1
|
Zhang H, Chen W, Zhu D, Zhang B, Xu Q, Shi C, He H, Dai X, Li Y, He W, Lv Y, Yang L, Cao X, Cui Y, Leng Y, Wei H, Liu X, Zhang B, Wang X, Guo M, Zhang Z, Li X, Liu C, Yuan Q, Wang T, Yu X, Qian H, Zhang Q, Chen D, Hu G, Qian Q, Shang L. Population-level exploration of alternative splicing and its unique role in controlling agronomic traits of rice. THE PLANT CELL 2024; 36:4372-4387. [PMID: 38916914 PMCID: PMC11449091 DOI: 10.1093/plcell/koae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one-fifth of the potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost, or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation-induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.
Collapse
Affiliation(s)
- Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Bintao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qiang Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaofan Dai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yilin Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yang Lv
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xinglan Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yue Leng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Hua Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xianmeng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Congcong Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Tianyi Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaoman Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qianqian Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dandan Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
- Nanfan Research Institute, Chinese Academy of Agriculture Science, Sanya, Hainan 572024, China
| |
Collapse
|
2
|
Rodriguez-Izquierdo A, Carrasco D, Anand L, Magnani R, Catarecha P, Arroyo-Garcia R, Rodriguez Lopez CM. Epigenetic differences between wild and cultivated grapevines highlight the contribution of DNA methylation during crop domestication. BMC PLANT BIOLOGY 2024; 24:504. [PMID: 38840239 PMCID: PMC11155169 DOI: 10.1186/s12870-024-05197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
The domestication process in grapevines has facilitated the fixation of desired traits. Nowadays, vegetative propagation through cuttings enables easier preservation of these genotypes compared to sexual reproduction. Nonetheless, even with vegetative propagation, various phenotypes are often present within the same vineyard due to the accumulation of somatic mutations. These mutations are not the sole factors influencing phenotype. Alongside somatic variations, epigenetic variation has been proposed as a pivotal player in regulating phenotypic variability acquired during domestication. The emergence of these epialleles might have significantly influenced grapevine domestication over time. This study aims to investigate the impact of domestication on methylation patterns in cultivated grapevines. Reduced-representation bisulfite sequencing was conducted on 18 cultivated and wild accessions. Results revealed that cultivated grapevines exhibited higher methylation levels than their wild counterparts. Differential Methylation Analysis between wild and cultivated grapevines identified a total of 9955 differentially methylated cytosines, of which 78% were hypermethylated in cultivated grapevines. Functional analysis shows that core methylated genes (consistently methylated in both wild and cultivated accessions) are associated with stress response and terpenoid/isoprenoid metabolic processes. Meanwhile, genes with differential methylation are linked to protein targeting to the peroxisome, ethylene regulation, histone modifications, and defense response. Collectively, our results highlight the significant roles that epialleles may have played throughout the domestication history of grapevines.
Collapse
Affiliation(s)
- Alberto Rodriguez-Izquierdo
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC - Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| | - David Carrasco
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC - Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| | - Lakshay Anand
- Environmental Epigenetics and Genetics Group (EEGG), Department of Horticulture, College of Agriculture, Food and environment, University of Kentucky, Lexington, KY, USA
| | - Roberta Magnani
- Environmental Epigenetics and Genetics Group (EEGG), Department of Horticulture, College of Agriculture, Food and environment, University of Kentucky, Lexington, KY, USA
| | - Pablo Catarecha
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC - Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| | - Rosa Arroyo-Garcia
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC - Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain.
| | - Carlos M Rodriguez Lopez
- Environmental Epigenetics and Genetics Group (EEGG), Department of Horticulture, College of Agriculture, Food and environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Gao W, Zhang L, Zhang Y, Zhang P, Shahinnia F, Chen T, Yang D. Genome‑wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:341. [PMID: 38671351 PMCID: PMC11047035 DOI: 10.1186/s12870-024-05042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Ubiquitination is an important regulatory step of selective protein degradation in the plant UPS (ubiquitin-proteasome system), which is involved in various biological processes in eukaryotes. Ubiquitin-conjugating enzymes play an intermediate role in the process of protein ubiquitination reactions and thus play an essential role in regulating plant growth and response to adverse environmental conditions. However, a genome-wide analysis of the UBC gene family in wheat (Triticum aestivum L.) has not yet been performed. RESULTS In this study, the number, physiochemical properties, gene structure, collinearity, and phylogenetic relationships of TaUBC family members in wheat were analyzed using bioinformatics methods. The expression pattern of TaUBC genes in different tissues/organs and developmental periods, as well as the transcript levels under abiotic stress treatment, were analyzed using RNA-Seq data and qRT-PCR. Meanwhile, favorable haplotypes of TaUBC25 were investigated based on wheat resequencing data of 681 wheat cultivars from the Wheat Union Database. The analyses identified a total of 93 TaUBC family members containing a UBC domain in wheat genome. These genes were unevenly distributed across 21 chromosomes, and numerous duplication events were observed between gene members. Based on phylogenetic analysis, the TaUBC family was divided into 13 E2 groups and a separate UEV group. We investigated the expression of TaUBC family genes under different tissue/organ and stress conditions by quantitative real-time PCR (qRT-PCR) analysis. The results showed that some TaUBC genes were specifically expressed in certain tissues/organs and that most TaUBC genes responded to NaCl, PEG6000, and ABA treatment with different levels of expression. In addition, we performed association analysis for the two haplotypes based on key agronomic traits such as thousand-kernel weight (TKW), kernel length (KL), kernel weight (KW), and kernel thickness (KT), examining 122 wheat accessions at three environmental sites. The results showed that TaUBC25-Hap II had significantly higher TKW, KL, KW, and KT than TaUBC25-Hap I. The distribution analysis of haplotypes showed that TaUBC25-Hap II was preferred in the natural population of wheat. CONCLUSION Our results identified 93 members of the TaUBC family in wheat, and several genes involved in grain development and abiotic stress response. Based on the SNPs detected in the TaUBC sequence, two haplotypes, TaUBC25-Hap I and TaUBC25-Hap II, were identified among wheat cultivars, and their potential value for wheat breeding was validated by association analysis. The above results provide a theoretical basis for elucidating the evolutionary relationships of the TaUBC gene family and lay the foundation for studying the functions of family members in the future.
