1
|
Guan Q, Kong W, Tan B, Zhu W, Akter T, Li J, Tian J, Chen S. Multiomics unravels potential molecular switches in the C 3 to CAM transition of Mesembryanthemum crystallinum. J Proteomics 2024; 299:105145. [PMID: 38431086 DOI: 10.1016/j.jprot.2024.105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Mesembryanthemum crystallinum (common ice plant), a facultative CAM plant, shifts from C3 to CAM photosynthesis under salt stress, enhancing water use efficiency. Here we used transcriptomics, proteomics, and targeted metabolomics to profile molecular changes during the diel cycle of C3 to CAM transition. The results confirmed expected changes associated with CAM photosynthesis, starch biosynthesis and degradation, and glycolysis/gluconeogenesis. Importantly, they yielded new discoveries: 1) Transcripts displayed greater circadian regulation than proteins. 2) Oxidative phosphorylation and inositol methylation may play important roles in initiating the transition. 3) V-type H+-ATPases showed consistent transcriptional regulation, aiding in vacuolar malate uptake. 4) A protein phosphatase 2C, a major component in the ABA signaling pathway, may trigger the C3 to CAM transition. Our work highlights the potential molecular switches in the C3 to CAM transition, including the potential role of ABA signaling. SIGNIFICANCE: The common ice plant is a model facultative CAM plant, and under stress conditions it can shift from C3 to CAM photosynthesis within a three-day period. However, knowledge about the molecular changes during the transition and the molecular switches enabling the transition is lacking. Multi-omic analyses not only revealed the molecular changes during the transition, but also highlighted the importance of ABA signaling, inositol methylation, V-type H+-ATPase in initiating the shift. The findings may explain physiological changes and nocturnal stomatal opening, and inform future synthetic biology effort in improving crop water use efficiency and stress resilience.
Collapse
Affiliation(s)
- Qijie Guan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Wenwen Kong
- College of Life Sciences, Northeast Agricultural University, Harbin 150040, China
| | - Bowen Tan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Wei Zhu
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310002, China
| | - Tahmina Akter
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150040, China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310002, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA.
| |
Collapse
|
2
|
Chomthong M, Griffiths H. Prospects and perspectives: inferring physiological and regulatory targets for CAM from molecular and modelling approaches. ANNALS OF BOTANY 2023; 132:583-596. [PMID: 37742290 PMCID: PMC10799989 DOI: 10.1093/aob/mcad142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND SCOPE This review summarizes recent advances in our understanding of Crassulacean Acid Metabolism (CAM) by integrating evolutionary, ecological, physiological, metabolic and molecular perspectives. A number of key control loops which moderate the expression of CAM phases, and their metabolic and molecular control, are explored. These include nocturnal stomatal opening, activation of phosphoenolpyruvate carboxylase by a specific protein kinase, interactions with circadian clock control, as well as daytime decarboxylation and activation of Rubisco. The vacuolar storage and release of malic acid and the interplay between the supply and demand for carbohydrate reserves are also key metabolic control points. FUTURE OPPORTUNITIES We identify open questions and opportunities, with experimentation informed by top-down molecular modelling approaches allied with bottom-up mechanistic modelling systems. For example, mining transcriptomic datasets using high-speed systems approaches will help to identify targets for future genetic manipulation experiments to define the regulation of CAM (whether circadian or metabolic control). We emphasize that inferences arising from computational approaches or advanced nuclear sequencing techniques can identify potential genes and transcription factors as regulatory targets. However, these outputs then require systematic evaluation, using genetic manipulation in key model organisms over a developmental progression, combining gene silencing and metabolic flux analysis and modelling to define functionality across the CAM day-night cycle. From an evolutionary perspective, the origins and function of CAM succulents and responses to water deficits are set against the mesophyll and hydraulic limitations imposed by cell and tissue succulence in contrasting morphological lineages. We highlight the interplay between traits across shoots (3D vein density, mesophyll conductance and cell shrinkage) and roots (xylem embolism and segmentation). Thus, molecular, biophysical and biochemical processes help to curtail water losses and exploit rapid rehydration during restorative rain events. In the face of a changing climate, we hope such approaches will stimulate opportunities for future research.
Collapse
Affiliation(s)
- Methawi Chomthong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
3
|
Tan B, Chen S. Defining Mechanisms of C 3 to CAM Photosynthesis Transition toward Enhancing Crop Stress Resilience. Int J Mol Sci 2023; 24:13072. [PMID: 37685878 PMCID: PMC10487458 DOI: 10.3390/ijms241713072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Global climate change and population growth are persistently posing threats to natural resources (e.g., freshwater) and agricultural production. Crassulacean acid metabolism (CAM) evolved from C3 photosynthesis as an adaptive form of photosynthesis in hot and arid regions. It features the nocturnal opening of stomata for CO2 assimilation, diurnal closure of stomata for water conservation, and high water-use efficiency. To cope with global climate challenges, the CAM mechanism has attracted renewed attention. Facultative CAM is a specialized form of CAM that normally employs C3 or C4 photosynthesis but can shift to CAM under stress conditions. It not only serves as a model for studying the molecular mechanisms underlying the CAM evolution, but also provides a plausible solution for creating stress-resilient crops with facultative CAM traits. This review mainly discusses the recent research effort in defining the C3 to CAM transition of facultative CAM plants, and highlights challenges and future directions in this important research area with great application potential.
