1
|
Yi X, Yao H, Fan D, Zhu X, Losciale P, Zhang Y, Zhang W, Chow WS. The energy cost of repairing photoinactivated photosystem II: an experimental determination in cotton leaf discs. THE NEW PHYTOLOGIST 2022; 235:446-456. [PMID: 35451127 PMCID: PMC9320836 DOI: 10.1111/nph.18165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/31/2022] [Indexed: 05/12/2023]
Abstract
Photosystem II (PSII), which splits water molecules at minimal excess photochemical potential, is inevitably photoinactivated during photosynthesis, resulting in compromised photosynthetic efficiency unless it is repaired. The energy cost of PSII repair is currently uncertain, despite attempts to calculate it. We experimentally determined the energy cost of repairing each photoinactivated PSII in cotton (Gossypium hirsutum) leaves, which are capable of repairing PSII in darkness. As an upper limit, 24 000 adenosine triphosphate (ATP) molecules (including any guanosine triphosphate synthesized at the expense of ATP) were required to repair one entire PSII complex. Further, over a 7-h illumination period at 526-1953 μmol photons m-2 s-1 , the ATP requirement for PSII repair was on average up to 4.6% of the ATP required for the gross carbon assimilation. Each of these two measures of ATP requirement for PSII repair is two- to three-fold greater than the respective reported calculated value. Possible additional energy sinks in the PSII repair cycle are discussed.
Collapse
Affiliation(s)
- Xiao‐Ping Yi
- Key Laboratory of Oasis Eco‐agricultureXinjiang Production and Construction CorpsShihezi UniversityShihezi832003China
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | - He‐Sheng Yao
- Key Laboratory of Oasis Eco‐agricultureXinjiang Production and Construction CorpsShihezi UniversityShihezi832003China
- College of Agronomy and BiotechnologySouthwest UniversityChongqing400715China
| | - Da‐Yong Fan
- College of ForestryBeijing Forestry UniversityBeijing100083China
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Xin‐Guang Zhu
- State Key Laboratory of Plant Molecular GeneticsCentre of Excellence for Molecular Plant and Shanghai Institute of Plant Physiology and EcologyChinese Academy of Sciences300 Fenglin RoadShanghai200032China
| | - Pasquale Losciale
- Dipartimento di Scienze del Suolo della Pianta e degli AlimentiUnivarsità degli Studi di BariVia Amendola 165/A70126BariItaly
| | - Ya‐Li Zhang
- Key Laboratory of Oasis Eco‐agricultureXinjiang Production and Construction CorpsShihezi UniversityShihezi832003China
| | - Wang‐Feng Zhang
- Key Laboratory of Oasis Eco‐agricultureXinjiang Production and Construction CorpsShihezi UniversityShihezi832003China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
2
|
DeTar RA, Barahimipour R, Manavski N, Schwenkert S, Höhner R, Bölter B, Inaba T, Meurer J, Zoschke R, Kunz HH. Loss of inner-envelope K+/H+ exchangers impairs plastid rRNA maturation and gene expression. THE PLANT CELL 2021; 33:2479-2505. [PMID: 34235544 PMCID: PMC8364240 DOI: 10.1093/plcell/koab123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 05/08/2023]
Abstract
The inner-envelope K+ EFFLUX ANTIPORTERS (KEA) 1 and 2 are critical for chloroplast development, ion homeostasis, and photosynthesis. However, the mechanisms by which changes in ion flux across the envelope affect organelle biogenesis remained elusive. Chloroplast development requires intricate coordination between the nuclear genome and the plastome. Many mutants compromised in plastid gene expression (PGE) display a virescent phenotype, that is delayed greening. The phenotypic appearance of Arabidopsis thaliana kea1 kea2 double mutants fulfills this criterion, yet a link to PGE has not been explored. Here, we show that a simultaneous loss of KEA1 and KEA2 results in maturation defects of the plastid ribosomal RNAs. This may be caused by secondary structure changes of rRNA transcripts and concomitant reduced binding of RNA-processing proteins, which we documented in the presence of skewed ion homeostasis in kea1 kea2. Consequently, protein synthesis and steady-state levels of plastome-encoded proteins remain low in mutants. Disturbance in PGE and other signs of plastid malfunction activate GENOMES UNCOUPLED 1-dependent retrograde signaling in kea1 kea2, resulting in a dramatic downregulation of GOLDEN2-LIKE transcription factors to halt expression of photosynthesis-associated nuclear-encoded genes (PhANGs). PhANG suppression delays the development of fully photosynthesizing kea1 kea2 chloroplasts, probably to avoid progressing photo-oxidative damage. Overall, our results reveal that KEA1/KEA2 function impacts plastid development via effects on RNA-metabolism and PGE.