Collapse
Affiliation(s)
- Weidong Gao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Long Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fahimeh Shahinnia
- Bioanalytics Gatersleben, Am Schwabenplan 1b, Seeland, 06466, Germany
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Miao L, Xu W, Liu Y, Huang X, Chen Z, Wang H, Wang Z, Chen Y, Song Q, Zhang J, Han F, Peng H, Yao Y, Xin M, Hu Z, Ni Z, Sun Q, Xing J, Guo W. Reshaped DNA methylation cooperating with homoeolog-divergent expression promotes improved root traits in synthesized tetraploid wheat. THE NEW PHYTOLOGIST 2024; 242:507-523. [PMID: 38362849 DOI: 10.1111/nph.19593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.
Collapse
Affiliation(s)
- Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weiya Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yanhong Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiangyi Huang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhe Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huifang Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, 266000, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jiewen Xing
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Zhang L, Sun W, Gao W, Zhang Y, Zhang P, Liu Y, Chen T, Yang D. Genome-wide identification and analysis of the GGCT gene family in wheat. BMC Genomics 2024; 25:32. [PMID: 38177998 PMCID: PMC10768367 DOI: 10.1186/s12864-023-09934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND γ-glutamylcyclotransferase (GGCT), an enzyme to maintain glutathione homeostasis, plays a vital role in the response to plant growth and development as well as the adaptation to various stresses. Although the GGCT gene family analysis has been conducted in Arabidopsis and rice, the family genes have not yet been well identified and analyzed at the genome-wide level in wheat (Triticum aestivum L.). RESULTS In the present study, 20 TaGGCT genes were identified in the wheat genome and widely distributed on chromosomes 2A, 2B, 2D, 3A, 4A, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, and 7D. Phylogenetic and structural analyses showed that these TaGGCT genes could be classified into three subfamilies: ChaC, GGGACT, and GGCT-PS. They exhibited similar motif compositions and distribution patterns in the same subgroup. Gene duplication analysis suggested that the expansion of TaGGCT family genes was facilitated by segmental duplications and tandem repeats in the wheat evolutionary events. Identification of diverse cis-acting response elements in TaGGCT promoters indicated their potential fundamental roles in response to plant development and abiotic stresses. The analysis of transcriptome data combined with RT-qPCR results revealed that the TaGGCTs genes exhibited ubiquitous expression across plant organs, with highly expressed in roots, stems, and developing grains. Most TaGGCT genes were up-regulated after 6 h under 20% PEG6000 and ABA treatments. Association analysis revealed that two haplotypes of TaGGCT20 gene displayed significantly different Thousand-kernel weight (TKW), Kernel length (KL), and Kernel width (KW) in wheat. The geographical and annual distribution of the two haplotypes of TaGGCT20 gene further revealed that the frequency of the favorable haplotype TaGGCT20-Hap-I was positively selected in the historical breeding process of wheat. CONCLUSION This study investigated the genome-wide identification, structure, evolution, and expression analysis of TaGGCT genes in wheat. The motifs of TaGGCTs were highly conserved throughout the evolutionary history of wheat. Most TaGGCT genes were highly expressed in roots, stems, and developing grains, and involved in the response to drought stresses. Two haplotypes were developed in the TaGGCT20 gene, where TaGGCT20-Hap-I, as a favorable haplotype, was significantly associated with higher TKW, KL, and KW in wheat, suggesting that the haplotype is used as a function marker for the selection in grain yield in wheat breeding.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Wanting Sun
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Weidong Gao
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yanyan Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
| | - Yuan Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
6
|
Gruet C, Alaoui M, Gerin F, Prigent-Combaret C, Börner A, Muller D, Moënne-Loccoz Y. Genomic content of wheat has a higher influence than plant domestication status on the ability to interact with Pseudomonas plant growth-promoting rhizobacteria. PLANT, CELL & ENVIRONMENT 2023; 46:3933-3948. [PMID: 37614118 DOI: 10.1111/pce.14698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Plant evolutionary history has had profound effects on belowground traits, which is likely to have impacted the ability to interact with microorganisms, but consequences on root colonization and gene expression by plant growth-promoting rhizobacteria (PGPR) remain poorly understood. Here, we tested the hypothesis that wheat genomic content and domestication are key factors determining the capacity for PGPR interaction. Thus, 331 wheat representatives from eight Triticum or Aegilops species were inoculated under standardized conditions with the generalist PGPR Pseudomonas ogarae F113, using an autofluorescent reporter system for monitoring F113 colonization and expression of phl genes coding for the auxinic inducing signal 2,4-diacetylphloroglucinol. The interaction with P. ogarae F113 was influenced by ploidy level, presence of genomes AA, BB, DD, and domestication. While root colonization was higher for hexaploid and tetraploid species, and phl expression level higher for hexaploid wheat, the diploid Ae. tauschii displayed higher phl induction rate (i.e., expression:colonisation ratio) on roots. However, a better potential of interaction with F113 (i.e., under non-stress gnotobiotic conditions) did not translate, after seed inoculation, into better performance of wheat landraces in non-sterile soil under drought. Overall, results showed that domestication and especially plant genomic content modulate the PGPR interaction potential of wheats.