Collapse
Affiliation(s)
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
4
|
Li CH, Tu YC, Wen MF, Tien HJ, Yen HE. Exogenous myo-inositol increases salt tolerance and accelerates CAM induction in the early juvenile stage of the facultative halophyte Mesembryanthemum crystallinum but not in the late juvenile stage. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:363-377. [PMID: 36949582 DOI: 10.1071/fp22285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/21/2023] [Indexed: 05/03/2023]
Abstract
Mesembryanthemum crystallinum L. (ice plant) develops salt tolerance during the transition from the juvenile to the adult stage through progressive morphological, physiological, biochemical, and molecular changes. Myo -inositol is the precursor for the synthesis of compatible solute D-pinitol and promotes Na+ transport in ice plants. We previously showed that supplying myo -inositol to 9-day-old seedlings alleviates salt damage by coordinating the expression of genes involved in inositol synthesis and transport, affecting osmotic adjustment and the Na/K balance. In this study, we examined the effects of myo -inositol on physiological parameters and inositol-related gene expression in early- and late-stage juvenile plants. The addition of myo -inositol to salt-treated, hydroponically grown late juvenile plants had no significant effects on growth or photosynthesis. In contrast, supplying exogenous myo -inositol to salt-treated early juvenile plants increased leaf biomass, relative water content, and chlorophyll content and improved PSII activity and CO2 assimilation. The treatment combining high salt and myo -inositol synergistically induced the expression of myo -inositol phosphate synthase (INPS ), myo -inositol O -methyltransferase (IMT ), and inositol transporters (INTs ), which modulated root-to-shoot Na/K ratio and increased leaf D-pinitol content. The results indicate that sufficient myo -inositol is a prerequisite for high salt tolerance in ice plant.
Collapse
Affiliation(s)
- Cheng-Hsun Li
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yun-Cheng Tu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Meng-Fang Wen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsing-Jung Tien
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
5
|
Huffine CA, Zhao R, Tang YJ, Cameron JC. Role of carboxysomes in cyanobacterial CO 2 assimilation: CO 2 concentrating mechanisms and metabolon implications. Environ Microbiol 2023; 25:219-228. [PMID: 36367380 DOI: 10.1111/1462-2920.16283] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Many carbon-fixing organisms have evolved CO2 concentrating mechanisms (CCMs) to enhance the delivery of CO2 to RuBisCO, while minimizing reactions with the competitive inhibitor, molecular O2 . These distinct types of CCMs have been extensively studied using genetics, biochemistry, cell imaging, mass spectrometry, and metabolic flux analysis. Highlighted in this paper, the cyanobacterial CCM features a bacterial microcompartment (BMC) called 'carboxysome' in which RuBisCO is co-encapsulated with the enzyme carbonic anhydrase (CA) within a semi-permeable protein shell. The cyanobacterial CCM is capable of increasing CO2 around RuBisCO, leading to one of the most efficient processes known for fixing ambient CO2 . The carboxysome life cycle is dynamic and creates a unique subcellular environment that promotes activity of the Calvin-Benson (CB) cycle. The carboxysome may function within a larger cellular metabolon, physical association of functionally coupled proteins, to enhance metabolite channelling and carbon flux. In light of CCMs, synthetic biology approaches have been used to improve enzyme complex for CO2 fixations. Research on CCM-associated metabolons has also inspired biologists to engineer multi-step pathways by providing anchoring points for enzyme cascades to channel intermediate metabolites towards valuable products.
