1
|
Dave A, Agarwal P, Agarwal PK. Mechanism of high affinity potassium transporter (HKT) towards improved crop productivity in saline agricultural lands. 3 Biotech 2022; 12:51. [PMID: 35127306 PMCID: PMC8795266 DOI: 10.1007/s13205-021-03092-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
Glycophytic plants are susceptible to salinity and their growth is hampered in more than 40 mM of salt. Salinity not only affects crop yield but also limits available land for farming by decreasing its fertility. Presence of distinct traits in response to environmental conditions might result in evolutionary adaptations. A better understanding of salinity tolerance through a comprehensive study of how Na+ is transported will help in the development of plants with improved salinity tolerance and might lead to increased yield of crops growing in strenuous environment. Ion transporters play pivotal role in salt homeostasis and maintain low cytotoxic effect in the cell. High-affinity potassium transporters are the critical class of integral membrane proteins found in plants. It mainly functions to remove excess Na+ from the transpiration stream to prevent sodium toxicity in the salt-sensitive shoot and leaf tissues. However, there are large number of HKT proteins expressed in plants, and it is possible that these members perform in a wide range of functions. Understanding their mechanism and functions will aid in further manipulation and genetic transformation of different crops. This review focuses on current knowledge of ion selectivity and molecular mechanisms controlling HKT gene expression. The current review highlights the mechanism of different HKT transporters from different plant sources and how this knowledge could prove as a valuable tool to improve crop productivity.
Collapse
Affiliation(s)
- Ankita Dave
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India
| | - Pradeep K. Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
2
|
Hamam AM, Coskun D, Britto DT, Plett D, Kronzucker HJ. Plasma-membrane electrical responses to salt and osmotic gradients contradict radiotracer kinetics, and reveal Na +-transport dynamics in rice (Oryza sativa L.). PLANTA 2019; 249:1037-1051. [PMID: 30498958 DOI: 10.1007/s00425-018-3059-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/23/2018] [Indexed: 05/25/2023]
Abstract
A systematic analysis of NaCl-dependent, plasma-membrane depolarization (∆∆Ψ) in rice roots calls into question the current leading model of rapid membrane cycling of Na+ under salt stress. To investigate the character and mechanisms of Na+ influx into roots, Na+-dependent changes in plasma-membrane electrical potentials (∆∆Ψ) were measured in root cells of intact rice (Oryza sativa L., cv. Pokkali) seedlings. As external sodium concentrations ([Na+]ext) were increased in a step gradient from 0 to 100 mM, membrane potentials depolarized in a saturable manner, fitting a Michaelis-Menten model and contradicting the linear (non-saturating) models developed from radiotracer studies. Clear differences in saturation patterns were found between plants grown under low- and high-nutrient (LN and HN) conditions, with LN plants showing greater depolarization and higher affinity for Na+ (i.e., higher Vmax and lower Km) than HN plants. In addition, counterion effects on ∆∆Ψ were pronounced in LN plants (with ∆∆Ψ decreasing in the order: Cl- > SO42- > HPO 4 2- ), but not seen in HN plants. When effects of osmotic strength, Cl- influx, K+ efflux, and H+-ATPase activity on ∆∆Ψ were accounted for, resultant Km and Vmax values suggested that a single, dominant Na+-transport mechanism was operating under each nutritional condition, with Km values of 1.2 and 16 mM for LN and HN plants, respectively. Comparing saturating patterns of depolarization to linear patterns of 24Na+ radiotracer influx leads to the conclusion that electrophysiological and tracer methods do not report the same phenomena and that the current model of rapid transmembrane sodium cycling may require revision.
Collapse
Affiliation(s)
- Ahmed M Hamam
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Dev T Britto
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Darren Plett
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
3
|
Seed pretreatment and salt tolerance of dill: Osmolyte accumulation, antioxidant enzymes activities and essence production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Jiang F, Wang T, Wang Y, Kochian LV, Chen F, Liu J. Identification and characterization of suppressor mutants of stop1. BMC PLANT BIOLOGY 2017; 17:128. [PMID: 28738784 PMCID: PMC5525285 DOI: 10.1186/s12870-017-1079-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/20/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Proton stress and aluminum (Al) toxicity are major constraints limiting crop growth and yields on acid soils (pH < 5). In Arabidopsis, STOP1 is a master transcription factor that controls the expression of a set of well-characterized Al tolerance genes and unknown processes involved in low pH resistance. As a result, loss-of-function stop1 mutants are extremely sensitive to low pH and Al stresses. RESULTS Here, we report on screens of an ethyl-methane sulphonate (EMS)-mutagenized stop1 population and isolation of nine strong stop1 suppressor mutants, i.e., the tolerant to proton stress (tps) mutants, with significantly enhanced root growth at low pH (4.3). Genetic analyses indicated these dominant and partial gain-of-function mutants are caused by mutations in single nuclear genes outside the STOP1 locus. Physiological characterization of the responses of these tps mutants to excess levels of Al and other metal ions further classified them into five groups. Three tps mutants also displayed enhanced resistance to Al stress, indicating that these tps mutations partially rescue the hypersensitive phenotypes of stop1 to both low pH stress and Al stress. The other six tps mutants showed enhanced resistance only to low pH stress but not to Al stress. We carried out further physiologic and mapping-by-sequencing analyses for two tps mutants with enhanced resistance to both low pH and Al stresses and identified the genomic regions and candidate loci in chromosomes 1 and 2 that harbor these two TPS genes. CONCLUSION We have identified and characterized nine strong stop1 suppressor mutants. Candidate loci for two tps mutations that partially rescue the hypersensitive phenotypes of stop1 to low pH and Al stresses were identified by mapping-by-sequencing approaches. Further studies could provide insights into the structure and function of TPSs and the regulatory networks underlying the STOP1-mediated processes that lead to resistance to low pH and Al stresses in Arabidopsis.
Collapse
Affiliation(s)
- Fei Jiang
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853 USA
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan China
- College of Life Science, Sichuan University, Chengdu, Sichuan China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan China
| | - Yuqi Wang
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853 USA
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, S7N 4J8 Canada
| | - Fang Chen
- College of Life Science, Sichuan University, Chengdu, Sichuan China
| | - Jiping Liu
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853 USA
| |
Collapse
|
5
|
Ismail AM, Horie T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:405-434. [PMID: 28226230 DOI: 10.1146/annurev-arplant-042916-040936] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production.