Collapse
Affiliation(s)
- Cécile Gruet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Maroua Alaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Florence Gerin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
7
|
Wang Z, Miao L, Chen Y, Peng H, Ni Z, Sun Q, Guo W. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J Genet Genomics 2023; 50:846-860. [PMID: 37611848 DOI: 10.1016/j.jgg.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progress in studying on the wheat genome is substantially trailed behind those of the other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading to a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
9
|
Zheng J, Wen S, Yu Z, Luo K, Rong J, Ding M. Alternative Splicing during Fiber Development in G. hirsutum. Int J Mol Sci 2023; 24:11812. [PMID: 37511571 PMCID: PMC10380772 DOI: 10.3390/ijms241411812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cotton is a valuable cash crop in many countries. Cotton fiber is a trichome that develops from a single epidermal cell and serves as an excellent model for understanding cell differentiation and other life processes. Alternative splicing (AS) of genes is a common post-transcriptional regulatory process in plants that is essential for plant growth and development. The process of AS during cotton fiber formation, on the other hand, is mainly unknown. A substantial number of multi-exon genes were discovered to be alternatively spliced during cotton fiber formation in this study, accounting for 23.31% of the total number of genes in Gossypium hirsutum. Retention intron (RI) is not necessarily the most common AS type, indicating that AS genes and processes during fiber development are very temporal and tissue-specific. When compared to fiber samples, AS is more prevalent at the fiber initiation stages and in the ovule, indicating that development stages and tissues use different AS strategies. Genes involved in fiber development have gone through stage-specific AS, demonstrating that AS regulates cotton fiber development. Furthermore, AS can be regulated by trans-regulation elements such as splicing factor and cis-regulation elements such as gene length, exon numbers, and GC content, particularly at exon-intron junction sites. Our findings also suggest that increased DNA methylation may aid in the efficiency of AS, and that gene body methylation is key in AS control. Finally, our research will provide useful information about the roles of AS during the cotton fiber development process.
Collapse
Affiliation(s)
- Jing Zheng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| | - Shuhan Wen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| | - Zhipeng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| | - Keyan Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| | - Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| |
Collapse
|
10
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
11
|
Vasudevan A, Lévesque-Lemay M, Edwards T, Cloutier S. Global transcriptome analysis of allopolyploidization reveals large-scale repression of the D-subgenome in synthetic hexaploid wheat. Commun Biol 2023; 6:426. [PMID: 37069312 PMCID: PMC10110605 DOI: 10.1038/s42003-023-04781-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Synthetic hexaploid wheat (SHW) lines are created as pre-breeding germplasm to diversify the D subgenome of hexaploid wheat and capitalize upon the untapped genetic diversity of the Aegilops tauschii gene pool. However, the phenotypes observed in the Ae. tauschii parents are not always recovered in the SHW lines, possibly due to inter-subgenome interactions. To elucidate this post-polyploidization genome reprogramming phenomenon, we performed RNA-seq of four SHW lines and their corresponding tetraploid and diploid parents, across ten tissues and three biological replicates. Homoeologue expression bias (HEB) analysis using more than 18,000 triads suggests massive suppression of homoeoalleles of the D subgenome in SHWs. Comparative transcriptome analysis of the whole-genome gene set further corroborated this finding. Alternative splicing analysis of the high-confidence genes indicates an additional layer of complexity where all five splice events are identified, and retained intron is predominant. Homoeologue expression upon resynthesis of hexaploid wheat has implications to the usage and handling of this germplasm in breeding as it relates to capturing the effects of epistatic interaction across subgenomes upon polyploidization. Special considerations must be given to this germplasm in pre-breeding activities to consider the extent of the inter-subgenome interactions on gene expression and their impact on traits for crop improvement.
Collapse
Affiliation(s)
- Akshaya Vasudevan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Tara Edwards
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada.
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
12
|
de Jong GW, Adams KL. Subgenome-dominant expression and alternative splicing in response to Sclerotinia infection in polyploid Brassica napus and progenitors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:142-158. [PMID: 36710652 DOI: 10.1111/tpj.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Polyploidy has played an extensive role in the evolution of flowering plants. Allopolyploids, with subgenomes containing duplicated gene pairs called homeologs, can show rapid transcriptome changes including novel alternative splicing (AS) patterns. The extent to which abiotic stress modulates AS of homeologs is a nascent topic in polyploidy research. We subjected both resynthesized and natural lines of polyploid Brassica napus, along with the progenitors Brassica rapa and Brassica oleracea, to infection with the fungal pathogen Sclerotinia sclerotiorum. RNA-sequencing analyses revealed widespread divergence between polyploid subgenomes in both gene expression and AS patterns. Resynthesized B. napus displayed significantly more A and C subgenome biased homeologs under pathogen infection than during uninfected growth. Differential AS (DAS) in response to infection was highest in natural B. napus (12 709 DAS events) and lower in resynthesized B. napus (8863 DAS events). Natural B. napus had more upregulated events and fewer downregulated events. There was a global expression bias towards the B. oleracea-derived (C) subgenome in both resynthesized and natural B. napus, enhanced by widespread non-parental downregulation of the B. rapa-derived (A) homeolog. In the resynthesized B. napus, this resulted in a disproportionate C subgenome contribution to the pathogen defense response, characterized by biases in both transcript expression levels and the proportion of induced genes. Our results elucidate the complex ways in which Sclerotinia infection affects expression and AS of homeologous genes in resynthesized and natural B. napus.
