1
|
Sloan J, Wang S, Ngai QY, Xiao Y, Armand J, Wilson MJ, Zhu X, Fleming AJ. Conserved cellular patterning in the mesophyll of rice leaves. PLANT DIRECT 2023; 7:e549. [PMID: 38054113 PMCID: PMC10695703 DOI: 10.1002/pld3.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The mesophyll cells of grass leaves, such as rice, are traditionally viewed as displaying a relatively uniform pattern, in contrast to the clear distinctions of palisade and spongy layers in typical eudicot leaves. This quantitative analysis of mesophyll cell size and shape in rice leaves reveals that there is an inherent pattern in which cells in the middle layer of the mesophyll are larger and less circular and have a distinct orientation of their long axis compared to mesophyll cells in other layers. Moreover, this pattern was observed in a range of rice cultivars and species. The significance of this pattern with relation to potential photosynthetic function and the implication of the widespread use of middle layer mesophyll cells as typical of the rice leaf have been investigated and discussed.
Collapse
Affiliation(s)
- Jen Sloan
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Saranrat Wang
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Qi Yang Ngai
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Yi Xiao
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana ChampaignUrbanaILUSA
| | - Jodie Armand
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Matthew J. Wilson
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Xin‐Guang Zhu
- Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Andrew J. Fleming
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
2
|
Zou QQ, Liu DH, Sang M, Jiang CD. Sunflower Leaf Structure Affects Chlorophyll a Fluorescence Induction Kinetics In Vivo. Int J Mol Sci 2022; 23:ijms232314996. [PMID: 36499324 PMCID: PMC9738131 DOI: 10.3390/ijms232314996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Chlorophyll a fluorescence induction kinetics (CFI) is an important tool that reflects the photosynthetic function of leaves, but it remains unclear whether it is affected by leaf structure. Therefore, in this study, the leaf structure and CFI curves of sunflower and sorghum seedlings were analyzed. Results revealed that there was a significant difference between the structures of palisade and spongy tissues in sunflower leaves. Their CFI curves, measured on both the adaxial and abaxial sides, also differed significantly. However, the differences in the leaf structures and CFI curves between both sides of sorghum leaves were not significant. Further analysis revealed that the differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves almost disappeared due to reduced incident light scattering and refraction in the leaf tissues; more importantly, changes in the CFI curves of the abaxial side were greater than the adaxial side. Compared to leaves grown under full sunlight, weak light led to decreased differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves; of these, changes in the CFI curves and palisade tissue structure on the adaxial side were more obvious than on the abaxial side. Therefore, it appears that large differences in sunflower leaf structures may affect the shape of CFI curves. These findings lay a foundation for enhancing our understanding of CFI from a new perspective.
Collapse
Affiliation(s)
- Qing-Qing Zou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Huan Liu
- China National Botanical Garden, Beijing 100093, China
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Beijing 100093, China
| | - Min Sang
- China National Botanical Garden, Beijing 100093, China
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Beijing 100093, China
| | - Chuang-Dao Jiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Correspondence:
| |
Collapse
|
3
|
Yu M, Chen L, Liu DH, Sun D, Shi GL, Yin Y, Wen DQ, Wang ZX, Ai J. Enhancement of Photosynthetic Capacity in Spongy Mesophyll Cells in White Leaves of Actinidia kolomikta. FRONTIERS IN PLANT SCIENCE 2022; 13:856732. [PMID: 35646000 PMCID: PMC9131848 DOI: 10.3389/fpls.2022.856732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 06/01/2023]
Abstract