Collapse
Affiliation(s)
- Clair A Huffine
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Runyu Zhao
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA
- National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
6
|
Ferrari RC, Kawabata AB, Ferreira SS, Hartwell J, Freschi L. A matter of time: regulatory events behind the synchronization of C4 and crassulacean acid metabolism in Portulaca oleracea. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4867-4885. [PMID: 35439821 DOI: 10.1093/jxb/erac163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Portulaca species can switch between C4 and crassulacean acid metabolism (CAM) depending on environmental conditions. However, the regulatory mechanisms behind this rare photosynthetic adaptation remain elusive. Using Portulaca oleracea as a model system, here we investigated the involvement of the circadian clock, plant hormones, and transcription factors in coordinating C4 and CAM gene expression. Free-running experiments in constant conditions suggested that C4 and CAM gene expression are intrinsically connected to the circadian clock. Detailed time-course, drought, and rewatering experiments revealed distinct time frames for CAM induction and reversion (days versus hours, respectively), which were accompanied by changes in abscisic acid (ABA) and cytokinin metabolism and signaling. Exogenous ABA and cytokinins were shown to promote and repress CAM expression in P. oleracea, respectively. Moreover, the drought-induced decline in C4 transcript levels was completely recovered upon cytokinin treatment. The ABA-regulated transcription factor genes HB7, NFYA7, NFYC9, TT8, and ARR12 were identified as likely candidate regulators of CAM induction following this approach, whereas NFYC4 and ARR9 were connected to C4 expression patterns. Therefore, we provide insights into the signaling events controlling C4-CAM transitions in response to water availability and over the day/night cycle, highlighting candidate genes for future functional studies in the context of facultative C4-CAM photosynthesis.
Collapse
Affiliation(s)
- Renata Callegari Ferrari
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - Aline Bastos Kawabata
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brasil
| |
Collapse
|
7
|
Takao K, Shirakura H, Hatakeyama Y, Ueno O. Salt stress induces Kranz anatomy and expression of C 4 photosynthetic enzymes in the amphibious sedge Eleocharis vivipara. PHOTOSYNTHESIS RESEARCH 2022; 153:93-102. [PMID: 35352232 DOI: 10.1007/s11120-022-00913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Eleocharis vivipara Link is a unique amphibious leafless plant of the Cyperaceae. The terrestrial form develops culms with Kranz anatomy and C4-like traits, while the submerged form does culms with non-Kranz anatomy and C3 traits. The submerged form develops new culms with C4-like mode when exposed to air or exogenous abscisic acid. In this study, we investigated whether salt stress (0.05-0.3 M NaCl) has a similar effect. When the submerged form was grown for one month in solutions of 0.1 M NaCl and more, culm growth was strongly suppressed. However, these plants slowly developed new culms that had Kranz anatomy with chloroplast-abundant Kranz bundle sheath cells. Although the culms of the submerged form had only few stomata, culms grown in the NaCl solution had many stomata. The NaCl-grown culms also accumulated large amounts of C4 photosynthetic enzymes (phosphoenolpyruvate carboxylase and pyruvate Pi dikinase), and the cellular localization patterns of these enzymes and ribulose 1,5-bisphosphate carboxylase/oxygenase were similar to those in terrestrial culms. Accumulation of C4 enzymes increased in mature culms of the submerged form (with non-Kranz anatomy) when exposed to 0.2 M NaCl solution for one week. These results suggest that salt stress induces development of Kranz anatomy and expression of C4 photosynthetic enzymes in the submerged C3 form of E. vivipara, whereas the anatomical and biochemical traits of C4 photosynthesis appear to be regulated independently.
Collapse
Affiliation(s)
- Kazuya Takao
- Graduate School of Bioresources and Environmental Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Hiroko Shirakura
- School of Agriculture, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresources and Environmental Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
8
|
Wakamatsu A, Mori IC, Matsuura T, Taniwaki Y, Ishii R, Yoshida R. Possible roles for phytohormones in controlling the stomatal behavior of Mesembryanthemum crystallinum during the salt-induced transition from C 3 to crassulacean acid metabolism. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153448. [PMID: 34058643 DOI: 10.1016/j.jplph.2021.153448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The halophyte ice plant (Mesembryanthemum crystallinum) converts its mode of photosynthesis from C3 to crassulacean acid metabolism (CAM) during severe water stress. During the transition to CAM, the plant induces CAM-related genes and changes its diurnal stomatal behavior to take up CO2 efficiently at night. However, limited information concerning this signaling exists. Here, we investigated the changes in the diurnal stomatal behavior of M. crystallinum during its shift in photosynthesis using a detached epidermis. M. crystallinum plants grown under C3 conditions opened their stomata during the day and closed them at night. However, CAM-induced plants closed their stomata during the day and opened them at night. Quantitative analysis of endogenous phytohormones revealed that trans-zeatin levels were high in CAM-induced plants. In contrast, the levels of jasmonic acid (JA) and JA-isoleucine were severely reduced in CAM-induced plants, specifically at night. CAM induction did not alter the levels of abscisic acid; however, inhibitors of abscisic acid synthesis suppressed CAM-induced stomatal closure. These results indicate that M. crystallinum regulates the diurnal balance of cytokinin and JA during CAM transition to alter stomatal behavior.