Collapse
Affiliation(s)
- Grant W de Jong
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Keith L Adams
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
13
|
Jia Z, Gao P, Yin F, Quilichini TD, Sheng H, Song J, Yang H, Gao J, Chen T, Yang B, Kochian LV, Zou J, Patterson N, Yang Q, Gillmor CS, Datla R, Li Q, Xiang D. Asymmetric gene expression in grain development of reciprocal crosses between tetraploid and hexaploid wheats. Commun Biol 2022; 5:1412. [PMID: 36564439 PMCID: PMC9789062 DOI: 10.1038/s42003-022-04374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we analyzed the transcriptomes of developing embryos, from zygote to maturity, alongside endosperm in two stages of development, using reciprocal crosses between tetraploid and hexaploid wheats. Reciprocal crosses between species with varied levels of ploidy displayed broad impacts on gene expression, including shifts in alternative splicing events in select crosses, as illustrated by active splicing events, enhanced protein synthesis and chromatin remodeling. Homoeologous gene expression was repressed on the univalent D genome in pentaploids, but this suppression was attenuated in crosses with a higher ploidy maternal parent. Imprinted genes were identified in endosperm and early embryo tissues, supporting predominant maternal effects on early embryogenesis. By systematically investigating the complex transcriptional networks in reciprocal-cross hybrids, this study presents a framework for understanding the genomic incompatibility and transcriptome shock that results from interspecific hybridization and uncovers the transcriptional impacts on hybrid seeds created from agriculturally-relevant polyploid species.
Collapse
Affiliation(s)
- Zhen Jia
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Peng Gao
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Feifan Yin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - Teagen D. Quilichini
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Huajin Sheng
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jingpu Song
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Hui Yang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Jie Gao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ting Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Bo Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Leon V. Kochian
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jitao Zou
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nii Patterson
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Qingyong Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - C. Stewart Gillmor
- grid.512574.0Langebio, Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821 México
| | - Raju Datla
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Qiang Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Daoquan Xiang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| |
Collapse
|
14
|
Zhang J, Liang Y, Zhang S, Xu Q, Di H, Zhang L, Dong L, Hu X, Zeng X, Liu X, Wang Z, Zhou Y. Global Landscape of Alternative Splicing in Maize Response to Low Temperature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15715-15725. [PMID: 36479939 DOI: 10.1021/acs.jafc.2c05969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Maize (Zea mays L.) is an important food crop planted across the world, and low-temperature stress can affect maize germination. Alternative splicing (AS) is widely present in plants under abiotic stress; however, the response of AS to low-temperature stress in maize remains unclear. In this study, a genome-wide analysis of AS during maize response to low temperatures was performed. AS events were distributed on each chromosome, approximately 2.05-2.09 AS events per gene. Seven genes only had AS in low-temperature-resistant inbred lines. A total of 278 KEGGs and 46 GOs were enriched based on overlapping AS genes, which were associated with hormone and oxidoreductase activity. The mutant was used to verify the function of AS gene ZmWRKY48, and the RGR, RSL, RRL, and RRSA of the mutant decreased by 15.16%-19.87% compared with the normal line. These results contribute to subsequent analysis of the regulatory mechanism of maize in response to low-temperature stress.
Collapse
Affiliation(s)
- Jiayue Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Liang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Simeng Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingyu Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ling Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinge Hu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xianjun Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
15
|
Wu B, Zhang X, Hu K, Zheng H, Zhang S, Liu X, Ma M, Zhao H. Two alternative splicing variants of a wheat gene TaNAK1, TaNAK1.1 and TaNAK1.2, differentially regulate flowering time and plant architecture leading to differences in seed yield of transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1014176. [PMID: 36531344 PMCID: PMC9751850 DOI: 10.3389/fpls.2022.1014176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
In wheat production, appropriate flowering time and ideal plant architecture are the prerequisites for high grain yield. Alternative splicing (AS) is a vital process that regulates gene expression at the post-transcriptional level, and AS events in wheat have been found to be closely related to grain-related traits and abiotic stress tolerance. However, AS events and their biological roles in regulating flowering time and plant architecture in wheat remain unclear. In this study, we report that TaNAK1 undergoes AS, producing three splicing variants. Molecular characterization of TaNAK1 and its splicing variants demonstrated that all three protein isoforms have a conserved NB-ARC domain and a protein kinase domain, but the positions of these two domains and the length of the protein kinase domains are different among them, implying that they may have different three-dimensional structures and therefore have different functions. Further investigations showed that the two splicing variants of TaNAK1, TaNAK1.1 and TaNAK1.2, exhibited different expression patterns during wheat growth and development, while the other one, TaNAK1.3, was not detected. Subcellular localization demonstrated that TaNAK1.1 was mainly localized in the cytoplasm, while TaNAK1.2 was localized in the nucleus and cytoplasm. Both TaNAK1.1 and TaNAK1.2 exhibit protein kinase activity in vitro. Ectopic expression of TaNAK1.1 and TaNAK1.2 in Arabidopsis demonstrated that these two splicing variants play opposite roles in regulating flowering time and plant architecture, resulting in different seed yields. TaNAK1.2 positive regulates the transition from vegetative to reproductive growth, plant height, branching number, seed size, and seed yield of Arabidopsis, while TaNAK1.1 negatively regulates these traits. Our findings provide new gene resource for regulating flowering time and plant architecture in crop breeding for high grain yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Ma