Collapse
Affiliation(s)
- Rachael Ann DeTar
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Rouhollah Barahimipour
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nikolay Manavski
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Ricarda Höhner
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Bettina Bölter
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Jörg Meurer
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Hans-Henning Kunz
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- Author for correspondence:
| |
Collapse
|
3
|
Hao HP, Li H, Jiang CD, Tang YD. Ion micro-distribution in varying aged leaves in salt-treated cucumber seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:71-76. [PMID: 29803075 DOI: 10.1016/j.plaphy.2018.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Na+ distribution is one of the most important strategies for plant resistance to salt stress. The way of Na+ compartmentation in different aged leaves has been controversial, especially at the cell and sub-cellular level. The roles that Na+ and K+/Na+ play the key role in photosynthesis need to be further verified. In this study, using two cucumber cultivars Cucumis sativus L. cv. zhongnong 8 (ZN8, relatively salt tolerant) and Cucumis sativus L.cv. Jinchun 4 (JC4, salt sensitive) as experiment material, we analyzed the mode of ion compartmentation of Na+ in organelles in different aged leaves and determined which factors (the organelles' Na+ or K+/Na+) affect leaf photosynthesis, using high-pressure freezing and freeze-substitution, Ultrathin sectioning technique and X-ray. The main results: 1. The sub-cellular trends of Na+ accumulation was cell wall > vacuole > cytoplasm > chloroplasts; 2. The Na+ accumulation in cytoplasm and chloroplasts was similar in different aged leaves and in seedlings of different salt tolerance cultivars; 3. The K+/Na+ ratio is the main factor that affects the photosynthesis of the same aged leaves in our experiment. A weak capacity for ion compartmentation may be an important reason leading to salt sensitivity.
Collapse
Affiliation(s)
- Hai-Ping Hao
- Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China.
| | - Hui Li
- Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China.
| | - Chuang-Dao Jiang
- Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China.
| | - Yu-Dan Tang
- Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China.
| |
Collapse
|
4
|
Ahmad RA, Dietzel L. Relaxation of cellular K + gradients by valinomycin induces diatoxanthin accumulation in Cyclotella meneghiniana cells and alters FCPa fluorescence yield in vitro. PHYSIOLOGIA PLANTARUM 2017; 161:171-180. [PMID: 28664565 DOI: 10.1111/ppl.12599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Regulation of photosynthetic light harvesting involves all major thylakoid membrane complexes. One important factor is the proton motive force (pmf) driving ATP production. Its proton gradient (ΔpH) component regulates the high energy quenching. Potassium ions largely contribute to the formation of the electric field (ΔΨ). ΔΨ and ΔpH partially compensate each other to form pmf. Whilst in plants considerable progress has been made in analyzing the interplay of H+ and K+ gradients, in diatoms knowledge in this field is still scarce. We relaxed cellular K+ gradients by valinomycin in Cyclotella meneghiniana. We observed a slow decrease of PSII maximum quantum yield in the dark upon valinomycin addition correlating with diatoxanthin accumulation which we attribute to the breakdown of organellar K+ gradients (either plastid or mitochondria) which might compensate for the loss of the K+ gradient by adjustment of the thylakoid pH in a secondary step. This response is reversible when ΔpH is relaxed. Similarly, we found higher non-photochemical quenching (NPQ) caused by higher DT accumulation in the steady state in valinomycin-treated cells. In vitro fucoxanthin chlorophyll a (FCPa) antenna complexes in liposomes with natural lipid composition showed a decrease in fluorescence yield if a K+ gradient is built up. The effect reversed by relaxing the gradient. We interpret these fluorescence changes with surface charge dynamics and FCPa organization in the membrane rather than a direct influence of K+ gradients on FCPa complexes. Both experiments reveal that K+ gradients might contribute to fine tuning of light harvesting capacity in relation to pmf in diatoms.
