1
|
Gao J, Ma G, Chen J, Gichovi B, Cao L, Liu Z, Chen L. The B3 gene family in Medicago truncatula: Genome-wide identification and the response to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108260. [PMID: 38096733 DOI: 10.1016/j.plaphy.2023.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 12/03/2023] [Indexed: 02/15/2024]
Abstract
The B3 family genes constitute a pivotal group of transcription factors that assume diverse roles in the growth, development, and response to both biotic and abiotic stresses in plants. Medicago truncatula is a diploid plant with a relatively small genome, adopted as a model species for legumes genetics and functional genomic research. In this study, 173 B3 genes were identified in the M. truncatula genome, and classified into seven subgroups by phylogenetic analysis. Collinearity analysis revealed that 18 MtB3 gene pairs arose from segmented replication events. Analysis of expression patterns disclosed that 61 MtB3s exhibited a spectrum of expression profiles across various tissues and in the response to salt stress, indicating their potential involvement in salt stress signaling response. Among these genes, MtB3-53 exhibited tissue-specific differential expression and demonstrated a rapid response to salt stress induction. Overexpression of MtB3-53 gene in Arabidopsis improves salt stress tolerance by increasing plant biomass and chlorophyll content, while reducing leaf cell membrane damage. Moreover, salt treatment resulted in more up-regulation of AtABF1, AtABI3, AtHKT1, AtKIN1, AtNHX1, and AtRD29A in MtB3-53 transgenic Arabidopsis plants compared to the wild type, providing evidences that MtB3-53 enhances plant salt tolerance not only by modulating ion homeostasis but also by stimulating the production of antioxidants, which leads to the alleviation of cellular damage caused by salt stress. In conclusion, this study provides a fundamental basis for future investigations into the B3 gene family and its capacity to regulate plant responses to environmental stressors.
Collapse
Affiliation(s)
- Jing Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, 430074, China.
| | - Guangjing Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, 430074, China.
| | - Junjie Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, 430074, China.
| | - Bancy Gichovi
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, 430074, China.
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, 430074, China.
| | - Zhihao Liu
- Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China.
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, 430074, China.
| |
Collapse
|
2
|
Smalley S, Hellmann H. Review: Exploring possible approaches using ubiquitylation and sumoylation pathways in modifying plant stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111275. [PMID: 35487671 DOI: 10.1016/j.plantsci.2022.111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin and similar proteins, such as SUMO, are utilized by plants to modify target proteins to rapidly change their stability and activity in cells. This review will provide an overview of these crucial protein interactions with a focus on ubiquitylation and sumoylation in plants and how they contribute to stress tolerance. The work will also explore possibilities to use these highly conserved pathways for novel approaches to generate more robust crop plants better fit to cope with abiotic and biotic stress situations.
Collapse
Affiliation(s)
- Samuel Smalley
- Washington State University, Pullman, WA 99164, United States
| | - Hanjo Hellmann
- Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|