Collapse
Affiliation(s)
- Abdelbagi M Ismail
- Genetics and Biotechnology Division, International Rice Research Institute, Manila 1301, Philippines;
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan;
| |
Collapse
|
6
|
Coskun D, Britto DT, Jean YK, Kabir I, Tolay I, Torun AA, Kronzucker HJ. K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice (Oryza sativa L.). PLoS One 2013; 8:e57767. [PMID: 23460903 PMCID: PMC3583904 DOI: 10.1371/journal.pone.0057767] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/25/2013] [Indexed: 12/25/2022] Open
Abstract
Sudden elevations in external sodium chloride (NaCl) accelerate potassium (K(+)) efflux across the plasma membrane of plant root cells. It has been proposed that the extent of this acceleration can predict salt tolerance among contrasting cultivars. However, this proposal has not been considered in the context of plant nutritional history, nor has it been explored in rice (Oryza sativa L.), which stands among the world's most important and salt-sensitive crop species. Using efflux analysis with (42)K, coupled with growth and tissue K(+) analyses, we examined the short- and long-term effects of NaCl exposure to plant performance within a nutritional matrix that significantly altered tissue-K(+) set points in three rice cultivars that differ in salt tolerance: IR29 (sensitive), IR72 (moderate), and Pokkali (tolerant). We show that total short-term K(+) release from roots in response to NaCl stress is small (no more than 26% over 45 min) in rice. Despite strong varietal differences, the extent of efflux is shown to be a poor predictor of plant performance on long-term NaCl stress. In fact, no measure of K(+) status was found to correlate with plant performance among cultivars either in the presence or absence of NaCl stress. By contrast, shoot Na(+) accumulation showed the strongest correlation (a negative one) with biomass, under long-term salinity. Pharmacological evidence suggests that NaCl-induced K(+) efflux is a result of membrane disintegrity, possibly as result of osmotic shock, and not due to ion-channel mediation. Taken together, we conclude that, in rice, K(+) status (including efflux) is a poor predictor of salt tolerance and overall plant performance and, instead, shoot Na(+) accumulation is the key factor in performance decline on NaCl stress.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dev T. Britto
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yuel-Kai Jean
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Imtiaz Kabir
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Inci Tolay
- Department of Agriculture, Akdeniz University, Antalya, Turkey
| | - Ayfer A. Torun
- Department of Soil Science & Plant Nutrition, Cukurova University, Adana, Turkey
| | | |
Collapse
|
7
|
Gattward JN, Almeida AAF, Souza JO, Gomes FP, Kronzucker HJ. Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition. PHYSIOLOGIA PLANTARUM 2012; 146:350-62. [PMID: 22443491 DOI: 10.1111/j.1399-3054.2012.01621.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In ecological setting, sodium (Na(+)) can be beneficial or toxic, depending on plant species and the Na(+) level in the soil. While its effects are more frequently studied at high saline levels, Na(+) has also been shown to be of potential benefit to some species at lower levels of supply, especially in C4 species. Here, clonal plants of the major tropical C3 crop Theobroma cacao (cacao) were grown in soil where potassium (K(+)) was partially replaced (at six levels, up to 50% replacement) by Na(+), at two concentrations (2.5 and 4.0 mmol(c) dm(-3)). At both concentrations, net photosynthesis per unit leaf area (A) increased more than twofold with increasing substitution of K(+) by Na(+). Concomitantly, instantaneous (A/E) and intrinsic (A/g(s)) water-use efficiency (WUE) more than doubled. Stomatal conductance (g(s)) and transpiration rate (E) exhibited a decline at 2.5 mmol dm(-3), but remained unchanged at 4 mmol dm(-3). Leaf nitrogen content was not impacted by Na(+) supplementation, whereas sulfur (S), calcium (Ca(2+)), magnesium (Mg(2+)) and zinc (Zn(2+)) contents were maximized at 2.5 mmol dm(-3) and intermediate (30-40%) replacement levels. Leaf K(+) did not decline significantly. In contrast, leaf Na(+) content increased steadily. The resultant elevated Na(+)/K(+) ratios in tissue correlated with increased, not decreased, plant performance. The results show that Na(+) can partially replace K(+) in the nutrition of clonal cacao, with significant beneficial effects on photosynthesis, WUE and mineral nutrition in this major perennial C3 crop.
Collapse
Affiliation(s)
- James N Gattward
- Departamento de Ciências Agrárias e ambientais, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.
| | | | | | | | | |
Collapse
|
8
|
Effect of calcium and potassium on antioxidant system of Vicia faba L. Under cadmium stress. Int J Mol Sci 2012; 13:6604-6619. [PMID: 22837652 PMCID: PMC3397484 DOI: 10.3390/ijms13066604] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 01/24/2023] Open
Abstract
Cadmium (Cd) in soil poses a major threat to plant growth and productivity. In the present experiment, we studied the effect of calcium (Ca2+) and/or potassium (K+) on the antioxidant system, accumulation of proline (Pro), malondialdehyde (MDA), and content of photosynthetic pigments, cadmium (Cd) and nutrients, i.e., Ca2+ and K+ in leaf of Vicia faba L. (cv. TARA) under Cd stress. Plants grown in the presence of Cd exhibited reduced growth traits [root length (RL) plant−1, shoot length (SL) plant−1, root fresh weight (RFW) plant−1, shoot fresh weight (SFW) plant−1, root dry weight (RDW) plant−1 and shoot dry weight (SDW) plant−1] and concentration of Ca2+, K+, Chlorophyll (Chl) a and Chl b content, except content of MDA, Cd and (Pro). The antioxidant enzymes [peroxidase (POD) and superoxide dismutase (SOD)] slightly increased as compared to control under Cd stress. However, a significant improvement was observed in all growth traits and content of Ca2+, K+, Chl a, Chl b, Pro and activity of antioxidant enzymes catalase (CAT), POD and SOD in plants subjected to Ca2+ and/or K+. The maximum alleviating effect was recorded in the plants grown in medium containing Ca2+ and K+ together. This study indicates that the application of Ca2+ and/or K+ had a significant and synergistic effect on plant growth. Also, application of Ca2+ and/or K+ was highly effective against the toxicity of Cd by improving activity of antioxidant enzymes and solute that led to the enhanced plant growth of faba bean plants.
Collapse
|
9
|
Schulze LM, Britto DT, Li M, Kronzucker HJ. A pharmacological analysis of high-affinity sodium transport in barley (Hordeum vulgare L.): a 24Na+/42K+ study. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2479-89. [PMID: 22268152 PMCID: PMC3346217 DOI: 10.1093/jxb/err419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 05/19/2023]
Abstract
Soil sodium, while toxic to most plants at high concentrations, can be beneficial at low concentrations, particularly when potassium is limiting. However, little is known about Na(+) uptake in this 'high-affinity' range. New information is provided here with an insight into the transport characteristics, mechanism, and ecological significance of this phenomenon. High-affinity Na(+) and K(+) fluxes were investigated using the short-lived radiotracers (24)Na and (42)K, under an extensive range of measuring conditions (variations in external sodium, and in nutritional and pharmacological agents). This work was supported by electrophysiological, compartmental, and growth analyses. Na(+) uptake was extremely sensitive to all treatments, displaying properties of high-affinity K(+) transporters, K(+) channels, animal Na(+) channels, and non-selective cation channels. K(+), NH(4)(+), and Ca(2+) suppressed Na(+) transport biphasically, yielding IC(50) values of 30, 10, and <5 μM, respectively. Reciprocal experiments showed that K(+) influx is neither inhibited nor stimulated by Na(+). Sodium efflux constituted 65% of influx, indicating a futile cycle. The thermodynamic feasibility of passive channel mediation is supported by compartmentation and electrophysiological data. Our study complements recent advances in the molecular biology of high-affinity Na(+) transport by uncovering new physiological foundations for this transport phenomenon, while questioning its ecological relevance.