Collapse
Affiliation(s)
- Rana A Ahmad
- Institute of Molecular Biosciences, Department of Plant Cell Physiology, Goethe University Frankfurt, Frankfurt 60438, Germany
| | - Lars Dietzel
- Institute of Molecular Biosciences, Department of Plant Cell Physiology, Goethe University Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
5
|
Jia H, Liggins JR, Chow WS. Entropy and biological systems: experimentally-investigated entropy-driven stacking of plant photosynthetic membranes. Sci Rep 2014; 4:4142. [PMID: 24561561 PMCID: PMC5379253 DOI: 10.1038/srep04142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/03/2014] [Indexed: 11/28/2022] Open
Abstract
According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg2+-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl2 with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components.
Collapse
Affiliation(s)
- Husen Jia
- 1] Division of Plant Science, R. N. Robertson Building (46), Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia [2]
| | - John R Liggins
- 1] Division of Plant Science, R. N. Robertson Building (46), Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia [2]
| | - Wah Soon Chow
- Division of Plant Science, R. N. Robertson Building (46), Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
6
|
Oguchi R, Jia H, Barber J, Chow WS. Recovery of photoinactivated photosystem II in leaves: retardation due to restricted mobility of photosystem II in the thylakoid membrane. PHOTOSYNTHESIS RESEARCH 2008; 98:621-629. [PMID: 18807208 DOI: 10.1007/s11120-008-9363-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/01/2008] [Indexed: 05/26/2023]
Abstract
The functionality of photosystem II (PS II) following high-light pre-treatment of leaf segments at a chilling temperature was monitored as F(v)/F(m), the ratio of variable to maximum chlorophyll fluorescence in the dark-adapted state and a measure of the optimal photochemical efficiency in PS II. Recovery of PS II functionality in low light (LL) and at a favourable temperature was retarded by (1) water stress and (2) growth in LL, in both spinach and Alocasia macrorrhiza L. In spinach leaf segments, water stress per se affected neither F(v)/F(m) nor the ability of the adenosine triphosphate (ATP) synthase to be activated by far-red light for ATP synthesis, but it induced chloroplast shrinkage as observed in frozen and fractured samples by scanning electron microscopy. A common feature of water stress and growth of plants in LL is the enhanced anchoring of PS II complexes, either across the shrunken lumen in water-stress conditions or across the partition gap in larger grana due to growth in LL. We suggest that such enhanced anchoring restricts the mobility of PS II complexes in the thylakoid membrane system, and hence hinders the lateral migration of photoinactivated PS II reaction centres to the stroma-located ribosomes for repair.
Collapse
Affiliation(s)
- Riichi Oguchi
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
7
|
Lee J, Herrin DL. Mutagenesis of a light-regulated psbA intron reveals the importance of efficient splicing for photosynthetic growth. Nucleic Acids Res 2003; 31:4361-72. [PMID: 12888495 PMCID: PMC169925 DOI: 10.1093/nar/gkg643] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2003] [Revised: 06/10/2003] [Accepted: 06/10/2003] [Indexed: 11/14/2022] Open
Abstract
The chloroplast-encoded psbA gene encodes the D1 polypeptide of the photosystem II reaction center, which is synthesized at high rates in the light. In Chlamydomonas reinhardtii, the psbA gene contains four self-splicing group I introns whose rates of splicing in vivo are increased at least 6-10-fold by light. However, because psbA is an abundant mRNA, and some chloroplast mRNAs appear to be in great excess of what is needed to sustain translation rates, the developmental significance of light-promoted splicing has not been clear. To address this and other questions, potentially destabilizing substitutions were made in several predicted helices of the fourth psbA intron, Cr.psbA4, and their effects on in vitro and in vivo splicing assessed. Two-nucleotide substitutions in P4 and P7 were necessary to substantially reduce splicing of this intron in vivo, although most mutations reduced self-splicing in vitro. The P7-4,5 mutant, whose splicing was completely blocked, showed no photoautotrophic growth and synthesis of a truncated D1 (exons 1-4) polypeptide from the unspliced mRNA. Most informative was the P4'-3,4 mutant, which exhibited a 45% reduction in spliced psbA mRNA, a 28% reduction in synthesis of full-length D1, and an 18% reduction in photoautotrophic growth. These results indicate that psbA mRNA is not in great excess, and that highly efficient splicing of psbA introns, which is afforded by light conditions, is necessary for optimal photosynthetic growth.