- *Correspondence: Huixian Zhao, ; Meng Ma,
| | | |
Collapse
|
16
|
Zhang Z, Xun H, Lv R, Gou X, Ma X, Li J, Zhao J, Li N, Gong L, Liu B. Effects of homoeologous exchange on gene expression and alternative splicing in a newly formed allotetraploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1267-1282. [PMID: 35763523 DOI: 10.1111/tpj.15886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Homoeologous exchange (HE) is a major mechanism generating post-polyploidization genetic variation with important evolutionary consequences. However, the direct impacts of HE on gene expression and transcript diversity in allopolyploids without the intertwined evolutionary processes remain to be fully understood. Here, we analyzed high-throughput RNA-seq data of young leaves from plant groups of a synthetic allotetraploid wheat (AADD), which contained variable numbers of HEs. We aimed to investigate if and to which extent HE directly impacts gene expression and alternative splicing (AS). We found that HE impacts expression of genes located within HE regions primarily via a cis-acting dosage effect, which led to significant changes in the total expression level of homoeologous gene pairs, especially for homoeologs whose original expression was biased. In parallel, HE also influences expression of a large number of genes residing in non-HE regions by trans-regulation leading to convergent expression of homoeologs. Intriguingly, when taking the original relative homoeolog expression states into account, homoeolog pairs under trans-effect are more prone to manifesting a convergent response to the HEs whereas those under cis-regulation tended to show further exacerbated subgenome-biased expression. Moreover, HE-induced quantitative, largely individual-specific, changes of AS events were detected. Similar to homoeologous expression, homoeo-AS events under trans-effect were more responsive to HE. HE therefore exerts multifaceted immediate effects on gene expression and, to a less extent, on individualized transcript diversity in nascent allopolyploidy.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xintong Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
17
|
Chen H, Liu Y, Zhang J, Chen Y, Dai C, Tian R, Liu T, Chen M, Yang G, Wang Z, Li H, Cao X, Gao X. Amino acid transporter gene TaATLa1 from Triticum aestivum L. improves growth under nitrogen sufficiency and is down regulated under nitrogen deficiency. PLANTA 2022; 256:65. [PMID: 36036331 DOI: 10.1007/s00425-022-03978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
TaATLa1 was identified to respond to nitrogen deprivation through transcriptome analysis of wheat seedlings. TaATLa1 specifically transports Gln, Glu, and Asp, and affects the biomass of Arabidopsis and wheat. Nitrogen is an essential macronutrient and plays a crucial role in wheat production. Amino acids, the major form of organic nitrogen, are remobilized by amino acid transporters (AATs) in plants. AATs are commonly described as central components of essential developmental processes and yield formation via taking up and transporting amino acids in plants. However, few studies have reported the detailed biochemical properties and biological functions of these AATs in wheat. In this study, key genes encoding AATs were screened from transcriptome analysis of wheat seedlings treated with normal nitrogen (NN) and nitrogen deprivation (ND). Among them, 21 AATs were down-regulated and eight AATs were up-regulated under ND treatment. Among the homoeologs, TaATLa1.1-3A, TaATLa1.1-3B, and TaATLa1.1-3D (TaATLa1.1-3A, -3B, and -3D), belonging to amino acid transporter-like a (ATLa) subfamily, were significantly down-regulated in response to ND in wheat, and accordingly were selected for functional analyses. The results demonstrated that TaATLa1.1-3A, -3B, and -3D effectively transported glutamine (Gln), glutamate (Glu), and aspartate (Asp) in yeast. Overexpression of TaAILa1.1-3A, -3B, and -3D in Arabidopsis thaliana L. significantly increased amino acid content in leaves, storage protein content in seeds and the plant biomass under NN. Knockdown of TaATLa1.1-3A, -3B, and -3D in wheat seedlings resulted in a significant block of amino acid remobilization and growth inhibition. Taken together, TaATLa1.1-3A, -3B, and -3D contribute substantially to Arabidopsis and wheat growth. We propose that TaATLa1.1-3A, -3B, and -3D may participate in the source-sink translocation of amino acid, and they may have profound implications for wheat yield improvement.
Collapse
Affiliation(s)
- Heng Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingchun Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiazhen Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cuican Dai
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Renmei Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongxia Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinyou Cao
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences/National Engineering Research Center for Wheat & Maize, Jinan, 250100, China.
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences/National Engineering Research Center for Wheat & Maize, Jinan, 250100, China.
| |
Collapse
|
18
|
Sun L, Wen J, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M. The genetic and molecular basis for improving heat stress tolerance in wheat. ABIOTECH 2022; 3:25-39. [PMID: 36304198 PMCID: PMC9590529 DOI: 10.1007/s42994-021-00064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022]
Abstract
Wheat production requires at least ~ 2.4% increase per year rate by 2050 globally to meet food demands. However, heat stress results in serious yield loss of wheat worldwide. Correspondingly, wheat has evolved genetic basis and molecular mechanisms to protect themselves from heat-induced damage. Thus, it is very urgent to understand the underlying genetic basis and molecular mechanisms responsive to elevated temperatures to provide important strategies for heat-tolerant varieties breeding. In this review, we focused on the impact of heat stress on morphology variation at adult stage in wheat breeding programs. We also summarize the recent studies of genetic and molecular factors regulating heat tolerance, including identification of heat stress tolerance related QTLs/genes, and the regulation pathway in response to heat stress. In addition, we discuss the potential ways to improve heat tolerance by developing new technologies such as genome editing. This review of wheat responses to heat stress may shed light on the understanding heat-responsive mechanisms, although the regulatory network of heat tolerance is still ambiguous in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00064-z.