Collapse
Affiliation(s)
| | | | | | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| |
Collapse
|
10
|
Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 188:762-73. [PMID: 20796215 DOI: 10.1111/j.1469-8137.2010.03422.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Phospholipase D (PLD) hydrolyzes phospholipids to produce phosphatidic acid (PA) and a head group, and is involved in the response to various environmental stresses, including salinity. Here, we determined the roles of PLDα and PA in the mediation of salt (NaCl)-stress signaling through the regulation of mitogen-activated protein kinase (MAPK or MPK) in Arabidopsis thaliana. • NaCl-induced changes in the content and composition of PA were quantitatively profiled by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). A specific PA species (a MAPK 16:0-18:2 PA), which was increased in abundance by exposure to NaCl, bound to a MPK6, according to filter binding and ELISA. The effect of PA on MPK6 activity was tested using in-gel analysis. • 16:0-18:2 PA stimulated the activity of MPK6 immunoprecipitated from Arabidopsis leaf extracts. Treatment with NaCl induced a transient activation of MPK6 in wild-type plant, but the activation was abolished in the pldα1 plant mutant. A plasma membrane Na(+)/H(+) antiporter (SOS1) was identified as a downstream target of MPK6. MPK6 phosphorylated the C-terminal fragment of SOS1. The MPK6 phosphorylation of SOS1 was stimulated by treatment with NaCl, as well as directly by PA. • These results suggest that PA plays a critical role in coupling MAPK cascades in response to salt stress.
Collapse
Affiliation(s)
- Lijuan Yu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Welch RM, Epstein E. The dual mechanisms of alkali cation absorption by plant cells: their parallel operation across the plasmalemma. Proc Natl Acad Sci U S A 2010; 61:447-53. [PMID: 16591701 PMCID: PMC225179 DOI: 10.1073/pnas.61.2.447] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- R M Welch
- DEPARTMENT OF SOILS AND PLANT NUTRITION, UNIVERSITY OF CALIFORNIA (DAVIS)
| | | |
Collapse
|
12
|
Britto DT, Ebrahimi-Ardebili S, Hamam AM, Coskun D, Kronzucker HJ. 42K analysis of sodium-induced potassium efflux in barley: mechanism and relevance to salt tolerance. THE NEW PHYTOLOGIST 2010; 186:373-384. [PMID: 20122133 DOI: 10.1111/j.1469-8137.2009.03169.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
*Stimulation of potassium (K(+)) efflux by sodium (Na(+)) has been the subject of much recent attention, and its mechanism has been attributed to the activities of specific classes of ion channels. *The short-lived radiotracer (42)K(+) was used to test this attribution, via unidirectional K(+)-flux analysis at the root plasma membrane of intact barley (Hordeum vulgare), in response to NaCl, KCl, NH(4)Cl and mannitol, and to channel inhibitors. *Unidirectional K(+) efflux was strongly stimulated by NaCl, and K(+) influx strongly suppressed. Both effects were ameliorated by elevated calcium (Ca(2+)). As well, K(+) efflux was strongly stimulated by KCl, NH(4)Cl and mannitol , and NaCl also stimulated (13)NH(4)(+) efflux. The Na(+)-stimulated K(+) efflux was insensitive to cesium (Cs(+)) and pH 4.2, weakly sensitive to the K(+)-channel blocker tetraethylammonium (TEA(+)) and quinine, and moderately sensitive to zinc (Zn(2+)) and lanthanum (La(3+)). *We conclude that the stimulated efflux is: specific neither to Na(+) as effector nor K(+) as target; composed of fluxes from both cytosol and vacuole; mediated neither by outwardly-rectifying K(+) channels nor nonselective cation channels; attributable, alternatively, to membrane disintegration brought about by ionic and osmotic components; of limited long-term significance, unlike the suppression of K(+) influx by Na(+), which is a greater threat to K(+) homeostasis under salt stress.
Collapse
Affiliation(s)
- Dev T Britto
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, Canada, M1C 1A4
| | | | | | | | | |
Collapse
|
13
|
Yao X, Horie T, Xue S, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. PLANT PHYSIOLOGY 2010; 152:341-55. [PMID: 19889878 PMCID: PMC2799368 DOI: 10.1104/pp.109.145722] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/26/2009] [Indexed: 05/18/2023]
Abstract
Na(+) and K(+) homeostasis are crucial for plant growth and development. Two HKT transporter/channel classes have been characterized that mediate either Na(+) transport or Na(+) and K(+) transport when expressed in Xenopus laevis oocytes and yeast. However, the Na(+)/K(+) selectivities of the K(+)-permeable HKT transporters have not yet been studied in plant cells. One study expressing 5' untranslated region-modified HKT constructs in yeast has questioned the relevance of cation selectivities found in heterologous systems for selectivity predictions in plant cells. Therefore, here we analyze two highly homologous rice (Oryza sativa) HKT transporters in plant cells, OsHKT2;1 and OsHKT2;2, that show differential K(+) permeabilities in heterologous systems. Upon stable expression in cultured tobacco (Nicotiana tabacum) Bright-Yellow 2 cells, OsHKT2;1 mediated Na(+) uptake, but little Rb(+) uptake, consistent with earlier studies and new findings presented here in oocytes. In contrast, OsHKT2;2 mediated Na(+)-K(+) cotransport in plant cells such that extracellular K(+) stimulated OsHKT2;2-mediated Na(+) influx and vice versa. Furthermore, at millimolar Na(+) concentrations, OsHKT2;2 mediated Na(+) influx into plant cells without adding extracellular K(+). This study shows that the Na(+)/K(+) selectivities of these HKT transporters in plant cells coincide closely with the selectivities in oocytes and yeast. In addition, the presence of external K(+) and Ca(2+) down-regulated OsHKT2;1-mediated Na(+) influx in two plant systems, Bright-Yellow 2 cells and intact rice roots, and also in Xenopus oocytes. Moreover, OsHKT transporter selectivities in plant cells are shown to depend on the imposed cationic conditions, supporting the model that HKT transporters are multi-ion pores.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (X.Y., T.H., S.X., H.-Y.L., D.E.B., J.I.S.); Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China (X.Y., Y.W.); and Group of Molecular and Functional Plant Biology, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710–0046, Japan (T.H., M.K.)
| |
Collapse
|
14
|
Szczerba MW, Britto DT, Kronzucker HJ. K+ transport in plants: physiology and molecular biology. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:447-66. [PMID: 19217185 DOI: 10.1016/j.jplph.2008.12.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/10/2008] [Accepted: 12/10/2008] [Indexed: 05/06/2023]
Abstract
Potassium (K(+)) is an essential nutrient and the most abundant cation in plant cells. Plants have a wide variety of transport systems for K(+) acquisition, catalyzing K(+) uptake across a wide spectrum of external concentrations, and mediating K(+) movement within the plant as well as its efflux into the environment. K(+) transport responds to variations in external K(+) supply, to the presence of other ions in the root environment, and to a range of plant stresses, via Ca(2+) signaling cascades and regulatory proteins. This review will summarize the molecular identities of known K(+) transporters, and examine how this information supports physiological investigations of K(+) transport and studies of plant stress responses in a changing environment.