Collapse
Affiliation(s)
- Jaesung Lee
- Molecular Cell and Developmental Biology Section and Institute for Cellular and Molecular Biology, School of Biological Sciences, 1 University Station A6700, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
8
|
Chow WS, Lee HY, Park YI, Park YM, Hong YN, Anderson JM. The role of inactive photosystem-II-mediated quenching in a last-ditch community defence against high light stress in vivo. Philos Trans R Soc Lond B Biol Sci 2002; 357:1441-49; discussion 1449-50, 1469-70. [PMID: 12437883 PMCID: PMC1693053 DOI: 10.1098/rstb.2002.1145] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photoinactivation of photosystem II (PSII), the light-induced loss of ability to evolve oxygen, is an inevitable event during normal photosynthesis, exacerbated by saturating light but counteracted by repair via new protein synthesis. The photoinactivation of PSII is dependent on the dosage of light: in the absence of repair, typically one PSII is photoinactivated per 10(7) photons, although the exact quantum yield of photoinactivation is modulated by a number of factors, and decreases as fewer active PSII targets are available. PSII complexes initially appear to be photoinactivated independently; however, when less than 30% functional PSII complexes remain, they seem to be protected by strongly dissipative PSII reaction centres in several plant species examined so far, a mechanism which we term 'inactive PSII-mediated quenching'. This mechanism appears to require a pH gradient across the photosynthetic membrane for its optimal operation. The residual fraction of functional PSII complexes may, in turn, aid in the recovery of photoinactivated PSII complexes when conditions become less severe. This mechanism may be important for the photosynthetic apparatus in extreme environments such as those experienced by over-wintering evergreen plants, desert plants exposed to drought and full sunlight and shade plants in sustained sunlight.
Collapse
Affiliation(s)
- Wah Soon Chow
- Photobioenergetics Group, Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Mühlbauer SK, Eichacker LA. The stromal protein large subunit of ribulose-1,5-bisphosphate carboxylase is translated by membrane-bound ribosomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:784-8. [PMID: 10215896 DOI: 10.1046/j.1432-1327.1999.00337.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Translation of the large subunit of ribulose-1,5-bisphosphate carboxylase (LSU) was investigated by labeling of isolated barley plastids with [35S]-methionine. In both chloroplasts and etioplasts, labeling of LSU was severely impaired if plastid membranes were removed from the reaction mixtures. Removal of membrane-bound polysomes with high salt or puromycin greatly decreased translation of LSU. Pulse-labeled chloroplast membranes were shown to release LSU if chased with unlabeled methionine in the presence of stroma. Immunoprecipitation detected higher amounts of labeled LSU translation intermediates associated with the membrane fraction than in the soluble fraction. We therefore conclude that, in plastids, membrane-bound polysomes are required not only for translation of membrane-intrinsic proteins but also for translation of a soluble protein.
Collapse
|
10
|
Mühlbauer SK, Eichacker LA. Light-dependent formation of the photosynthetic proton gradient regulates translation elongation in chloroplasts. J Biol Chem 1998; 273:20935-40. [PMID: 9694842 DOI: 10.1074/jbc.273.33.20935] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon transfer of lysed chloroplasts from darkness to light, the accumulation of membrane and stromal chloroplast proteins is strictly regulated at the level of translation elongation. In darkness, translation elongation is retarded even in the presence of exogenously added ATP and dithiothreitol. In the light, addition of the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethyl urea inhibits translation elongation even in the presence of ATP. This inhibition can be overcome by addition of artificial electron donors in the presence of light, but not in darkness. Electron flow between photosystem II and I induced by far red light of 730 nm is sufficient for the activation of translation elongation. This activation can also be obtained by electron donors to photosystem I, which transport protons into the thylakoid lumen. Release of the proton gradient by uncouplers prevents the light-dependent activation of translation elongation. Also, the induction of translation activation is switched off rapidly upon transfer from light to darkness. Hence, we propose that the formation of a photosynthetic proton gradient across the thylakoid membrane activates translation elongation in chloroplasts.