Collapse
Affiliation(s)
- Lv Sun
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Jingjing Wen
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Huiru Peng
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Yingyin Yao
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhaorong Hu
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Mingming Xin
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| |
Collapse
|
19
|
Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep 2022; 49:2899-2913. [PMID: 35083611 DOI: 10.1007/s11033-021-07105-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Plant glycogen synthase kinase 3/shaggy kinase (GSK3) proteins contain the conserved kinase domain and play a pivotal role in the regulation of plant growth and abiotic stress responses. Nonetheless, genome-wide analysis of the GSK gene family in wheat (Triticum aestivum L.) has not been reported. METHODS AND RESULTS Using high-quality wheat genome sequences, a comprehensive genome-wide characterization of the GSK gene family in wheat was conducted. Their phylogenetics, chromosome location, gene structure, conserved domains, promoter cis-elements, gene duplications, and network interactions were systematically analyzed. In this study, we identified 22 GSK genes in wheat genome that were unevenly distributed on nine wheat chromosomes. Based on phylogenetic analysis, the GSK genes from Arabidopsis, rice, barley, and wheat were clustered into four subfamilies. Gene structure and conserved protein motif analysis revealed that GSK proteins in the same subfamily share similar motif structures and exon/intron organization. Results from gene duplication analysis indicate that four segmental duplications events contribute to the expansion of the wheat GSK gene family. Promoter analysis indicated the participation of TaSK genes in response to the hormone, light and abiotic stress, and plant growth and development. Furthermore, gene network analysis found that five TaSKs were involved in the regulatory network and 130 gene pairs of network interactions were identified. The heat map generated from the available transcriptomic data revealed that the TaSKs exhibited preferential expression in specific tissues and different expression patterns under abiotic stress conditions. Moreover, results from qRT-PCR analysis revealed that the randomly selected TaSK genes were abundantly expressed in spikes and grains at one specific developmental stage, as well as in responding to drought and salt stress. CONCLUSIONS These findings clearly depicted the evolutionary processes and the characteristics, and expression profiles of the GSK gene family in wheat, revealed their role in wheat development and response to abiotic stress responses.
Collapse
|
20
|
Abdullaeva Y, Ratering S, Ambika Manirajan B, Rosado-Porto D, Schnell S, Cardinale M. Domestication Impacts the Wheat-Associated Microbiota and the Rhizosphere Colonization by Seed- and Soil-Originated Microbiomes, Across Different Fields. FRONTIERS IN PLANT SCIENCE 2022; 12:806915. [PMID: 35095978 PMCID: PMC8789879 DOI: 10.3389/fpls.2021.806915] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 05/17/2023]
Abstract
The seed-transmitted microorganisms and the microbiome of the soil in which the plant grows are major drivers of the rhizosphere microbiome, a crucial component of the plant holobiont. The seed-borne microbiome can be even coevolved with the host plant as a result of adaptation and vertical transmission over generations. The reduced genome diversity and crossing events during domestication might have influenced plant traits that are important for root colonization by seed-borne microbes and also rhizosphere recruitment of microbes from the bulk soil. However, the impact of the breeding on seed-transmitted microbiome composition and the plant ability of microbiome selection from the soil remain unknown. Here, we analyzed both endorhiza and rhizosphere microbiome of two couples of genetically related wild and cultivated wheat species (Aegilops tauschii/Triticum aestivum and T. dicoccoides/T. durum) grown in three locations, using 16S rRNA gene and ITS2 metabarcoding, to assess the relative contribution of seed-borne and soil-derived microbes to the assemblage of the rhizosphere microbiome. We found that more bacterial and fungal ASVs are transmitted from seed to the endosphere of all species compared with the rhizosphere, and these transmitted ASVs were species-specific regardless of location. Only in one location, more microbial seed transmission occurred also in the rhizosphere of A. tauschii compared with other species. Concerning soil-derived microbiome, the most distinct microbial genera occurred in the rhizosphere of A. tauschii compared with other species in all locations. The rhizosphere of genetically connected wheat species was enriched with similar taxa, differently between locations. Our results demonstrate that host plant criteria for soil bank's and seed-originated microbiome recruitment depend on both plants' genotype and availability of microorganisms in a particular environment. This study also provides indications of coevolution between the host plant and its associated microbiome resulting from the vertical transmission of seed-originated taxa.
