, Becker D, Roelfsema MRG, Scherzer S, Bennett M, Hedrich R. Pitfalls in auxin pharmacology. THE NEW PHYTOLOGIST 2020; 227:286-292. [PMID: 32077110 DOI: 10.1111/nph.16491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Julian Dindas
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082, Würzburg, Germany
- Institute of Plant and Microbial Biology, University of Zürich, Zöllikerstrasse 107, CH-8008, Zürich, Switzerland
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082, Würzburg, Germany
| | - M Rob G Roelfsema
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082, Würzburg, Germany
| | - Sönke Scherzer
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082, Würzburg, Germany
| | - Malcolm Bennett
- Centre for Plant Integrative Biology, Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 3RD, UK
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082, Würzburg, Germany
| |
Collapse
|
17
|
Mazur E, Gallei M, Adamowski M, Han H, Robert HS, Friml J. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110414. [PMID: 32081263 DOI: 10.1016/j.plantsci.2020.110414] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
The flexible development of plants is characterized by a high capacity for post-embryonic organ formation and tissue regeneration, processes, which require tightly regulated intercellular communication and coordinated tissue (re-)polarization. The phytohormone auxin, the main driver for these processes, is able to establish polarized auxin transport channels, which are characterized by the expression and polar, subcellular localization of the PIN1 auxin transport proteins. These channels are demarcating the position of future vascular strands necessary for organ formation and tissue regeneration. Major progress has been made in the last years to understand how PINs can change their polarity in different contexts and thus guide auxin flow through the plant. However, it still remains elusive how auxin mediates the establishment of auxin conducting channels and the formation of vascular tissue and which cellular processes are involved. By the means of sophisticated regeneration experiments combined with local auxin applications in Arabidopsis thaliana inflorescence stems we show that (i) PIN subcellular dynamics, (ii) PIN internalization by clathrin-mediated trafficking and (iii) an intact actin cytoskeleton required for post-endocytic trafficking are indispensable for auxin channel formation, de novo vascular formation and vascular regeneration after wounding. These observations provide novel insights into cellular mechanism of coordinated tissue polarization during auxin canalization.
Collapse
Affiliation(s)
- Ewa Mazur
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Michelle Gallei
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Maciek Adamowski
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Huibin Han
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Hélène S Robert
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
18
|
Gallei M, Luschnig C, Friml J. Auxin signalling in growth: Schrödinger's cat out of the bag. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:43-49. [PMID: 31760231 DOI: 10.1016/j.pbi.2019.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin acts as an amazingly versatile coordinator of plant growth and development. With its morphogen-like properties, auxin controls sites and timing of differentiation and/or growth responses both, in quantitative and qualitative terms. Specificity in the auxin response depends largely on distinct modes of signal transmission, by which individual cells perceive and convert auxin signals into a remarkable diversity of responses. The best understood, or so-called canonical mechanism of auxin perception ultimately results in variable adjustments of the cellular transcriptome, via a short, nuclear signal transduction pathway. Additional findings that accumulated over decades implied that an additional, presumably, cell surface-based auxin perception mechanism mediates very rapid cellular responses and decisively contributes to the cell's overall hormonal response. Recent investigations into both, nuclear and cell surface auxin signalling challenged this assumed partition of roles for different auxin signalling pathways and revealed an unexpected complexity in transcriptional and non-transcriptional cellular responses mediated by auxin.
Collapse
Affiliation(s)
- Michelle Gallei
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
19
|
Raggi S, Demes E, Liu S, Verger S, Robert S. Polar expedition: mechanisms for protein polar localization. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:134-140. [PMID: 31982289 DOI: 10.1016/j.pbi.2019.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 05/26/2023]
Abstract
Most cells show asymmetry in their shape or in the organization of their components that results in poles with different properties. This is a fundamental feature that participates in modulating the development of an organism and its responses to external stimuli. In plants, a number of proteins that are important for developmental and physiological processes have been shown to display polar localization. However, how these polarities are established, maintained, or dynamically modulated is still largely unclear for most of these proteins. In this review we report recent updates on the mechanisms of polar protein localization, focusing on a subset of these proteins that are the focus of current research efforts.
Collapse
Affiliation(s)
- Sara Raggi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183 Umeå, Sweden
| | - Elsa Demes
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183 Umeå, Sweden
| | - Sijia Liu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183 Umeå, Sweden
| | - Stéphane Verger
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183 Umeå, Sweden.
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183 Umeå, Sweden.
| |
Collapse
|
20
|
Julkowska MM. Pinstatic Acid as a Dissection Tool-Kit for Transcriptional and Nontranscriptional Auxin Responses. PLANT PHYSIOLOGY 2019; 180:708. [PMID: 31160529 PMCID: PMC6548271 DOI: 10.1104/pp.19.00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Magdalena M Julkowska
- Biological and Environmental Sciences and Engineering, King Abdullah University for Science & Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|