Collapse
Affiliation(s)
- Ayano Wakamatsu
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Izumi C Mori
- Institute of Plant Sciences and Resources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046, Japan
| | - Takakazu Matsuura
- Institute of Plant Sciences and Resources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046, Japan
| | - Yuichi Taniwaki
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Ryotaro Ishii
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Riichiro Yoshida
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan.
| |
Collapse
|
9
|
Suizu Y, Takao K, Ueno O. Gibberellic acid induces non-Kranz anatomy with C 4-like biochemical traits in the amphibious sedge Eleocharis vivipara. PLANTA 2021; 254:10. [PMID: 34156511 DOI: 10.1007/s00425-021-03662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Gibberellic acid induces photosynthetic tissues with non-Kranz anatomy and C4-like biochemical traits in terrestrial-form plants of Eleocharis vivipara. This suggests that the structural and biochemical traits are independently regulated. The amphibious leafless sedge, Eleocharis vivipara Link, develops culms (photosynthetic organs) with C4-like traits and Kranz anatomy under terrestrial conditions, and C3 traits and non-Kranz anatomy under submerged conditions. The conversion from C3 mode to C4-like mode in E. vivipara is reportedly mediated by abscisic acid. Here, we investigated the effects of gibberellic acid (GA) on the differentiation of anatomical and photosynthetic traits because GA is involved in heterophylly in aquatic plants. When 100 µM GA was sprayed on terrestrial plants, the newly developed culms had non-Kranz anatomy in the basal part and Kranz-like anatomy in the upper part. In the basal part, the mesophyll cells were well developed, whereas the Kranz (bundle sheath) cells were reduced and contained few chloroplasts and mitochondria. Stomatal frequency was lower in the basal part than in the upper part. Nevertheless, these tissues had abundant accumulation and high activities of C4 photosynthetic enzymes and had C4-like δ13C values, as seen in the culms of the terrestrial form. When submerged plants were grown under water containing GA-biosynthesis inhibitors (uniconazole or paclobutrazol), the new culms had Kranz anatomy. The culms developed under paclobutrazol had the C3 pattern of cellular accumulation of photosynthetic enzymes. These data suggest that GA induces production of photosynthetic tissues with non-Kranz anatomy in terrestrial plants of E. vivipara, without concomitant expression of C3 biochemical traits. The data also suggest that the differentiation of C4 structural and biochemical traits is regulated independently.
Collapse
Affiliation(s)
- Yoshinobu Suizu
- Graduate School of Bioresources and Environmental Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Kazuya Takao
- Graduate School of Bioresources and Environmental Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
10
|
Abstract
Crassulacean acid metabolism (CAM) has evolved from a C3 ground state to increase water use efficiency of photosynthesis. During CAM evolution, selective pressures altered the abundance and expression patterns of C3 genes and their regulators to enable the trait. The circadian pattern of CO2 fixation and the stomatal opening pattern observed in CAM can be explained largely with a regulatory architecture already present in C3 plants. The metabolic CAM cycle relies on enzymes and transporters that exist in C3 plants and requires tight regulatory control to avoid futile cycles between carboxylation and decarboxylation. Ecological observations and modeling point to mesophyll conductance as a major factor during CAM evolution. The present state of knowledge enables suggestions for genes for a minimal CAM cycle for proof-of-concept engineering, assuming altered regulation of starch synthesis and degradation are not critical elements of CAM photosynthesis and sufficient malic acid export from the vacuole is possible.
Collapse
Affiliation(s)
- Katharina Schiller
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; ,
| | - Andrea Bräutigam
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; ,
| |
Collapse
|
11
|
Sicilia A, Santoro DF, Testa G, Cosentino SL, Lo Piero AR. Transcriptional response of giant reed (Arundo donax L.) low ecotype to long-term salt stress by unigene-based RNAseq. PHYTOCHEMISTRY 2020; 177:112436. [PMID: 32563719 DOI: 10.1016/j.phytochem.2020.112436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
The giant reed is a fast growing herbaceous non-food crop considered as eligible alternative energy source to reduce the usage of fossil fuels. Tolerance of this plant to abiotic stress has been demonstrated across a range of stressful conditions, thus allowing cultivation in marginal or poorly cultivated land in order not to compromise food security and to overcome land use controversies. In this work, we de novo sequenced, assembled and analyzed the A. donax low G34 ecotype leaf transcriptome (RNAseq analysis) subjected to severe long-term salt stress (256.67 mM NaCl corresponding to 32 dS m-1 electric conductibility). In order to shed light upon the response to high salinity of this non model plant, we analyzed clusters related to salt sensory and signaling transduction, transcription factors, hormone regulation, Reactive Oxygen Species (ROS) scavenging and osmolyte biosynthesis, all of them showing different regulation compared to untreated plants. The analysis of clusters related to ethylene biosynthesis and signaling indicated that gene transcription is modulated towards the minimization of ethylene negative effects upon plant growth. Certainly, the photosynthesis is strongly affected since genes involved in Rubisco biosynthesis and assembly are down-regulated. However, a shift towards C4 photosynthesis is likely to occur as gene regulation is aimed to activate the primary CO2 fixation to PEP (phosphoenolpyruvate). The analysis of "carbon metabolism" category revealed that G34 ecotype under salt stress induces the expression of glycolysis and Krebs cycle related genes, this being consistent with the hypothesis that some sort of salt avoidance might be occurred in A. donax G34 low ecotype. By comparing our results with findings obtained with other giant reed ecotype, we identified several differences in the response to salt that are in accordance with the possibility that heritable phenotypic differences among clones of A. donax might be accumulated especially in ecotypes originating from distant geographical areas, despite their asexual reproduction modality. Additionally, 26,838 simple sequence repeat (SSR) markers were identified and validated. This SSR dataset definitely expands the marker catalogue of A. donax facilitating the genotypic characterization of this species.