Collapse
Affiliation(s)
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | | | - David Rosado-Porto
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Massimiliano Cardinale
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
- Department of Biological and Environmental Sciences and Technologies – DiSTeBA, University of Salento, Lecce, Italy
| |
Collapse
|
21
|
Ma X, Zhang Z, Li G, Gou X, Bian Y, Zhao Y, Wang B, Lang M, Wang T, Xie K, Liu X, Liu B, Gong L. Spatial and Temporal Transcriptomic Heredity and Asymmetry in an Artificially Constructed Allotetraploid Wheat (AADD). FRONTIERS IN PLANT SCIENCE 2022; 13:887133. [PMID: 35651770 PMCID: PMC9150853 DOI: 10.3389/fpls.2022.887133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 05/15/2023]
Abstract
Polyploidy, or whole-genome duplication (WGD), often induces dramatic changes in gene expression due to "transcriptome shock. " However, questions remain about how allopolyploidy (the merging of multiple nuclear genomes in the same nucleus) affects gene expression within and across multiple tissues and developmental stages during the initial foundation of allopolyploid plants. Here, we systematically investigated the immediate effect of allopolyploidy on gene expression variation in an artificial allopolyploidy system consisting of a constructed allotetraploid wheat (AADD genome, accession AT2) and its diploid progenitors Triticum urartu and Aegilops tauschii. We performed comprehensive RNA sequencing of 81 samples from different genotypes, tissues, and developmental stages. First, we found that intrinsic interspecific differences between the diploid parents played a major role in establishing the expression architecture of the allopolyploid. Nonetheless, allopolyploidy per se also induced dramatic and asymmetric patterns of differential gene expression between the subgenomes, and genes from the D subgenome exhibited a more drastic response. Second, analysis of homoeolog expression bias (HEB) revealed that the D subgenome exhibited significant expression bias and that de novo-generated HEB was attributed mainly to asymmetrical differential gene expression. Homoeolog-specific expression (HSE) analyses showed that the cis-only regulatory pattern was predominant in AT2, reflecting significant divergence between the parents. Co-expression network analysis revealed that homoeolog expression connectivity (HEC) was significantly correlated with sequence divergence in cis elements between subgenomes. Interestingly, allopolyploidy-induced reconstruction of network modules was also associated with different HSE patterns. Finally, a transcriptome atlas of spike development demonstrated that the phenotypic similarity of AT2 to T. urartu may be attributed to the combination of relatively stable expression of A-subgenome genes and drastic downregulation of their D-subgenome homoeologs. These findings provide a broad, multidimensional characterization of allopolyploidy-induced transcriptomic responses and suggest that allopolyploidy can have immediate and complex regulatory effects on the expression of nuclear genes.
Collapse
Affiliation(s)
- Xintong Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yao Bian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Yue Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Man Lang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Kun Xie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaoming Liu
- Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang, China
- *Correspondence: Xiaoming Liu
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Bao Liu
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Lei Gong
| |
Collapse
|
22
|
Liu K, Su Q, Kang K, Chen M, Wang WX, Zhang WQ, Pang R. Genome-wide Analysis of Alternative Gene Splicing Associated with Virulence in the Brown Planthopper Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2512-2523. [PMID: 34568947 DOI: 10.1093/jee/toab186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 06/13/2023]
Abstract
Alternative splicing of protein coding genes plays a profound role in phenotypic variation for many eukaryotic organisms. The development of high-throughput sequencing and bioinformatics algorithms provides the possibility of genome-wide identification of alternative splicing events in eukaryotes. However, for the brown planthopper Nilaparvata lugens, a destructive pest of rice crops, whole-genome distribution of alternative splicing events and the role of alternative splicing in the phenotypic plasticity of virulence have not previously been estimated. Here, we developed an analysis pipeline to identify alternative splicing events in the genome of N. lugens. Differential expression analysis and functional annotation were performed on datasets related to different virulence phenotypes. In total, 27,880 alternative splicing events corresponding to 9,787 multi-exon genes were detected in N. lugens. Among them, specifically expressed alternative splicing transcripts in the virulent Mudgo population were enriched in metabolic process categories, while transcripts in the avirulent TN1 population were enriched in regulator activity categories. In addition, genes encoding odorant receptor, secreted saliva protein and xenobiotic metabolic P450 monooxygenase showed different splicing patterns between Mudgo population and TN1 population. Host change experiment also revealed that an isoform of a P450 gene could be specially induced by the stimulation of resistant rice variety Mudgo. This research pioneered a genome-wide study of alternative gene splicing in the rice brown planthopper. Differences in alternative splicing between virulent and avirulent populations indicated that alternative splicing might play an important role in the formation of virulence phenotypes in N. lugens.
Collapse
Affiliation(s)
- Kai Liu
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qin Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kui Kang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Xia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
23
|
Alternative Splicing of TaGS3 Differentially Regulates Grain Weight and Size in Bread Wheat. Int J Mol Sci 2021; 22:ijms222111692. [PMID: 34769129 PMCID: PMC8584009 DOI: 10.3390/ijms222111692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric G-protein mediates growth and development by perceiving and transmitting signals in multiple organisms. Alternative splicing (AS), a vital process for regulating gene expression at the post-transcriptional level, plays a significant role in plant adaptation and evolution. Here, we identified five splicing variants of Gγ subunit gene TaGS3 (TaGS3.1 to TaGS3.5), which showed expression divergence during wheat polyploidization, and differential function in grain weight and size determination. TaGS3.1 overexpression significantly reduced grain weight by 5.89% and grain length by 5.04%, while TaGS3.2–3.4 overexpression did not significantly alter grain size compared to wild type. Overexpressing TaGS3.5 significantly increased the grain weight by 5.70% and grain length by 4.30%. Biochemical assays revealed that TaGS3 isoforms (TaGS3.1–3.4) with an intact OSR domain interact with WGB1 to form active Gβγ heterodimers that further interact with WGA1 to form inactive Gαβγ heterotrimers. Truncated isoforms TaGS3.2–3.4 , which lack the C-terminal Cys-rich region but have enhanced binding affinity to WGB1, antagonistically compete with TaGS3.1 to bind WGB1, while TaGS3.5 with an incomplete OSR domain does not interact with WGB1. Taking these observations together, we proposed that TaGS3 differentially regulates grain size via AS, providing a strategy by which the grain size is fine-tuned and regulated at the post-transcriptional level.
