1
|
|
2
|
Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins. PLoS One 2015; 10:e0129248. [PMID: 26091109 PMCID: PMC4474699 DOI: 10.1371/journal.pone.0129248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, 31P-NMR, electron paramagnetic resonance (EPR), proton NMR (1H-NMR), deuterium NMR (2H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity.
Collapse
|
3
|
Trono D, Soccio M, Laus MN, Pastore D. Potassium channel-oxidative phosphorylation relationship in durum wheat mitochondria from control and hyperosmotic-stressed seedlings. PLANT, CELL & ENVIRONMENT 2011; 34:2093-108. [PMID: 21819416 DOI: 10.1111/j.1365-3040.2011.02407.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Durum wheat mitochondria (DWM) possess an ATP-inhibited K(+) channel, the plant mitoK(ATP) (PmitoK(ATP) ), which is activated under environmental stress to control mitochondrial ROS production. To do this, PmitoK(ATP) collapses membrane potential (ΔΨ), thus suggesting mitochondrial uncoupling. We tested this point by studying oxidative phosphorylation (OXPHOS) in DWM purified from control seedlings and from seedlings subjected both to severe mannitol and NaCl stress. In severely-stressed DWM, the ATP synthesis via OXPHOS, continuously monitored by a spectrophotometric assay, was about 90% inhibited when the PmitoK(ATP) was activated by KCl. Contrarily, in control DWM, although PmitoK(ATP) collapsed ΔΨ, ATP synthesis, as well as coupling [respiratory control (RC) ratio and ratio between phosphorylated ADP and reduced oxygen (ADP/O)] checked by oxygen uptake experiments, were unaffected. We suggest that PmitoK(ATP) may play an important defensive role at the onset of the environmental/oxidative stress by preserving energy in a crucial moment for cell and mitochondrial bioenergetics. Consistently, under moderate mannitol stress, miming an early stress condition, the channel may efficiently control reactive oxygen species (ROS) generation (about 35-fold from fully open to closed state) without impairing ATP synthesis. Anyway, if the stress significantly proceeds, the PmitoK(ATP) becomes fully activated by decrease of ATP concentration (25-40%) and increase of activators [free fatty acids (FFAs) and superoxide anion], thus impairing ATP synthesis.
Collapse
Affiliation(s)
- Daniela Trono
- CRA - Centro di Ricerca per la Cerealicoltura, S.S. 16 Km 675, Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli 25, Italy
| | | | | | | |
Collapse
|
4
|
Flagella Z, Trono D, Pompa M, Di Fonzo N, Pastore D. Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:357-366. [PMID: 32689242 DOI: 10.1071/fp05244] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 02/02/2006] [Indexed: 06/11/2023]
Abstract
Seawater stress effects on mitochondrial ATP synthesis and membrane potential (ΔΨ) were investigated in germinating durum wheat seedlings under moderate (22% seawater osmolarity, -0.62 MPa) and severe (37% seawater osmolarity, -1.04 MPa) stress. To estimate the osmotic component of salt stress, mannitol solutions (0.25 and 0.42 m) iso-osmotic with the saline ones were used. Moderate stress intensity only delayed mean germination time (MGT), whereas higher seawater osmolarity reduced germination percentage as well. In contrast, Na+ and Cl- accumulation showed a sharp increase under moderate stress and only a small further increase under severe stress, which was more pronounced for Cl-. Only severe stress significantly damaged succinate-dependent oxidative phosphorylation, which may be related to the stress-induced alteration in inner mitochondrial membrane permeability, as indicated by changes in ΔΨ profiles. Proline-dependent oxidative phosphorylation, however, was inhibited under moderate stress. This suggests the occurrence of an adaptation mechanism leading to proline accumulation as an osmoprotectant. Moreover, both the osmotic and the toxic components of seawater stress were detrimental to oxidative phosphorylation. Damage to germination and MGT, in contrast, were mainly caused by osmotic stress. Therefore, mitochondrial function appears to be a more sensitive target of toxic stress than growth. In conclusion, the effects of seawater stress on mitochondrial ATP synthesis vary in relation to the substrate oxidised and stress level, inducing both adaptive responses and damage.