Collapse
Affiliation(s)
- Angelo Sicilia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Danilo Fabrizio Santoro
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Giorgio Testa
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Salvatore Luciano Cosentino
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy.
| |
Collapse
|
12
|
Kong W, Yoo MJ, Zhu D, Noble JD, Kelley TM, Li J, Kirst M, Assmann SM, Chen S. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C 3 to CAM transition. PLANT MOLECULAR BIOLOGY 2020; 103:653-667. [PMID: 32468353 DOI: 10.1007/s11103-020-01016-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/17/2020] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE: The timing and transcriptomic changes during the C3 to CAM transition of common ice plant support the notion that guard cells themselves can shift from C3 to CAM. Crassulacean acid metabolism (CAM) is a specialized type of photosynthesis: stomata close during the day, enhancing water conservation, and open at night, allowing CO2 uptake. Mesembryanthemum crystallinum (common ice plant) is a facultative CAM species that can shift from C3 photosynthesis to CAM under salt or drought stresses. However, the molecular mechanisms underlying the stress induced transition from C3 to CAM remain unknown. Here we determined the transition time from C3 to CAM in M. crystallinum under salt stress. In parallel, single-cell-type transcriptomic profiling by 3'-mRNA sequencing was conducted in isolated stomatal guard cells to determine the molecular changes in this key cell type during the transition. In total, 495 transcripts showed differential expression between control and salt-treated samples during the transition, including 285 known guard cell genes, seven CAM-related genes, 18 transcription factors, and 185 other genes previously not found to be expressed in guard cells. PEPC1 and PPCK1, which encode key enzymes of CAM photosynthesis, were up-regulated in guard cells after seven days of salt treatment, indicating that guard cells themselves can shift from C3 to CAM. This study provides important information towards introducing CAM stomatal behavior into C3 crops to enhance water use efficiency.
Collapse
Affiliation(s)
- Wenwen Kong
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Mi-Jeong Yoo
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
| | - Dan Zhu
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Jerald D Noble
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Theresa M Kelley
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA.
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA.
| |
Collapse
|
13
|
Chomthong M, Griffiths H. Model approaches to advance crassulacean acid metabolism system integration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:951-963. [PMID: 31943394 DOI: 10.1111/tpj.14691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
This review summarises recent progress in understanding crassulacean acid metabolism (CAM) systems and the integration of internal and external stimuli to maximise water-use efficiency. Complex CAM traits have been reduced to their minimum and captured as computational models, which can now be refined using recently available data from transgenic manipulations and large-scale omics studies. We identify three key areas in which an appropriate choice of modelling tool could help capture relevant comparative molecular data to address the evolutionary drivers and plasticity of CAM. One focus is to identify the environmental and internal signals that drive inverse stomatal opening at night. Secondly, it is important to identify the regulatory processes required to orchestrate the diel pattern of carbon fluxes within mesophyll layers. Finally, the limitations imposed by contrasting succulent systems and associated hydraulic conductance components should be compared in the context of water-use and evolutionary strategies. While network analysis of transcriptomic data can provide insights via co-expression modules and hubs, alternative forms of computational modelling should be used iteratively to define the physiological significance of key components and informing targeted functional gene manipulation studies. We conclude that the resultant improvements of bottom-up, mechanistic modelling systems can enhance progress towards capturing the physiological controls for phylogenetically diverse CAM systems in the face of the recent surge of information in this omics era.
Collapse
Affiliation(s)
- Methawi Chomthong
- Department of Plant Sciences, University of Cambridge, Downing street, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Downing street, Cambridge, CB2 3EA, UK
| |
Collapse
|
14
|
Chen LY, Xin Y, Wai CM, Liu J, Ming R. The role of cis-elements in the evolution of crassulacean acid metabolism photosynthesis. HORTICULTURE RESEARCH 2020; 7:5. [PMID: 31908808 PMCID: PMC6938490 DOI: 10.1038/s41438-019-0229-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 05/30/2023]
Abstract
Crassulacean acid metabolism (CAM) photosynthesis is an innovation of carbon concentrating mechanism that is characterized by nocturnal CO2 fixation. Recent progresses in genomics, transcriptomics, proteomics, and metabolomics of CAM species yielded new knowledge and abundant genomic resources. In this review, we will discuss the pattern of cis-elements in stomata movement-related genes and CAM CO2 fixation genes, and analyze the expression dynamic of CAM related genes in green leaf tissues. We propose that CAM photosynthesis evolved through the re-organization of existing enzymes and associated membrane transporters in central metabolism and stomatal movement-related genes, at least in part by selection of existing circadian clock cis-regulatory elements in their promoter regions. Better understanding of CAM evolution will help us to design crops that can thrive in arid or semi-arid regions, which are likely to expand due to global climate change.