Collapse
Affiliation(s)
- S K Mühlbauer
- Department of Botany, University of Munich, 80638 München, Menzinger Strasse 67, Federal Republic of Germany
| | | |
Collapse
|
11
|
Smith MD, Ghosh S, Dumbroff EB, Thompson JE. Characterization of Thylakoid-Derived Lipid-Protein Particles Bearing the Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. PLANT PHYSIOLOGY 1997; 115:1073-1082. [PMID: 12223858 PMCID: PMC158571 DOI: 10.1104/pp.115.3.1073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Lipid-protein particles bearing the 55-kD ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39) large subunit (RLSU) and no detectable corresponding Rubisco small subunit (RSSU) were isolated from the stroma of intact chloroplasts by flotation centrifugation. Stromal RLSU-bearing particles appear to originate from thylakoids because they can also be generated in vitro by illumination of isolated thylakoids. Their formation in vitro is largely heat denaturable and is facilitated by light or ATP. RLSU-containing lipid-protein particles range from 0.05 to 0.10 [mu]m in radius, contain the same fatty acids as thylakoids, but have a 10- to 15-fold higher free-to-esterified fatty acid ratio than thylakoids. RLSU-bearing lipid-protein particles with no detectable RSSU were also immunopurified from the populations of both stromal lipid-protein particles and those generated in vitro from illuminated thylakoids. Protease shaving indicated that the RLSU is embedded in the lipid-protein particles and that there is also a protease-protected RLSU in thylakoids. These observations collectively indicate that the RLSU associated with thylakoids is released into the stroma by light-facilitated blebbing of lipid-protein particles. The release of RLSU-containing particles may in turn be coordinated with the assembly of Rubisco holoenzyme because chaperonin 60 is also associated with lipid-protein particles isolated from stroma.
Collapse
Affiliation(s)
- M. D. Smith
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (M.D.S., E.B.D., J.E.T.)
| | | | | | | |
Collapse
|
12
|
|
13
|
Yuan J, Cline K, Theg SM. Cryopreservation of chloroplasts and thylakoids for studies of protein import and integration. PLANT PHYSIOLOGY 1991; 95:1259-64. [PMID: 16668121 PMCID: PMC1077682 DOI: 10.1104/pp.95.4.1259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A method is presented for preservation of isolated intact chloroplasts and isolated thylakoids for use in chloroplast protein import and thylakoid protein integration studies. Chloroplasts of pea (Pisum sativum) were preserved by storage in liquid nitrogen in the presence of a cryoprotective agent. Dimethyl sulfoxide was the most effective of several cryoprotectants examined. Approximately 65 to 70% of chloroplasts stored in liquid nitrogen in the presence of dimethyl sulfoxide remained intact upon thawing and were fully functional for the import of precursor proteins. Imported proteins were correctly localized within these chloroplasts, a process that for two of the proteins tested involved transport into the thylakoids. Lysate obtained from preserved chloroplasts was functional for protein integration assays. Preserved chloroplasts retained import and localization capability for up to 6 months of storage. Thylakoids were preserved by a modification of a method previously described (Farkas DL, Malkin S [1979] Plant Physiol 64: 942-947) for preservation of photosynthetic competence. Preserved thylakoids were nearly as active for protein integration studies as freshly prepared thylakoids. The ability to store chloroplasts and subfractions for extended periods will facilitate investigations of plastid protein biogenesis.
Collapse
Affiliation(s)
- J Yuan
- Department of Fruit Crops, University of Florida, Gainesville, Florida 32611
| | | | | |
Collapse
|
14
|
Roy H, Cannon S, Gilson M. Assembly of Rubisco from native subunits. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 957:323-34. [PMID: 3058207 DOI: 10.1016/0167-4838(88)90221-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Large subunits of ribulosebisphosphate carboxylase/oxygenase (Rubisco) (3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39) from prokaryotic sources can assemble into intact enzyme either in vitro or in Escherichia coli cells. Large subunits of higher plant Rubisco do not assemble into Rubisco in E. coli cells, nor is it possible to reconstitute higher plant Rubisco from its dissociated subunits in vitro. This behavior represents an obstacle to any practical attempts at engineering the higher plant enzyme, and it suggests that the in vivo assembly mechanism of higher plant Rubisco must be more complex than is commonly expected for oligomeric proteins of organelles. In pea chloroplasts, a binding protein interacts with newly synthesized large subunits, in quantities expected for an intermediate in the assembly process, as judged by Western blotting. Radiotracer-labeled large subunits which interact with this binding protein can be shown to assemble into Rubisco in reactions which lead to changes in the aggregation state of the binding protein. Antibody to this binding protein specifically inhibits the assembly of these subunits into Rubisco. Rubisco synthesis appears to be subject to many types of control: gene dosage, transcription rate, selective translation of message, post-translational degradation and threshold concentration effects have been observed in various organisms' synthesis of Rubisco. The biochemical mechanisms underlying most of these effects have not been elucidated. The post-translational assembly mechanism in particular appears to require further study.