Collapse
Affiliation(s)
- Zina Flagella
- Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli, 25-71100 Foggia, Italy
| | - Daniela Trono
- Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli, 25-71100 Foggia, Italy
| | - Marianna Pompa
- Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli, 25-71100 Foggia, Italy
| | - Natale Di Fonzo
- Istituto Sperimentale per la Cerealicoltura C.R.A., SS 16Km 675-71100 Foggia, Italy
| | - Donato Pastore
- Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli, 25-71100 Foggia, Italy
| |
Collapse
|
5
|
LAMBERS HANS, POORTER HENDRIK. Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences. ADV ECOL RES 2004. [DOI: 10.1016/s0065-2504(03)34004-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
Affourtit C, Krab K, Leach GR, Whitehouse DG, Moore AL. New insights into the regulation of plant succinate dehydrogenase. On the role of the protonmotive force. J Biol Chem 2001; 276:32567-74. [PMID: 11350973 DOI: 10.1074/jbc.m103111200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of succinate dehydrogenase was investigated using tightly coupled potato tuber mitochondria in a novel fashion by simultaneously measuring the oxygen uptake rate and the ubiquinone (Q) reduction level. We found that the activation level of the enzyme is unambiguously reflected by the kinetic dependence of the succinate oxidation rate upon the Q-redox poise. Kinetic results indicated that succinate dehydrogenase is activated by both ATP (K(1/2) approximately 3 microm) and ADP. The carboxyatractyloside insensitivity of these stimulatory effects indicated that they occur at the cytoplasmic side of the mitochondrial inner membrane. Importantly, our novel approach revealed that the enzyme is also activated by oligomycin (K(1/2) approximately 16 nm). Time-resolved kinetic measurements of succinate dehydrogenase activation by succinate furthermore revealed that the activity of the enzyme is negatively affected by potassium. The succinate-induced activation (+/-K(+)) is prevented by the presence of an uncoupler. Together these results demonstrate that in vitro activity of succinate dehydrogenase is modulated by the protonmotive force. We speculate that the widely recognized activation of the enzyme by adenine nucleotides in plants is mediated in this manner. A mechanism that could account for such regulation is suggested and ramifications for its in vivo relevance are discussed.
Collapse
Affiliation(s)
- C Affourtit
- Department of Biochemistry, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | | | | | | | |
Collapse
|
7
|
Roberts JKM, Aubert S, Gout E, Bligny R, Douce R. Cooperation and Competition between Adenylate Kinase, Nucleoside Diphosphokinase, Electron Transport, and ATP Synthase in Plant Mitochondria Studied by 31P-Nuclear Magnetic Resonance. PLANT PHYSIOLOGY 1997; 113:191-199. [PMID: 12223600 PMCID: PMC158130 DOI: 10.1104/pp.113.1.191] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport.
Collapse
Affiliation(s)
- JKM. Roberts
- Laboratoire de Physiologie Cellulaire Vegetale, Unite de Recherche Associee 576 Centre National de la Recherche Scientifique (J.K.M.R., S.A., R.B., R.D.), and the Laboratoire de Resonance Magnetique en Biologie et Medecine, Department de Biologie Moleculaire et Structurale (E.G.), CEN-Grenoble, 17 rue des Martyrs 38054, Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
8
|
Albury MS, Dudley P, Watts FZ, Moore AL. Targeting the plant alternative oxidase protein to Schizosaccharomyces pombe mitochondria confers cyanide-insensitive respiration. J Biol Chem 1996; 271:17062-6. [PMID: 8663588 DOI: 10.1074/jbc.271.29.17062] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Sauromatum guttatum alternative oxidase has been expressed in Schizosaccharomyces pombe under the control of the thiamine-repressible nmt1 promoter. Alternative oxidase protein and activity were detected both in spheroplasts and isolated mitochondria, indicating that the enzyme is expressed in a functional form and confers cyanide-resistant respiration to S. pombe, which is sensitive to inhibition by octyl-gallate. Protein import studies revealed that the precursor form of the alternative oxidase protein is efficiently imported into isolated mitochondria and processed to its mature form comparable to that observed with potato mitochondria. Western blot analysis and respiratory studies revealed that the alternative oxidase protein is expressed in the inner mitochondrial membrane in its reduced (active) form. Treatment of mitochondria with diamide and dithiothreitol resulted in interconversion of the reduced and oxidized species and modulation of respiratory activity. The addition of pyruvate did not effect either the respiratory rate or expression of the reduced species of the protein. To our knowledge this is the first time that the alternative oxidase has been effectively targeted to and integrated into the inner mitochondrial membrane of S. pombe, and we conclude that the expression of a single polypeptide is sufficient for alternative oxidase activity.