Collapse
Affiliation(s)
- Li-Yu Chen
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Yinghui Xin
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Juan Liu
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
| | - Ray Ming
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
15
|
Maleckova E, Brilhaus D, Wrobel TJ, Weber APM. Transcript and metabolite changes during the early phase of abscisic acid-mediated induction of crassulacean acid metabolism in Talinum triangulare. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6581-6596. [PMID: 31111894 PMCID: PMC6883267 DOI: 10.1093/jxb/erz189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/04/2019] [Indexed: 05/31/2023]
Abstract
Crassulacean acid metabolism (CAM) has evolved as a water-saving strategy, and its engineering into crops offers an opportunity to improve their water use efficiency. This requires a comprehensive understanding of the regulation of the CAM pathway. Here, we use the facultative CAM species Talinum triangulare as a model in which CAM can be induced rapidly by exogenous abscisic acid. RNA sequencing and metabolite measurements were employed to analyse the changes underlying CAM induction and identify potential CAM regulators. Non-negative matrix factorization followed by k-means clustering identified an early CAM-specific cluster and a late one, which was specific for the early light phase. Enrichment analysis revealed abscisic acid metabolism, WRKY-regulated transcription, sugar and nutrient transport, and protein degradation in these clusters. Activation of the CAM pathway was supported by up-regulation of phosphoenolpyruvate carboxylase, cytosolic and chloroplastic malic enzymes, and several transport proteins, as well as by increased end-of-night titratable acidity and malate accumulation. The transcription factors HSFA2, NF-YA9, and JMJ27 were identified as candidate regulators of CAM induction. With this study we promote the model species T. triangulare, in which CAM can be induced in a controlled way, enabling further deciphering of CAM regulation.
Collapse
Affiliation(s)
- Eva Maleckova
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Düsseldorf, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas J Wrobel
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
16
|
Hwang HH, Wang CH, Huang HW, Chiang CP, Chi SF, Huang FC, Yen HE. Functional analysis of McSnRK1 (SNF1-related protein kinase 1) in regulating Na/K homeostasis in transgenic cultured cells and roots of halophyte Mesembryanthemum crystallinum. PLANT CELL REPORTS 2019; 38:915-926. [PMID: 31037366 DOI: 10.1007/s00299-019-02412-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/15/2019] [Indexed: 05/05/2023]
Abstract
Transgenic callus and roots of ice plant with altered SnRK1 function were established using Agrobacterium-mediated transformation. The role of McSnRK1 in controlling Na+ influx and Na/K ratio was demonstrated. SnRK1 kinases (SNF1-related protein kinase1) control metabolic adaptation during energy deprivation and regulate protective mechanisms against environmental stress. Yeast SNF1 activates a P-type ATPase, the Na+ exclusion pump, under glucose starvation. The involvement of plant SnRK1 in salt stress response is largely unknown. We previously identified a salt-induced McSnRK1 in the halophyte ice plant (Mesembryanthemum crystallinum). In the current study, the function of McSnRK1 in salt tolerance was analyzed in transgenic cultured cells and roots of ice plant. Ice plant callus constitutively expressed a high level of McSnRK1 and introducing the full-length McSnRK1 did not alter the Na/K ratio at 24 h after 200 mM NaCl treatment. However, interfering with McSnRK1 activity by introducing a truncate McSnRK1 to produce a dominant-negative form of McSnRK1 increased cellular Na+ accumulation and Na/K ratio. As a result, the growth of cultured cells diminished under salt treatment. Hydroponically grown ice plants with roots expressing full-length McSnRK1 had better growth and lowered Na/K ratio compared to the wild-type or vector-only plants. Roots expressing a truncate McSnRK1 had reduced growth and high Na/K ratio under 400 mM NaCl treatment. The changes in Na/K ratio in transgenic cells and whole plants demonstrated the function of SnRK1 in controlling Na+ flux and maintaining Na/K homeostasis under salinity. The Agrobacterium-mediated transformation system could be a versatile tool for functional analysis of genes involved in salt tolerance in the ice plant.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hao Wang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Hsiao-Wei Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Chih-Pin Chiang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Shin-Fei Chi