Collapse
Affiliation(s)
- Mark W Szczerba
- Department of Plant Sciences, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA.
| | | | | |
Collapse
|
15
|
Malagoli P, Britto DT, Schulze LM, Kronzucker HJ. Futile Na+ cycling at the root plasma membrane in rice (Oryza sativa L.): kinetics, energetics, and relationship to salinity tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4109-17. [PMID: 18854575 PMCID: PMC2639017 DOI: 10.1093/jxb/ern249] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/07/2008] [Accepted: 09/11/2008] [Indexed: 05/17/2023]
Abstract
Globally, over one-third of irrigated land is affected by salinity, including much of the land under lowland rice cultivation in the tropics, seriously compromising yields of this most important of crop species. However, there remains an insufficient understanding of the cellular basis of salt tolerance in rice. Here, three methods of 24Na+ tracer analysis were used to investigate primary Na+ transport at the root plasma membrane in a salt-tolerant rice cultivar (Pokkali) and a salt-sensitive cultivar (IR29). Futile cycling of Na+ at the plasma membrane of intact roots occurred at both low and elevated levels of steady-state Na+ supply ([Na+]ext=1 mM and 25 mM) in both cultivars. At 25 mM [Na+]ext, a toxic condition for IR29, unidirectional influx and efflux of Na+ in this cultivar, but not in Pokkali, became very high [>100 micromol g (root FW)(-1) h(-1)], demonstrating an inability to restrict sodium fluxes. Current models of sodium transport energetics across the plasma membrane in root cells predict that, if the sodium efflux were mediated by Na+/H+ antiport, this toxic scenario would impose a substantial respiratory cost in IR29. This cost is calculated here, and compared with root respiration, which, however, comprised only approximately 50% of what would be required to sustain efflux by the antiporter. This suggests that either the conventional 'leak-pump' model of Na+ transport or the energetic model of proton-linked Na+ transport may require some revision. In addition, the lack of suppression of Na+ influx by both K+ and Ca2+, and by the application of the channel inhibitors Cs+, TEA+, and Ba2+, questions the participation of potassium channels and non-selective cation channels in the observed Na+ fluxes.
Collapse
Affiliation(s)
| | | | | | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada, M1C 1A4
| |
Collapse
|
16
|
Britto DT, Kronzucker HJ. Cellular mechanisms of potassium transport in plants. PHYSIOLOGIA PLANTARUM 2008; 133:637-50. [PMID: 18312500 DOI: 10.1111/j.1399-3054.2008.01067.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Potassium (K(+)) is the most abundant ion in the plant cell and is required for a wide array of functions, ranging from the maintenance of electrical potential gradients across cell membranes, to the generation of turgor, to the activation of numerous enzymes. The majority of these functions depend more or less directly upon the activities and regulation of membrane-bound K(+) transport proteins, operating over a wide range of K(+) concentrations. Here, we review the physiological aspects of potassium transport systems in the plasma membrane, re-examining fundamental problems in the field such as the distinctions between high- and low-affinity transport systems, the interactions between K(+) and other ions such as NH(4)(+) and Na(+), the regulation of cellular K(+) pools, the generation of electrical potentials and the problems involved in measurement of unidirectional K(+) fluxes. We place these discussions in the context of recent discoveries in the molecular biology of K(+) acquisition and produce an overview of gene families encoding K(+) transporters.
Collapse
Affiliation(s)
- Dev T Britto
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Kronzucker HJ, Szczerba MW, Schulze LM, Britto DT. Non-reciprocal interactions between K+ and Na+ ions in barley (Hordeum vulgare L.). JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2793-801. [PMID: 18562445 PMCID: PMC2486474 DOI: 10.1093/jxb/ern139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 05/18/2023]
Abstract
The interaction of sodium and potassium ions in the context of the primary entry of Na(+) into plant cells, and the subsequent development of sodium toxicity, has been the subject of much recent attention. In the present study, the technique of compartmental analysis with the radiotracers (42)K(+) and (24)Na(+) was applied in intact seedlings of barley (Hordeum vulgare L.) to test the hypothesis that elevated levels of K(+) in the growth medium will reduce both rapid, futile Na(+) cycling at the plasma membrane, and Na(+) build-up in the cytosol of root cells, under saline conditions (100 mM NaCl). We reject this hypothesis, showing that, over a wide (400-fold) range of K(+) supply, K(+) neither reduces the primary fluxes of Na(+) at the root plasma membrane nor suppresses Na(+) accumulation in the cytosol. By contrast, 100 mM NaCl suppressed the cytosolic K(+) pool by 47-73%, and also substantially decreased low-affinity K(+) transport across the plasma membrane. We confirm that the cytosolic [K(+)]:[Na(+)] ratio is a poor predictor of growth performance under saline conditions, while a good correlation is seen between growth and the tissue ratios of the two ions. The data provide insight into the mechanisms that mediate the toxic influx of sodium across the root plasma membrane under salinity stress, demonstrating that, in the glycophyte barley, K(+) and Na(+) are unlikely to share a common low-affinity pathway for entry into the plant cell.
Collapse
Affiliation(s)
- Herbert J Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Ontario, Canada.
| | | | | | | |
Collapse
|
18
|
Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 2007; 26:3003-14. [PMID: 17541409 PMCID: PMC1894770 DOI: 10.1038/sj.emboj.7601732] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 05/02/2007] [Indexed: 01/11/2023] Open
Abstract
Excessive accumulation of sodium in plants causes toxicity. No mutation that greatly diminishes sodium (Na+) influx into plant roots has been isolated. The OsHKT2;1 (previously named OsHKT1) transporter from rice functions as a relatively Na+-selective transporter in heterologous expression systems, but the in vivo function of OsHKT2;1 remains unknown. Here, we analyzed transposon-insertion rice lines disrupted in OsHKT2;1. Interestingly, three independent oshkt2;1-null alleles exhibited significantly reduced growth compared with wild-type plants under low Na+ and K+ starvation conditions. The mutant alleles accumulated less Na+, but not less K+, in roots and shoots. OsHKT2;1 was mainly expressed in the cortex and endodermis of roots. (22)Na+ tracer influx experiments revealed that Na+ influx into oshkt2;1-null roots was dramatically reduced compared with wild-type plants. A rapid repression of OsHKT2;1-mediated Na+ influx and mRNA reduction were found when wild-type plants were exposed to 30 mM NaCl. These analyses demonstrate that Na+ can enhance growth of rice under K+ starvation conditions, and that OsHKT2;1 is the central transporter for nutritional Na+ uptake into K+-starved rice roots.