Collapse
Affiliation(s)
- M S Albury
- Biochemistry Department, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | |
Collapse
|
9
|
Krab K. Kinetic and regulatory aspects of the function of the alternative oxidase in plant respiration. J Bioenerg Biomembr 1995; 27:387-96. [PMID: 8595974 DOI: 10.1007/bf02110001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The kinetic modelling of the respiratory network in plant mitochondria is discussed, with emphasis on the importance of the choice of boundary conditions, and of modelling of both quinol-oxidising and quinone-reducing pathways. This allows quantitative understanding of the interplay between the different pathways, and of the functioning of the plant respiratory network in terms of the kinetic properties of its component parts. The effects of activation of especially succinate dehydrogenase and the cyanide-insensitive alternative oxidase are discussed. Phenomena, such as respiratory control ratios depending on the substrate, shortcomings of the Bahr and Bonner model for electron distribution between the oxidases and reversed respiratory control, are explained. The relation to metabolic control analysis of the respiratory network is discussed in terms of top-down analysis.
Collapse
Affiliation(s)
- K Krab
- Department of Molecular and Cellular Biology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
10
|
de Gucht LPE, van der Plas LHW. Growth kinetics of glucose-limitedpetunia hybrida cells in chemostat cultures: Determination of experimental values for growth and maintenance parameters. Biotechnol Bioeng 1995; 47:42-52. [DOI: 10.1002/bit.260470106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Kesseler A, Diolez P, Brinkmann K, Brand MD. Characterisation of the control of respiration in potato tuber mitochondria using the top-down approach of metabolic control analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:775-84. [PMID: 1483462 DOI: 10.1111/j.1432-1033.1992.tb17480.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Control over oxidative phosphorylation by purified potato mitochondria was determined using the top-down approach of metabolic control analysis. The control over the respiration rate, phosphorylation rate, proton-leak rate and proton motive force exerted by the respiratory chain, phosphorylation reactions and the proton leak were measured over a range of phosphorylation rates from resting (state 4) to maximal (state 3). These rates were obtained by adding different amounts of hexokinase in the presence of glucose, or different amounts of oligomycin in the presence of ADP. The respiratory substrate was NADH or succinate, both of which feed electrons directly to ubiquinone. The rate of oxygen consumption by the alternative oxidase pathway was negligible with NADH as substrate but was measurable with succinate and was subtracted. Control over the respiration rate in potato mitochondria was predominantly exerted by the respiratory chain at all rates except close to state 4, where control by the proton leak was equally or more important. For oxidation of NADH, the flux control coefficient over the respiration rate exerted by the respiratory chain in state 3 was between 0.8 and 1.0, while in state 4, control over the respiration rate was shared about equally between the chain and the proton leak. The control over the phosphorylation rate was predominantly exerted by the respiratory chain, although at low rates control by the phosphorylation system was also important. For oxidation of NADH, the flux control coefficient over the phosphorylation rate exerted by the respiratory chain in state 3 was 0.8-1.0, while near state 4 the flux control coefficients over the phosphorylation rate were about 0.8 for the phosphorylation system and 0.25 for the chain. Control over the proton leak rate was shared between the respiratory chain and the proton leak; the phosphorylation system had negative control. For oxidation of NADH, the flux control coefficients over the leak rate in state 3 were 1.0 for the leak, 0.4 for the chain and -0.4 for the phosphorylation system, while in state 4 the flux control coefficients over leak rate were about 0.5 for the leak and 0.5 for the chain. Control over the magnitude of the protonmotive force was small, between -0.2 and +0.2, reflecting the way the system operates to keep the protonmotive force fairly constant; the respiratory chain and the phosphorylation system had equal and opposite control and there was very little control by the proton leak except near state 4.