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
| | - Hungchen E Yen
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
17
|
Salinas P, Salinas C, Contreras RA, Zuñiga GE, Dupree P, Cardemil L. Water deficit and abscisic acid treatments increase the expression of a glucomannan mannosyltransferase gene (GMMT) in Aloe vera Burm. F. PHYTOCHEMISTRY 2019; 159:90-101. [PMID: 30605853 DOI: 10.1016/j.phytochem.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
The main polysaccharide of the gel present in the leaves of or Aloe vera Burm.F., (Aloe barbadensis Miller) a xerophytic crassulacean acid metabolism (CAM) plant, is an acetylated glucomannan named acemannan. This polysaccharide is responsible for the succulence of the plant, helping it to retain water. In this study we determined using polysaccharide analysis by carbohydrate gel electrophoresis (PACE) that the acemannan is a glucomannan without galactose side branches. We also investigated the expression of the gene responsible for acemannan backbone synthesis, encoding a glucomannan mannosyltransferase (GMMT, EC 2.4.1.32), since there are no previous reports on GMMT expression under water stress in general and specifically in Aloe vera. It was found by in silico analyses that the GMMT gene belongs to the cellulose synthase-like A type-9 (CSLA9) subfamily. Using RT-qPCR it was found that the expression of GMMT increased significantly in Aloe vera plants subjected to water stress. This expression correlates with an increase of endogenous ABA levels, suggesting that the gene expression could be regulated by ABA. To corroborate this hypothesis, exogenous ABA was applied to non-water-stressed plants, resulting in a significant increase of GMMT expression after 48 h of ABA treatment.
Collapse
Affiliation(s)
- Pamela Salinas
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Carlos Salinas
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Rodrigo A Contreras
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Gustavo E Zuñiga
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, UK
| | - Liliana Cardemil
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile.
| |
Collapse
|
18
|
Amin AB, Rathnayake KN, Yim WC, Garcia TM, Wone B, Cushman JC, Wone BWM. Crassulacean Acid Metabolism Abiotic Stress-Responsive Transcription Factors: a Potential Genetic Engineering Approach for Improving Crop Tolerance to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:129. [PMID: 30853963 PMCID: PMC6395430 DOI: 10.3389/fpls.2019.00129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/25/2019] [Indexed: 05/25/2023]
Abstract
This perspective paper explores the utilization of abiotic stress-responsive transcription factors (TFs) from crassulacean acid metabolism (CAM) plants to improve abiotic stress tolerance in crop plants. CAM is a specialized type of photosynthetic adaptation that enhances water-use efficiency (WUE) by shifting CO2 uptake to all or part of the nighttime when evaporative water losses are minimal. Recent studies have shown that TF-based genetic engineering could be a useful approach for improving plant abiotic stress tolerance because of the role of TFs as master regulators of clusters of stress-responsive genes. Here, we explore the use of abiotic stress-responsive TFs from CAM plants to improve abiotic stress tolerance and WUE in crops by controlling the expression of gene cohorts that mediate drought-responsive adaptations. Recent research has revealed several TF families including AP2/ERF, MYB, WRKY, NAC, NF-Y, and bZIP that might regulate water-deficit stress responses and CAM in the inducible CAM plant Mesembryanthemum crystallinum under water-deficit stress-induced CAM and in the obligate CAM plant Kalanchoe fedtschenkoi. Overexpression of genes from these families in Arabidopsis thaliana can improve abiotic stress tolerance in A. thaliana in some instances. Therefore, we propose that TF-based genetic engineering with a small number of CAM abiotic stress-responsive TFs will be a promising strategy for improving abiotic stress tolerance and WUE in crop plants in a projected hotter and drier landscape in the 21st-century and beyond.