Collapse
Affiliation(s)
- Tomoaki Horie
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Alex Costa
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Tae Houn Kim
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Min Jung Han
- National Research Laboratory of Plant Functional Genomics, Department of Life Science, Pohang University of Science and Technology, Kyungbuk, Republic of Korea
| | - Rie Horie
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Ho-Yin Leung
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Akio Miyao
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - Hirohiko Hirochika
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - Gynheung An
- National Research Laboratory of Plant Functional Genomics, Department of Life Science, Pohang University of Science and Technology, Kyungbuk, Republic of Korea
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, USA
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, Room 5214, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA. Tel.: +1 858 534 7759; Fax: +1 858 534 7108; E-mail:
| |
Collapse
|
19
|
Marschner H, Ossenberg‐Neuhaus H. Bedeutung des Begleitanions bei den Wechselbeziehungen zwischen K
+
und Ca
++
im Bereich hoher Außenkonzentrationen. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/jpln.19701260305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- H. Marschner
- Institut für Pflanzenernährung der Technischen Universität Berlin
| | | |
Collapse
|
20
|
Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M, Britto DT. The cytosolic Na+ : K+ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using 42K+ and 24Na+. PLANT, CELL & ENVIRONMENT 2006; 29:2228-37. [PMID: 17081255 DOI: 10.1111/j.1365-3040.2006.01597.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It has long been believed that maintenance of low Na+ : K+ ratios in the cytosol of plant cells is critical to the plant's ability to tolerate salinity stress. Direct measurements of such ratios, however, have been few. Here we apply the non-invasive technique of compartmental analysis, using the short-lived radiotracers 42K+ and 22Na+, in intact seedlings of barley (Hordeum vulgare L.), to evaluate unidirectional plasma membrane fluxes and cytosolic concentrations of K+ and Na+ in root tissues, under eight nutritional conditions varying in levels of salinity and K+ supply. We show that Na+ : K+ ratios in the cytosol of root cells adjust significantly across the conditions tested, and that these ratios are poor predictors of the plant's growth response to salinity. Our study further demonstrates that Na+ is subject to rapid and futile cycling at the plasma membrane at all levels of Na+ supply, independently of external K+, while K+ influx is reduced by Na+, from a similar baseline, and to a similar extent, at both low and high K+ supply. We compare our results to those of other groups, and conclude that the maintenance of the cytosolic Na+ : K+ ratio is not central to plant survival under NaCl stress. We offer alternative explanations for sodium sensitivity in relation to the primary acquisition mechanisms of Na+ and K+.
Collapse
Affiliation(s)
- Herbert J Kronzucker
- Department of Life Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.
| | | | | | | |
Collapse
|
21
|
Haro R, Bañuelos MA, Senn ME, Barrero-Gil J, Rodríguez-Navarro A. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. PLANT PHYSIOLOGY 2005; 139:1495-506. [PMID: 16258014 PMCID: PMC1283784 DOI: 10.1104/pp.105.067553] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The function of HKT1 in roots is controversial. We tackled this controversy by studying Na+ uptake in barley (Hordeum vulgare) roots, cloning the HvHKT1 gene, and expressing the HvHKT1 cDNA in yeast (Saccharomyces cerevisiae) cells. High-affinity Na+ uptake was not detected in plants growing at high K+ but appeared soon after exposing the plants to a K(+)-free medium. It was a uniport, insensitive to external K+ at the beginning of K+ starvation and inhibitable by K+ several hours later. The expression of HvHKT1 in yeast was Na+ (or K+) uniport, Na(+)-K+ symport, or a mix of both, depending on the construct from which the transporter was expressed. The Na+ uniport function was insensitive to external K+ and mimicked the Na+ uptake carried out by the roots at the beginning of K+ starvation. The K+ uniport function only took place in yeast cells that were completely K+ starved and disappeared when internal K+ increased, which makes it unlikely that HvHKT1 mediates K+ uptake in roots. Mutation of the first in-frame AUG codon of HvHKT1 to CUC changed the uniport function into symport. The expression of the symport from either mutants or constructs keeping the first in-frame AUG took place only in K(+)-starved cells, while the uniport was expressed in all conditions. We discuss here that the symport occurs only in heterologous expression. It is most likely related to the K+ inhibitable Na+ uptake process of roots that heterologous systems fail to reproduce.
Collapse
Affiliation(s)
- Rosario Haro
- Departamento de Biotecnología, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A. Sodium transport and HKT transporters: the rice model. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:788-801. [PMID: 12795699 DOI: 10.1046/j.1365-313x.2003.01764.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Na+ uptake in the roots of K+-starved seedlings of barley, rice, and wheat was found to exhibit fast rate, low Km, and high sensitivity to K+. Sunflower plants responded in a similar manner but the uptake was not K+ sensitive. Ba2+ inhibited Na+ uptake, but not K+ uptake in rice roots. This demonstrated that Na+ and K+ uptake are mediated by different transporters, and that K+ blocked but was not transported by the Na+ transporter. The genome of rice cv. Nipponbare contains seven HKT genes, which may encode Na+ transporters, plus two HKT pseudogenes. Yeast expressions of OsHKT1 and OsHKT4 proved that they are Na+ transporters of high and low affinity, respectively, which are sensitive to K+ and Ba2+. Parallel experiments of K+ and Na+ uptake in yeast expressing the wheat or rice HKT1 transporters proved that they were very different; TaHKT1 transported K+ and Na+, and OsHKT1 only Na+. Transcript expressions in shoots of the OsHKT genes were fairly constant and insensitive to changes in the K+ and Na+ concentrations of the nutrient solution. In roots, the expressions were much lower than in shoots, except for OsHKT4 and OsHKT1 in K+-starved plants. We propose that OsHKT transporters are involved in Na+ movements in rice, and that OsHKT1 specifically mediates Na+ uptake in rice roots when the plants are K+ deficient. The incidence of HKT ESTs in several plant species suggests that the rice model with many HKT genes applies to other plants.
Collapse
Affiliation(s)
- Blanca Garciadeblás
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A. Inventory and functional characterization of the HAK potassium transporters of rice. PLANT PHYSIOLOGY 2002; 130:784-95. [PMID: 12376644 PMCID: PMC166606 DOI: 10.1104/pp.007781] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Revised: 05/29/2002] [Accepted: 06/21/2002] [Indexed: 05/18/2023]
Abstract
Plants take up large amounts of K(+) from the soil solution and distribute it to the cells of all organs, where it fulfills important physiological functions. Transport of K(+) from the soil solution to its final destination is mediated by channels and transporters. To better understand K(+) movements in plants, we intended to characterize the function of the large KT-HAK-KUP family of transporters in rice (Oryza sativa cv Nipponbare). By searching in databases and cDNA cloning, we have identified 17 genes (OsHAK1-17) encoding transporters of this family and obtained evidence of the existence of other two genes. Phylogenetic analysis of the encoded transporters reveals a great diversity among them, and three distant transporters, OsHAK1, OsHAK7, and OsHAK10, were expressed in yeast (Saccharomyces cerevisiae) and bacterial mutants to determine their functions. The three transporters mediate K(+) influxes or effluxes, depending on the conditions of the experiment. A comparative kinetic analysis of HAK-mediated K(+) influx in yeast and in roots of K(+)-starved rice seedlings demonstrated the involvement of HAK transporters in root K(+) uptake. We discuss that all HAK transporters may mediate K(+) transport, but probably not only in the plasma membrane. Transient expression of the OsHAK10-green fluorescent protein fusion protein in living onion epidermal cells targeted this protein to the tonoplast.