Collapse
Affiliation(s)
- A Kesseler
- Universität Bonn, Abteilung für experimentelle Okologie, Federal Republic of Germany
| | | | | | | |
Collapse
|
12
|
Fricaud AC, Walters AJ, Whitehouse DG, Moore AL. The role(s) of adenylate kinase and the adenylate carrier in the regulation of plant mitochondrial respiratory activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90035-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Lambers H, Poorter H. Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences. ADV ECOL RES 1992. [DOI: 10.1016/s0065-2504(08)60148-8] [Citation(s) in RCA: 870] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
14
|
Schwarz M, Lerner HR, Reinhold L. Mitochondria Isolated from NaCl-Adapted Tobacco Cell Lines (Nicotiana tabacum/gossii) Maintain Their Phosphorylative Capacity in Highly Saline Media. PLANT PHYSIOLOGY 1991; 96:69-76. [PMID: 16668187 PMCID: PMC1080714 DOI: 10.1104/pp.96.1.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The in vivo functioning of mitochondria isolated from two tobacco cell lines in suspension culture (Nicotiana tabacum/gossii), wild type, and NaCl-adapted (A190), has been compared in the face of rising external salinity. The O(2) uptake of both state 3 and state 4 mitochondria was progressively inhibited with increasing external NaCl concentration in the case of both lines. Phosphorylation, however, was maintained at a higher level in the case of A190 mitochondria, as indicated both by stability of ADP:O ratio and rate of incorporation of (32)Pi. The superior phosphorylation performance of A190 mitochondria also emerged when phosphorylation was calculated per reducing equivalent, but not per unit DeltamuH(+) (electrochemical potential gradient for protons). However, the overall DeltamuH(+) was maintained at a higher level in A190 mitochondria due to the fact that the depolarization accompanying increase in external NaCl concentration was compensated for in A190 mitochondria by an increase in the transmembrane pH gradient, but not in wild type mitochondria. Increased proton permeability of the inner membrane is among the probable causes suggested for the loss of phosphorylation ability in wild type mitochondria; in contrast, A190 mitochondria maintain better membrane integrity under saline stress.
Collapse
Affiliation(s)
- M Schwarz
- Department of Botany, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
15
|
Moore AL, Dry IB, Wiskich JT. Regulation of Electron Transport in Plant Mitochondria under State 4 Conditions. PLANT PHYSIOLOGY 1991; 95:34-40. [PMID: 16667977 PMCID: PMC1077481 DOI: 10.1104/pp.95.1.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The regulation of electron transport in pea (Pisum sativum L.) leaf mitochondria under state 4 conditions has been investigated by simultaneously monitoring oxygen uptake, the steady-state reduction level of ubiquinone, and membrane potential. Membrane potentials were measured using a methyltriphenylphosphonium electrode while a voltametric technique was used to monitor changes in the steady-state reduction levels of quinone. It was found that the addition of glycine to mitochondria oxidising malate in state 4 led to a marked increase in the rate of O(2) uptake and increased both the membrane potential and reduction level of the quinone pool. Increases in the state 4 respiratory rate were attributed to both an increase in driving flux, due to increased Q-pool reduction, and in membrane potential. Due to the nonohmic behavior of the inner membrane, under these conditions, an increase in potential would result in a considerable rise in proton conductance. Measurement of dual substrate oxidation, in the presence of n-propylgallate, revealed that the increase in respiratory activity was not mediated by the alternative oxidase. Similar increases in membrane potential and the level of Q-pool reduction were observed even in the presence of rotenone suggesting that the rotenone-insensitive pathway is a constitutive feature of plant mitochondria and may play a role in facilitating rapid state 4 rates even in the presence of a high energy charge.
Collapse
Affiliation(s)
- A L Moore
- Department of Biochemistry, University of Sussex, Falmer, Brighton BN1 9QG UK
| | | | | |
Collapse
|