Considering that Actinidia kolomikta bears abundant white leaves on reproductive branches during blossoming, we hypothesized that the white leaves may maintain photosynthetic capacity by adjustments of leaf anatomy and physiological regulation. To test this hypothesis, leaf anatomy, gas exchange, chlorophyll a fluorescence, and the transcriptome were examined in white leaves of A. kolomikta during flowering. The palisade and spongy mesophyll in the white leaves were thicker than those in green ones. Chloroplast development in palisade parenchyma of white leaves was abnormal, whereas spongy parenchyma of white leaves contained functional chloroplasts. The highest photosynthetic rate of white leaves was ~82% of that of green leaves over the course of the day. In addition, the maximum quantum yield of PSII (F v/F m) of the palisade mesophyll in white leaves was significantly lower than those of green ones, whereas F v/F m and quantum yield for electron transport were significantly higher in the spongy mesophyll of white leaves. Photosynthetic capacity regulation of white leaf also was attributed to upregulation or downregulation of some key genes involving in photosynthesis. Particularly, upregulation of sucrose phosphate synthase (SPS), glyeraldehyde-3-phosphate dehydrogenase (GAPDH) and RuBisCO activase (RCA) in white leaf suggested that they might be involved in regulation of sugar synthesis and Rubisco activase in maintaining photosynthetic capacity of white leaf. Conclusions: white leaves contained a thicker mesophyll layer and higher photosynthetic activity in spongy parenchyma cells than those of palisade parenchyma cells. This may compensate for the lowered photosynthetic capacity of the palisade mesophyll. Consequently, white leaves maintain a relatively high photosynthetic capacity in the field.
Collapse
Affiliation(s)
- Miao Yu
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Li Chen
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | | | - Dan Sun
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Guang-li Shi
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Yan Yin
- Key Laboratory of Plant Resources, State Key Laboratory of Systematic and Envolutionary Botany, State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - De-quan Wen
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Zhen-xing Wang
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Jun Ai
- Laboratory of Wild Fruit Physiology, College of Horticulture, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Momayyezi M, Borsuk AM, Brodersen CR, Gilbert ME, Théroux‐Rancourt G, Kluepfel DA, McElrone AJ. Desiccation of the leaf mesophyll and its implications for CO 2 diffusion and light processing. PLANT, CELL & ENVIRONMENT 2022; 45:1362-1381. [PMID: 35141930 PMCID: PMC9314819 DOI: 10.1111/pce.14287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 05/09/2023]
Abstract
Leaves balance CO2 and radiative absorption while maintaining water transport to maximise photosynthesis. Related species with contrasting leaf anatomy can provide insights into inherent and stress-induced links between structure and function for commonly measured leaf traits for important crops. We used two walnut species with contrasting mesophyll anatomy to evaluate these integrated exchange processes under non-stressed and drought conditions using a combination of light microscopy, X-ray microCT, gas exchange, hydraulic conductance, and chlorophyll distribution profiles through leaves. Juglans regia had thicker palisade mesophyll, higher fluorescence in the palisade, and greater low-mesophyll porosity that were associated with greater gas-phase diffusion (gIAS ), stomatal and mesophyll (gm ) conductances and carboxylation capacity. More and highly-packed mesophyll cells and bundle sheath extensions (BSEs) in Juglans microcarpa led to higher fluorescence in the spongy and in proximity to the BSEs. Both species exhibited drought-induced reductions in mesophyll cell volume, yet the associated increases in porosity and gIAS were obscured by declines in biochemical activity that decreased gm . Inherent differences in leaf anatomy between the species were linked to differences in gas exchange, light absorption and photosynthetic capacity, and drought-induced changes in leaf structure impacted performance via imposing species-specific limitations to light absorption, gas exchange and hydraulics.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Aleca M. Borsuk
- School of the EnvironmentYale UniversityNew HavenConnecticutUSA
| | | | | | | | | | - Andrew J. McElrone
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
- USDA‐ARSCrops Pathology and Genetics Research UnitDavisCaliforniaUSA
| |
Collapse
|
5
|
Chan Hong E, Lynn CB, Subramaniam S. Development of plantlet regeneration pathway using in vitro leaf of Ficus carica L. cv. Panachee supported with histological analysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|