Collapse
Affiliation(s)
- María A Bañuelos
- Departamento de Biotecnología, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Guo F, Tang Z. Reduced Na+ and K+ permeability of K+ channel in plasma membrane isolated from roots of salt-tolerant mutant of wheat. CHINESE SCIENCE BULLETIN-CHINESE 1999. [DOI: 10.1007/bf02885027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Schachtman DP, Kumar R, Schroeder JI, Marsh EL. Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc Natl Acad Sci U S A 1997; 94:11079-84. [PMID: 9380762 PMCID: PMC23614 DOI: 10.1073/pnas.94.20.11079] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transport of cations across membranes in higher plants plays an essential role in many physiological processes including mineral nutrition, cell expansion, and the transduction of environmental signals. In higher plants the coordinated expression of transport mechanisms is essential for specialized cellular processes and for adaptation to variable environmental conditions. To understand the molecular basis of cation transport in plant roots, a Triticum aestivum cDNA library was used to complement a yeast mutant deficient in potassium (K+) uptake. Two genes were cloned that complemented the mutant: HKT1 and a novel cDNA described in this report encoding a cation transporter, LCT1 (low-affinity cation transporter). Analysis of the secondary structure of LCT1 suggests that the protein contains 8-10 transmembrane helices and a hydrophilic amino terminus containing sequences enriched in Pro, Ser, Thr, and Glu (PEST). The transporter activity was assayed using radioactive isotopes in yeast cells expressing the cDNA. LCT1 mediated low-affinity uptake of the cations Rb+ and Na+, and possibly allowed Ca2+ but not Zn2+ uptake. LCT1 is expressed in low abundance in wheat roots and leaves. The precise functional role of this cation transporter is not known, although the competitive inhibition of cation uptake by Ca2+ has parallels to whole plant and molecular studies that have shown the important role of Ca2+ in reducing Na+ uptake and ameliorating Na+ toxicity. The structure of this higher plant ion transport protein is unique and contains PEST sequences.
Collapse
Affiliation(s)
- D P Schachtman
- Department of Botany, University of Adelaide, Adelaide, SA 5005 Australia.
| | | | | | | |
Collapse
|
26
|
Wu SJ, Ding L, Zhu JK. SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. THE PLANT CELL 1996; 8:617-627. [PMID: 12239394 DOI: 10.2307/3870339] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To begin to determine which genes are essential for salt tolerance in higher plants, we identified four salt-hypersensitive mutants of Arabidopsis by using a root-bending assay on NaCl-containing agar plates. These mutants (sos1-1, sos1-2, sos1-3, and sos1-4) are allelic to each other and were caused by single recessive nuclear mutations. The SOS1 gene was mapped to chromosome 2 at 29.5 [plusmn] 6.1 centimorgans. The mutants showed no phenotypic changes except that their growth was >20 times more sensitive to inhibition by NaCl. Salt hypersensitivity is a basic cellular trait exhibited by the mutants at all developmental stages. The sos1 mutants are specifically hypersensitive to Na+ and Li+. The mutants were unable to grow on media containing low levels (below ~1 mM) of potassium. Uptake experiments using 86Rb showed that sos1 mutants are defective in high-affinity potassium uptake. sos1 plants became deficient in potassium when treated with NaCl. The results demonstrate that potassium acquisition is a critical process for salt tolerance in glycophytic plants.
Collapse
Affiliation(s)
- S. J. Wu
- Department of Botany and Microbiology, Auburn University, Auburn, Alabama 36849
| | | | | |
Collapse
|
27
|
Wu SJ, Ding L, Zhu JK. SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. THE PLANT CELL 1996; 8:617-627. [PMID: 12239394 PMCID: PMC161124 DOI: 10.1105/tpc.8.4.617] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To begin to determine which genes are essential for salt tolerance in higher plants, we identified four salt-hypersensitive mutants of Arabidopsis by using a root-bending assay on NaCl-containing agar plates. These mutants (sos1-1, sos1-2, sos1-3, and sos1-4) are allelic to each other and were caused by single recessive nuclear mutations. The SOS1 gene was mapped to chromosome 2 at 29.5 [plusmn] 6.1 centimorgans. The mutants showed no phenotypic changes except that their growth was >20 times more sensitive to inhibition by NaCl. Salt hypersensitivity is a basic cellular trait exhibited by the mutants at all developmental stages. The sos1 mutants are specifically hypersensitive to Na+ and Li+. The mutants were unable to grow on media containing low levels (below ~1 mM) of potassium. Uptake experiments using 86Rb showed that sos1 mutants are defective in high-affinity potassium uptake. sos1 plants became deficient in potassium when treated with NaCl. The results demonstrate that potassium acquisition is a critical process for salt tolerance in glycophytic plants.
Collapse
Affiliation(s)
- S. J. Wu
- Department of Botany and Microbiology, Auburn University, Auburn, Alabama 36849
| | | | | |
Collapse
|
28
|
Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion Homeostasis in NaCl Stress Environments. PLANT PHYSIOLOGY 1995; 109:735-742. [PMID: 12228628 PMCID: PMC161372 DOI: 10.1104/pp.109.3.735] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- X. Niu
- Center for Plant Environmental Stress Physiology, Purdue University, 1165 Horticulture Building, West Lafayette, Indiana 47907-1165 (X.N., R.A.B., P.M.H.)
| | | | | | | |
Collapse
|
29
|
Uozumi N, Gassmann W, Cao Y, Schroeder JI. Identification of strong modifications in cation selectivity in an Arabidopsis inward rectifying potassium channel by mutant selection in yeast. J Biol Chem 1995; 270:24276-81. [PMID: 7592636 DOI: 10.1074/jbc.270.41.24276] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Arabidopsis thaliana cDNA, KAT1, encodes a hyperpolarization-activated K+ channel. In the present study, we utilized a combination of random site-directed mutagenesis, genetic screening in a potassium uptake-deficient yeast strain, and electrophysiological analysis in Xenopus oocytes to identify strong modifications in cation selectivity of the inward rectifying K+ channel KAT1. Threonine at position 256 was replaced by 11 other amino acid residues. Six of these mutated KAT1 cDNAs complemented a K+ uptake-deficient yeast strain at low concentrations of potassium. Among these, two mutants (T256D and T256G) showed a sensitivity of yeast growth toward high ammonium concentrations and a dramatic increase in current amplitudes of rubidium and ammonium ions relative to K+ by 39-72-fold. These single site mutations gave rise to Rb+- and NH4(+)-selective channels with Rb+ and NH4+ currents that were approximately 10-13-fold greater in amplitude than K+ currents, whereas the NH4+ to K+ current amplitude ratio of wild type KAT1 was 0.28. This strong conversion in cation specificity without loss of general selectivity exceeds those reported for other mutations in the pore domain of voltage-dependent K+ channels. Yeast growth was greatly impaired by sodium in two other mutants at this site (T256E and T256Q), which were blocked by millimolar sodium (K1/2 = 1.1 mM for T256E), although the wild type channel was not blocked by 110 mM sodium. Interestingly, the ability of yeast to grow in the presence of toxic cations correlated to biophysical properties of KAT1 mutants, illustrating the potential for qualitative K+ channel mutant selection in yeast. These data suggest that the size of the side chain of the amino acid at position 256 in KAT1 is important for enabling cation permeation and that this site plays a crucial role in determining the cation selectivity of hyperpolarization-activated potassium channels.