Collapse
Affiliation(s)
- H Roy
- Biology Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
| | | | | |
Collapse
|
15
|
Breidenbach E, Jenni E, Boschetti A. Synthesis of two proteins in chloroplasts and mRNA distribution between thylakoids and stroma during the cell cycle of Chlamydomonas reinhardii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:225-32. [PMID: 3181155 DOI: 10.1111/j.1432-1033.1988.tb14366.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chloroplasts contain thylakoid-bound and free ribosomes and polysomes. Whether binding of polysomes plays an immediate role in the regulation of chloroplast protein synthesis is not yet clear. In the present work, variations of protein synthesis and of mRNA content were measured not in greening, but in fully differentiated chloroplasts during the cell cycle of synchronized cultures of Chlamydomonas reinhardii. At different times of the vegetative cell cycle, the RNA was extracted from free and thylakoid-bound chloroplast polysomes and the partition of mRNAs between stroma and thylakoids was measured for two proteins, i.e. the 32-kDa herbicide-binding membrane protein and the soluble large subunit of the ribulose-1,5-bisphosphate carboxylase. At the same time the rates of synthesis of these two proteins were also determined. At 2 h after the onset of light, the content of both mRNAs in chloroplasts had doubled and 75-90% of each of these mRNAs were found to be bound to the thylakoids. The rate of protein synthesis, however, increased 10-fold, but reached its maximum only after about 6 h in the light. The differences in the time courses, in the stimulation of the rate of protein synthesis, and in the mRNA-binding to thylakoids point to a translational regulation of protein synthesis. Furthermore, since a very high proportion of polysomes were bound to thylakoids, containing mRNA for both a membrane and a soluble protein, this light-induced binding of polysomes to thylakoids seems to be an essential, but not the only, prerequisite for protein synthesis in chloroplasts.
Collapse
Affiliation(s)
- E Breidenbach
- Institut für Biochemie, Universität Bern, Switzerland
| | | | | |
Collapse
|
16
|
Shinohara K, Minami E, Watanabe A. Synthesis and assembly of H+-ATPase complex by isolated "rough" thylakoids. Arch Biochem Biophys 1988; 260:452-60. [PMID: 2449127 DOI: 10.1016/0003-9861(88)90469-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis and assembly of chloroplast H+-ATPase complex were studied by analyzing the incorporation of [35S]methionine into the constituent subunits with isolated intact chloroplasts and with thylakoid membranes that had been prepared from the chloroplasts so that they would retain ribosomes. The complex was isolated from thylakoids after labeling and identified by immunoprecipitation with an antiserum specific to CF1. The mechanism for the assembly of the complex was demonstrated to be active in the isolated chloroplasts by the following observations: the plastid genome-regulated subunits (alpha, beta, epsilon, I, and III) were labeled by in organello translation and recovered with the complex, and three other subunits (gamma, delta, and II) were labeled when intact chloroplasts were incubated with translation products from polyadenylated RNA. The two largest subunits, alpha and beta, were translated on thylakoid-bound ribosomes when the thylakoid membranes were incubated with soluble factors from Escherichia coli. They were recovered with the H+-ATPase complex, suggesting that they are translated on the bound ribosomes in the chloroplast, and that the isolated membranes retain the ability to assemble a complete complex. Provided that these observations are the result of de novo assembly of the complex, the imported and processed nuclear-coded subunits are presumed to be pooled not in stroma but on the membrane.
Collapse
Affiliation(s)
- K Shinohara
- Research Institute for Biochemical Regulation, Faculty of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|
17
|
Gnanam A, Subbaiah CC, Mannan RM. Protein synthesis by isolated chloroplasts. PHOTOSYNTHESIS RESEARCH 1988; 19:129-152. [PMID: 24425371 DOI: 10.1007/bf00114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/1987] [Accepted: 03/10/1988] [Indexed: 06/03/2023]
Abstract
Isolated chloroplasts show substantial rates of protein synthesis when illuminated. This 'in organello' protein synthesis system has been advantageously utilised to elucidate the coding capacity of chloroplast and the regulation of chloroplast genes. The system is also being used recently to transcribe and translate homologous and heterologous templates. In this mini-review, we attempt to critically ecaluate the available literature and present the current and the prospective lines of research.