Collapse
|
24
|
Dynamic Diversity of NLR Genes in Triticum and Mining of Promising NLR Alleles for Disease Resistance. Curr Issues Mol Biol 2021; 43:965-977. [PMID: 34449534 PMCID: PMC8929112 DOI: 10.3390/cimb43020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Bread wheat is an essential crop with the second-highest global production after maize. Currently, wheat diseases are a serious threat to wheat production. Therefore, efficient breeding for disease resistance is extremely urgent in modern wheat. Here, we identified 2012 NLR genes from hexaploid wheat, and Ks values of paired syntenic NLRs showed a significant peak at 3.1–6.3 MYA, which exactly coincided with the first hybridization event between A and B genome lineages at ~5.5 MYA. We provided a landscape of dynamic diversity of NLRs from Triticum and Aegilops and found that NLR genes have higher diversity in wild progenitors and relatives. Further, most NLRs had opposite diversity patterns between genic and 2 Kb-promoter regions, which might respectively link sub/neofunctionalization and loss of duplicated NLR genes. Additionally, we identified an alien introgression of chromosome 4A in tetraploid emmer wheat, which was similar to that in hexaploid wheat. Transcriptome data from four experiments of wheat disease resistance helped to profile the expression pattern of NLR genes and identified promising NLRs involved in broad-spectrum disease resistance. Our study provided insights into the diversity evolution of NLR genes and identified beneficial NLRs to deploy into modern wheat in future wheat disease-resistance breeding.
Collapse
|
25
|
Qin J, Mo R, Li H, Ni Z, Sun Q, Liu Z. The Transcriptional and Splicing Changes Caused by Hybridization Can Be Globally Recovered by Genome Doubling during Allopolyploidization. Mol Biol Evol 2021; 38:2513-2519. [PMID: 33585937 PMCID: PMC8136492 DOI: 10.1093/molbev/msab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polyploidization is a major driving force in plant evolution. Allopolyploidization, involving hybridization and genome doubling, can cause extensive transcriptome reprogramming which confers allopolyploids higher evolutionary potential than their diploid progenitors. To date, little is known about the interplay between hybridization and genome doubling in transcriptome reprogramming. Here, we performed genome-wide analyses of transcriptome reprogramming during allopolyploidization in wheat and brassica lineages. Our results indicated that hybridization-induced transcriptional and splicing changes of genes can be largely recovered to parental levels by genome doubling in allopolyploids. As transcriptome reprogramming is an important contributor to heterosis, our finding updates a longstanding theory that heterosis in interspecific hybrids can be permanently fixed through genome doubling. Our results also indicated that much of the transcriptome reprogramming in interspecific hybrids was not caused by the merging of two parental genomes, providing novel insights into the mechanisms underlying both heterosis and hybrid speciation.
Collapse
Affiliation(s)
- Jinxia Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruirui Mo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongxia Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
26
|
Gao P, Quilichini TD, Zhai C, Qin L, Nilsen KT, Li Q, Sharpe AG, Kochian LV, Zou J, Reddy AS, Wei Y, Pozniak C, Patterson N, Gillmor CS, Datla R, Xiang D. Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1624-1643. [PMID: 33706417 PMCID: PMC8384600 DOI: 10.1111/pbi.13579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
Among polyploid species with complex genomic architecture, variations in the regulation of alternative splicing (AS) provide opportunities for transcriptional and proteomic plasticity and the potential for generating trait diversities. However, the evolution of AS and its influence on grain development in diploid grass and valuable polyploid wheat crops are poorly understood. To address this knowledge gap, we developed a pipeline for the analysis of alternatively spliced transcript isoforms, which takes the high sequence similarity among polyploid wheat subgenomes into account. Through analysis of synteny and detection of collinearity of homoeologous subgenomes, conserved and specific AS events across five wheat and grass species were identified. A global analysis of the regulation of AS in diploid grass and polyploid wheat grains revealed diversity in AS events not only between the endosperm, pericarp and embryo overdevelopment, but also between subgenomes. Analysis of AS in homoeologous triads of polyploid wheats revealed evolutionary divergence between gene-level and transcript-level regulation of embryogenesis. Evolutionary age analysis indicated that the generation of novel transcript isoforms has occurred in young genes at a more rapid rate than in ancient genes. These findings, together with the development of comprehensive AS resources for wheat and grass species, advance understanding of the evolution of regulatory features of AS during embryogenesis and grain development in wheat.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Teagen D. Quilichini
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - Chun Zhai
- Agriculture and Agri‐Food CanadaSaskatoon Research and Development CentreSaskatoonSKCanada
| | - Li Qin
- College of Art & ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Kirby T. Nilsen
- Agriculture and Agri‐Food CanadaBrandon Research and Development CentreBrandonMBCanada
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Andrew G. Sharpe
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Leon V. Kochian
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Jitao Zou
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - Anireddy S.N. Reddy
- Department of Biology and Program in Cell and Molecular BiologyColorado State UniversityFort CollinsCOUSA
| | - Yangdou Wei
- College of Art & ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Curtis Pozniak
- Crop Development CentreUniversity of SaskatchewanSaskatoonSKCanada
| | - Nii Patterson
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - C. Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)Unidad de Genómica AvanzadaCentro de Investigación y Estudios Avanzados del IPN (CINVESTAV‐IPN)IrapuatoGuanajuatoMexico
| | - Raju Datla
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Daoquan Xiang
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| |
Collapse
|