Collapse
Affiliation(s)
- N Uozumi
- Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA
| | | | | | | |
Collapse
|
30
|
Schroeder JI. Heterologous expression of higher plant transport proteins and repression of endogenous ion currents in Xenopus oocytes. Methods Cell Biol 1995; 50:519-33. [PMID: 8531821 DOI: 10.1016/s0091-679x(08)61054-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J I Schroeder
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0116, USA
| |
Collapse
|
31
|
Gassmann W, Ward JM, Schroeder JI. Physiological Roles of Inward-Rectifying K+ Channels. THE PLANT CELL 1993; 5:1491-1493. [PMID: 12271043 PMCID: PMC160379 DOI: 10.1105/tpc.5.11.1491] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
32
|
Zidan I, Jacoby B, Ravina I, Neumann PM. Sodium does not compete with calcium in saturating plasma membrane sites regulating na influx in salinized maize roots. PLANT PHYSIOLOGY 1991; 96:331-4. [PMID: 16668177 PMCID: PMC1080757 DOI: 10.1104/pp.96.1.331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Half maximal inhibition of sodium ((22)Na(+)) influx into maize (Zea mays L.) root segments incubated in solutions containing from 0.25 to 100 millimolar NaCl was consistently attained with external calcium activity at 0.26 +/- 0.10 millimolar. Sodium ions do not appear to compete with calcium during initial binding to sites on the plasma membrane that participate in the regulation of sodium influx under saline conditions.
Collapse
Affiliation(s)
- I Zidan
- Plant Physiology Laboratory, Faculty of Agricultural Engineering, Technion IIT, Haifa 32000, Israel
| | | | | | | |
Collapse
|
33
|
Cramer GR, Lynch J, Läuchli A, Epstein E. Influx of na, k, and ca into roots of salt-stressed cotton seedlings : effects of supplemental ca. PLANT PHYSIOLOGY 1987; 83:510-6. [PMID: 16665280 PMCID: PMC1056396 DOI: 10.1104/pp.83.3.510] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
High Na(+) concentrations may disrupt K(+) and Ca(2+) transport and interfere with growth of many plant species, cotton (Gossypium hirsutum L.) included. Elevated Ca(2+) levels often counteract these consequences of salinity. The effect of supplemental Ca(2+) on influx of Ca(2+), K(+), and Na(+) in roots of intact, salt-stressed cotton seedlings was therefore investigated. Eight-day-old seedlings were exposed to treatments ranging from 0 to 250 millimolar NaCl in the presence of nutrient solutions containing 0.4 or 10 millimolar Ca(2+). Sodium influx increased proportionally to increasing salinity. At high external Ca(2+), Na(+) influx was less than at low Ca(2+). Calcium influx was complex and exhibited two different responses to salinity. At low salt concentrations, influx decreased curvilinearly with increasing salt concentration. At 150 to 250 millimolar NaCl, (45)Ca(2+) influx increased in proportion to salt concentrations, especially with high Ca(2+). Potassium influx declined significantly with increasing salinity, but was unaffected by external Ca(2+). The rate of K(+) uptake was dependent upon root weight, although influx was normalized for root weight. We conclude that the protection of root growth from salt stress by supplemental Ca(2+) is related to improved Ca-status and maintenance of K(+)/Na(+) selectivity.
Collapse
Affiliation(s)
- G R Cramer
- Department of Land, Air and Water Resources, University of California, Davis, California 95616
| | | | | | | |
Collapse
|
34
|
Mills D, Robinson K, Hodges TK. Sodium and potassium fluxes and compartmentation in roots of atriplex and oat. PLANT PHYSIOLOGY 1985; 78:500-9. [PMID: 16664273 PMCID: PMC1064766 DOI: 10.1104/pp.78.3.500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
K(+) and Na(+) fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K(+) with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions.Increasing ambient Na(+) concentrations from 0 to 50 millimolar altered K(+), in Atriplex, as follows: slightly decreased the cytoplasmic content (Q(c)), the vacuolar content (Q(v)), and the plasma membrane influx and efflux. Xylem transport for K(+) decreased by 63% in Atriplex. For oat roots, similar increases in Na(+) altered K(+) parameters as follows: plasma membrane influx and efflux decreased by about 80%. Q(c) decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Q(v) for K(+). Increasing ambient Na(+) resulted in higher (3 to 5-fold) Na(+) fluxes across the plasma membrane and in Q(c) of both species. In Atriplex, Na(+) fluxes across the tonoplast and Q(v) increased as external Na(+) was increased. In oat, however, no significant change was observed in Na(+) flux across the tonoplast or in Q(v) as external Na(+) was increased. In oat roots, Na(+) reduced K(+) uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na(+) levels, the influx transport system at the plasma membrane of both species preferred K(+) over Na(+).Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K(+) occurred across the plasma membrane, and passive movement of K(+) occurred across the tonoplast in both species. Na(+), in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na(+) was passively distributed between the free space, cytoplasm, and vacuole.
Collapse
Affiliation(s)
- D Mills
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
35
|
Ramos J, Rodriguez-Navarro A. Rubidium transport in Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1985. [DOI: 10.1016/0005-2736(85)90479-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Lynch J, Läuchli A. Potassium transport in salt-stressed barley roots. PLANTA 1984; 161:295-301. [PMID: 24253717 DOI: 10.1007/bf00398718] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/1983] [Accepted: 01/30/1984] [Indexed: 06/02/2023]
Abstract
Salinization of the medium inhibits both K(+) uptake by excised barley (Hordeum vulgare L.) roots and K(+) release from their stele, as measured by short-term (86)Rb uptake and xylem exudation, respectively. Although inhibition was not specific to chloride, mannitol caused a different response from that of inorganic sodium salts, indicating that inhibition was at least partly the result of an ion effect. In roots previously exposed to low levels of NaCl, NaCl stress directly affected stelar K(+) release, whereas in low-sodium roots stelar K(+) release was much less salt-sensitive than K(+) uptake.
Collapse
Affiliation(s)
- J Lynch
- Department of Land, Air and Water Resources, University of California, 95616, Davis, CA, USA
| | | |
Collapse
|
37
|
|
38
|
Involvement of Proton Fluxes in the K'-Na' Selectivity at the Plasmalemma; K'-dependent Net Extrusion of Sodium in Barley Roots and the Effect of Anions and pH on Sodium Fluxes. ACTA ACUST UNITED AC 1980. [DOI: 10.1016/s0044-328x(80)80229-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
|
40
|
Kinetics and Interaction of Chloride and Phosphate Absorption by Intact Tomato Plants (Lycopersicon esculentumMill.) from a Dilute Nutrient Solution). ACTA ACUST UNITED AC 1976. [DOI: 10.1016/s0044-328x(73)80009-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Jeschke WD, Stelter W. K(+)-dependent net Na(+) efflux in roots of barley plants. PLANTA 1973; 114:251-258. [PMID: 24458759 DOI: 10.1007/bf00389040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/1973] [Indexed: 06/03/2023]
Abstract
The influence of K(+) ions on the net Na(+) fluxes in cells of excised barley roots (Hordeum distichon L.) and roots of whole barley plants was investigated. The fluxes were determined by flame photometry in the external solution. In both cases a transient net Na(+) efflux against the external Na(+) concentration was observed upon addition of K(+). The results stress the effectiveness of the K(+)-dependent Na(+) efflux mechanism residing at the plasmalemma, and its involvement in K-Na-selectivity in whole barley plants.