Collapse
Affiliation(s)
- A Gnanam
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, 625021, Madurai, India
| | | | | |
Collapse
|
18
|
Valliammai T, Gnanam A, mannan RM. Heat shock response ofChlorella protothecoides during greening. J Biosci 1987. [DOI: 10.1007/bf02703066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Hurewitz J, Jagendorf AT. Further characterization of ribosome binding to thylakoid membranes. PLANT PHYSIOLOGY 1987; 84:31-4. [PMID: 16665400 PMCID: PMC1056522 DOI: 10.1104/pp.84.1.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Previous work indicated more polysomes bound to pea (Pisum sativum cv Progress No. 9) thylakoids in light than in the dark, in vivo (LE Fish, AT Jagendorf 1982 Plant Physiol 69: 814-825). With isolated intact chloroplasts incubated in darkness, addition of MgATP had no effect but 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus, the major effect of light on ribosome-binding in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus, cycling of ribosomes is controlled by translation, initiation, and termination. Bound RNA accounted for 19 to 24% of the total chloroplast RNA and the incorporation of [(3)H]leucine into thylakoids was proportional to the amount of this bound RNA. These data support the concept that stroma ribosomes are recruited into thylakoid polysomes, which are active in synthesizing thylakoid proteins.
Collapse
Affiliation(s)
- J Hurewitz
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
20
|
Hattori T, Margulies MM. Synthesis of large subunit of ribulosebisphosphate carboxylase by thylakoid-bound polyribosomes from spinach chloroplasts. Arch Biochem Biophys 1986; 244:630-40. [PMID: 3947083 DOI: 10.1016/0003-9861(86)90631-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intact chloroplasts were isolated from developing first leaves of spinach. The chloroplasts were broken and separated into an extensively washed membrane (thylakoid) fraction and a soluble (stroma) fraction. The membrane fraction contained polyribosomes with properties similar to those of thylakoid-bound polyribosomes of other organisms. The distribution of mRNA for large-subunit ribulosebisphosphate carboxylase (LS) was determined by translating RNA from chloroplasts, thylakoids, and stroma in a wheat germ cell-free translation system. LS translation product was identified by immunoprecipitation with antibody to LS from spinach, electrophoresis of the immunoprecipitated product, and fluorography. At least 44% of translatable chloroplast LS-mRNA was in the washed thylakoid fraction. Thylakoid-bound LS-mRNA was in polyribosomes since LS was produced by thylakoids in an Escherichia coli cell-free translation system under conditions where initiation did not take place. Our results demonstrate that membrane-bound polyribosomes can synthesize the stroma-localized polypeptide LS, and suggest that the thylakoids may be an important site of its synthesis.
Collapse
|
21
|
Minami E, Shinohara K, Kuwabara T, Watanabe A. In vitro synthesis and assembly of photosystem II proteins of spinach chloroplasts. Arch Biochem Biophys 1986; 244:517-27. [PMID: 2418785 DOI: 10.1016/0003-9861(86)90620-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis and assembly of photosystem II (PS II) proteins of spinach chloroplasts were investigated in three different in vitro systems, i.e., protein synthesis in isolated chloroplasts (in organello translation), read-out translation of thylakoid-bound ribosomes, and transport of translation products from spinach leaf polyadenylated RNA into isolated chloroplasts. Polyacrylamide gel electrophoresis of labeled thylakoid polypeptides in the presence of sodium dodecyl sulfate revealed that the first two systems were capable of synthesizing the reaction center proteins of PS II (47 and 43 kDa), the herbicide-binding protein, and cytochrome b559. The reaction center proteins synthesized in organello were shown to bind chlorophyll and to assemble properly into the PS II core complex. One of the reaction center proteins translated by the thylakoid-bound ribosomes (47 kDa) was also found to be integrated in situ into the complex but was lacking bound chlorophyll. Incorporation of radioactivity into the three extrinsic proteins of the oxygen-evolution system (33, 24, and 18 kDa) was detected only when intact chloroplasts were incubated with the translation products from polyadenylated RNA, showing that these proteins are coded for by nuclear DNA. The occurrence of a precursor polypeptide 6 kDa larger than the 33-kDa protein was immunochemically detected in the translation products.