Collapse
Affiliation(s)
- W D Jeschke
- Botanisches Institut I der Universität, Mittlerer Dallenbergweg 64, D-8700, Würzburg, Federal Republic of Germany
| | | |
Collapse
|
42
|
Albert R, Kinzel H. Unterscheidung von physiotypen bei halophyten des neusiedlerseegebietes (Österreich). ACTA ACUST UNITED AC 1973. [DOI: 10.1016/s0044-328x(73)80057-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Marschner H, Richter C. Akkumulation und Translokation von K+, Na+ und Ca2+ bei Angebot zu einzelnen Wurzelzonen von Maiskeimpflanzen. ACTA ACUST UNITED AC 1973. [DOI: 10.1002/jpln.19731350102] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Epstein E. Mechanisms of Ion Transport through Plant Cell Membranes. INTERNATIONAL REVIEW OF CYTOLOGY 1973. [DOI: 10.1016/s0074-7696(08)61936-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Ehwald R, Sammler P, Göring H. Die Bedeutung der Diffusion im „Freien Raum‟ für die Konzentrationsabhängigkeit der Aufnahme von Zuckern und Ionen durch pflanzliche Gewebe. ACTA ACUST UNITED AC 1973. [DOI: 10.1016/s0015-3796(17)30737-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Gerson DF, Poole RJ. Chloride accumulation by mung bean root tips: a low affinity active transport system at the plasmalemma. PLANT PHYSIOLOGY 1972; 50:603-7. [PMID: 16658226 PMCID: PMC366199 DOI: 10.1104/pp.50.5.603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Net uptake of Cl(-) into root tips of mung bean (Phaseolus aureus) increases steadily with increasing external concentrations from 1 to 60 mm. Membrane potentials were measured to determine the equilibrium concentration of Cl(-) in the tissue which could be due to diffusion. This concentration was readily exceeded in both the relatively nonvacuolate tips (0 to 1 mm) and the vacuolate, mature upper sectons (1 to 11 mm) of the roots. The activity coefficient of both cytoplasmic and vacuolar Cl(-), measured with Cl(-) sensitive microelectrodes, was approximately the same as that of a pure KCl solution of the same concentration. It is concluded that the "second mechanism" of ion uptake involves a large increase in the rate of active transport at the plasmalemma as the external concentration is increased above 1 mm.
Collapse
Affiliation(s)
- D F Gerson
- Department of Biology, McGill University, P. O. Box 6070, Montreal 101, Quebec, Canada
| | | |
Collapse
|
47
|
Jeschke WD. [Effect of K(+) on Na (+) fluxes and transport in barley roots: K(+)-stimulated Na (+) efflux in the root cortex]. PLANTA 1972; 106:73-90. [PMID: 24477899 DOI: 10.1007/bf00385474] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/1972] [Indexed: 06/03/2023]
Abstract
Barley roots grown on a nutrient solution containing 1 mM Na(+) but no K(+) are capable of a considerable Na(+) transport via the symplasm of the root and the xylem vessels. K(+) added to the medium surrounding the root cortex severely inhibits this transport after a lag period at a high rate constant (Fig. 3).It is likely that the fluxes of Na(+) are changed drastically during this transition from low to high K(+) status. Although originally limited to steady state fluxes, the extended method of efflux analysis for excised roots (Pitman, 1971) has been applied to the non-steady fluxes which occur upon the addition of K(+) to the roots. It is shown that besides other changes the efflux of (22)Na(+) through the cortex of barley roots is stimulated instantaneously (Fig. 5) by the addition of K(+) and presumably by an influx of K(+) ions. From this a transient, K(+)-stimulated Na(+) efflux at the plasmalemma of the cortical cells can be estimated. It amounts to 10.9 μ moles/g fw · h compared to the control efflux of 3.3 μ moles/g fw · h without K(+).The stimulated efflux is attributed to a Na(+) efflux pump at the plasmalemma and is thus related to the K-Na-selectivity of barley plants. The inhibition of the Na(+) transport by K(+) is probably a consequence of this increased efflux of Na(+) from the symplasm through the root cortex.
Collapse
Affiliation(s)
- W D Jeschke
- Botanisches Institut I der Universität Würzburg, Würzburg, Deutschland
| |
Collapse
|
48
|
El-Sheikh AM, Ulrich A. Sodium absorption by intact sugar beet plants. PLANT PHYSIOLOGY 1971; 48:747-51. [PMID: 16657872 PMCID: PMC396940 DOI: 10.1104/pp.48.6.747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sodium absorption by intact sugar beet plants (Beta vulgaris) was found to be mediated by at least two distinct mechanisms when uptake was studied over a wide range of Na and K concentrations. The first mechanism operates at low Na concentrations (<1 milliequivalent per liter); presence of K completely blocks this mechanism for Na. The second mechanism operates at high Na concentrations (>1 milliequivalent per liter), transporting Na as well as K; but apparently this mechanism is not active for Na absorption in young sugar beet plants up to the 10-leaf stage.
Collapse
Affiliation(s)
- A M El-Sheikh
- Department of Soils and Plant Nutrition, University of California, Berkeley, California 94720
| | | |
Collapse
|
49
|
Gerson DF, Poole RJ. Anion absorption by plants: a unary interpretation of "dual mechanisms". PLANT PHYSIOLOGY 1971; 48:509-11. [PMID: 16657828 PMCID: PMC396896 DOI: 10.1104/pp.48.4.509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- D F Gerson
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
50
|
Kannan S. Kinetics of iron absorption by excised rice roots. PLANTA 1971; 96:262-270. [PMID: 24493124 DOI: 10.1007/bf00387445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/1970] [Indexed: 06/03/2023]
Abstract
Studies on the rate of iron absorption by excised rice roots from solutions of different concentrations of FeSO4 showed the presence of two patterns, one in the low (0.005-0.5 mM) and the other in the high (1-30 mM) concentration range. The presence of CaSO4 or MnSO4 at 0.5 mM enhanced Fe(++) absorption in the low concentration range, while CaSO4 at 10 mM inhibited Fe absorption in the high concentration range in a competitive manner. Fe(++) absorption at both low and high concentrations was sensitive to metabolic inhibitors. The isotherm for Fe(++) absorption at O° exhibited an initial absorption shoulder in both low and high concentrations and was suggestive of a latent ion-transport capacity for Fe(++) in rice roots.
Collapse
Affiliation(s)
- S Kannan
- Biology Division, Bhabha Atomic Research Centre, Bombay, India
| |
Collapse
|