Collapse
|
22
|
Hemmingsen SM, Ellis RJ. Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein. PLANT PHYSIOLOGY 1986; 80:269-76. [PMID: 16664596 PMCID: PMC1075095 DOI: 10.1104/pp.80.1.269] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The large subunit binding protein, an abundant plastid protein implicated in the assembly of ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO), has been highly purified from leaves of Pisum sativum. The 720 kilodaltons purified binding protein is composed of two types of subunits of 60 and 61 kilodaltons. Highly specific polyclonal antibodies have been raised against the binding protein. The antibodies do not cross-react with the large subunit nor do anti-RubisCO antibodies cross-react with the binding protein. A higher molecular weight form of the binding protein is immunoprecipitated from products of P. sativum polysomes translated in a wheat-germ system, indicating that the binding protein is synthesized by cytoplasmic ribosomes. Immunoblotting reveals the presence of binding protein in extracts of tobacco, wheat and barley leaves and castor bean endosperm.The previously reported dissociation of the binding protein-large subunit complex upon addition of ATP in vitro has been confirmed and the fates of the dissociated subunits further investigated. The dissociated binding protein subunits are not phosphorylated or adenylated in vitro by added ATP.
Collapse
Affiliation(s)
- S M Hemmingsen
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, England
| | | |
Collapse
|
23
|
Bhaya D, Jagendorf AT. Synthesis of the alpha and beta subunits of coupling factor 1 by polysomes from pea chloroplasts. Arch Biochem Biophys 1985; 237:217-23. [PMID: 2857554 DOI: 10.1016/0003-9861(85)90272-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Washed thylakoids of pea chloroplasts, containing tightly bound polysomes, incorporate radioactive amino acids into protein when supplied with soluble factors from Escherichia coli. Polyacrylamide gel electrophoresis with lithium dodecyl sulfate, followed by autoradiography of the labeled products, showed the synthesis of a number of different polypeptides. Two of the most heavily labeled products were in the region expected for the alpha and beta subunits of coupling factor 1, at 57 and 54 kDa. Positive identification of the subunits was made using monospecific antibodies. Furthermore, the same two polypeptides made by soluble polysomes located in the chloroplast stroma were found. While the major proportion of the newly formed alpha and beta subunits made by thylakoid-bound polysomes remained with the thylakoids after protein synthesis occurred, no evidence was found of incorporation into complete, EDTA-extractable coupling factor 1.
Collapse
|
24
|
Minami E, Watanabe A. Thylakoid membranes: the translational site of chloroplast DNA-regulated thylakoid polypeptides. Arch Biochem Biophys 1984; 235:562-70. [PMID: 6517602 DOI: 10.1016/0003-9861(84)90230-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Stromal ribosomes and those bound to thylakoid membranes were prepared from intact spinach chloroplasts which were purified on Percoll gradients. The products of read-out translation of these ribosomes supplemented with an Escherichia coli extract were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Striking similarity was found between the polypeptides labeled in the read-out translation of the chloroplastic ribosomes and those synthesized in isolated chloroplasts. Among the polypeptides translated on thylakoid-bound ribosomes, apoprotein of chlorophyll-protein complex I, alpha and beta subunits of coupling factor 1, and 32,000-Da membrane polypeptide were identified from their mobility on the polyacrylamide gel. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and other several stromal proteins were translated exclusively from stromal ribosomes. However, when the translation was programmed in cell-free systems from either E. coli, wheat germ, or rabbit reticulocytes by RNAs isolated separately from stroma and thylakoids, no qualitative difference was found between the products from those RNAs. These results suggest that thylakoid-bound ribosomes are the main sites of synthesis of thylakoid proteins and stromal-free ribosomes are that of stromal proteins, and that thylakoids and stroma contain mRNAs for the stromal and the thylakoid proteins, respectively, in a form not functioning in the chloroplasts.
Collapse
|
25
|
Ibhaya D, Jagendorf AT. Synthesis of subunit III of CF0 by thylakoid-bound polysomes from pea chloroplasts. PLANT MOLECULAR BIOLOGY 1984; 3:277-280. [PMID: 24310512 DOI: 10.1007/bf00017781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Wahsed thylakoid membranes from pea chloroplasts incorporate label from ((35)S)-methionine into protein when supplemented with S-30 soluble factors from E. coli. One of the products associated with the thylakoids is soluble in butanol, precipitated by ether and has an apparent molecular mss of 8200D on urea-lithium dodecyl sulphate (LDS) polyacrylamide gels. In addition, the protein covalently binds dicyclohexylcarbo-diimide (DCCD) which causes it to migrate as two slower forms on gels. Based on these criteria we establish that the proteolipid or subunit III of CF0 (the intrinsic sector of the ATPase complex) is synthesized by the thylakoid bound polysomes.
Collapse
Affiliation(s)
- D Ibhaya
- Plant Biology Section, Cornell University, 14853, Ithaca, NY, U.S.A
| | | |
Collapse
|