Collapse
Affiliation(s)
- Atia B. Amin
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Kumudu N. Rathnayake
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Travis M. Garcia
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Beate Wone
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Bernard W. M. Wone
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
19
|
Hwang HH, Wang CH, Chen HH, Ho JF, Chi SF, Huang FC, Yen HE. Effective Agrobacterium-mediated transformation protocols for callus and roots of halophyte ice plant (Mesembryanthemum crystallinum). BOTANICAL STUDIES 2019; 60:1. [PMID: 30617933 PMCID: PMC6323063 DOI: 10.1186/s40529-018-0249-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/19/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Ice plant (Mesembryanthemum crystallinum L.) is a model plant for studying salt-tolerant mechanisms in higher plants. Many salt stress-responsive ice plant genes have been identified with molecular and biochemical approaches. However, no further functional characterization of these genes in host plant due to lack of easy and effective transformation protocols. RESULTS To establish efficient transformation system of ice plants, three types of ice plant materials, hypocotyl-derived callus, aseptically-grown seedlings and pot-grown juvenile plants, were used to develop Agrobacterium-mediated transformation protocols. The highest transient transformation efficiency was with 5-day-old ice plant callus co-incubated with an Agrobacterium tumefaciens at 2.5 × 109 cells mL-1 for 48 h. The 3-day-old ice plant seedlings with root tip removed were successfully infected with A. tumefaciens or A. rhizogenes, and obtained 85% and 33-100% transient transformation rates, respectively. The transient transformation assays in ice plant callus and seedlings demonstrated that the concentrations of Agrobacteria, the durations of co-incubation time, and the plant growth stages were three important factors affecting the transient transformation efficiencies. Additionally, pot-grown juvenile plants were syringe-injected with two A. rhizogenes strains A8196 and NCPPB 1855, to establish transformed roots. After infections, ice plants were grown hydroponically and showed GUS expressions in transformed roots for 8 consecutive weeks. CONCLUSIONS Our Agrobacterium-mediated transformation protocols utilized hypocotyl-derived callus and seedlings as plant materials, which can be easily obtained in large quantity. The average successful transient transformation rates were about 2.4-3.0% with callus and 33.3-100.0% with seedlings. We also developed a rapid and efficient protocol to generate transgenic roots by A. rhizogenes infections without laborious and challenging tissue culture techniques. This protocol to establish composite ice plant system demonstrates excellent improvements in efficiency, efficacy, and ease of use over previous ice plant transformation protocols. These Agrobacterium-mediated transformation protocols can be versatile and efficient tools for exploring gene functions at cellular and organ levels of ice plants.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Hao Wang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
| | - Hsiao-Huei Chen
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
| | - Jia-Fang Ho
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
| | - Shin-Fei Chi
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
| |
Collapse
|
20
|
|
21
|
Aloor BP, Avasthi UK, Raghavendra AS. Stimulation by abscisic acid of the activity of phosphoenolpyruvate carboxylase in leaf disks of Amaranthus hypochondriacus L., C 4 plant: role of pH and protein levels. PROTOPLASMA 2017; 254:1973-1981. [PMID: 28251362 DOI: 10.1007/s00709-017-1091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
C4 plants can more efficiently fix carbon in drought, high temperatures, and limitations of nitrogen or CO2. Primary carboxylation is mediated by phosphoenolpyruvate carboxylase (PEPC, 4.1.1.31) in mesophyll cytosol of C4 plants. Studies on hormonal regulation of C4 PEPC have been quite limited. We have examined the activity/regulation of PEPC by abscisic acid (ABA), a plant hormone, in the leaves of Amaranthus hypochondriacus. PEPC activity was enhanced upon 1-h incubation with 20 μM ABA by about 30% in dark and more than 2-fold in light. Glucose-6-phosphate activation of PEPC was enhanced, and sensitivity to L-malate was decreased after ABA treatment. Butyric acid (a weak acid) decreased PEPC activity and restricted the stimulation by ABA. In contrast, methylamine (an alkalinizing agent) increased the PEPC activity and enhanced the effect of ABA. ABA increased the levels of PEPC protein as well as its mRNA. Butyric acid/methylamine modulated the changes induced by ABA of PEPC protein and mRNA levels, indicating that acidification/alkalinization of leaf disks was very important. Our results emphasize the marked modulation of PEPC in C4 plants, by ABA. Such modulation by ABA could be significant when C4 plants are under water stress, when ABA is known to accumulate. When present, cycloheximide decreased the PEPC protein levels and restricted the extent of activation by ABA. We conclude that the enhancement by ABA of PEPC activity depends on cellular alkalinization as well as elevated PEPC protein levels.
Collapse
Affiliation(s)
- Bindu Prasuna Aloor
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Uday Kiran Avasthi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- Department of Genetics, Osmania University, Hyderabad, 500007, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
22
|
He J, Qin L, Chong ELC, Choong TW, Lee SK. Plant Growth and Photosynthetic Characteristics of Mesembryanthemum crystallinum Grown Aeroponically under Different Blue- and Red-LEDs. FRONTIERS IN PLANT SCIENCE 2017; 8:361. [PMID: 28367156 PMCID: PMC5355428 DOI: 10.3389/fpls.2017.00361] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/01/2017] [Indexed: 05/11/2023]
Abstract
Mesembryanthemum crystallinum is a succulent, facultative crassulacean acid metabolism (CAM) plant. Plant growth and photosynthetic characteristics were studied when M. crystallinum plants were grown indoor under light emitting diodes (LED)-lighting with adequate water supply. Plants were cultured aeroponically for a 16-h photoperiod at an equal photosynthetic photon flux density of 350 μmol m-2 s-1 under different red:blue LED ratios: (1) 100:0 (0B); (2) 90:10 (10B); (3) 80:20 (20B); (4) 70:30 (30B); (5) 50:50 (50B); and (6)100:0 (100B). M. crystallinum grown under 10B condition had the highest shoot and root biomass and shoot/root ratio while those grown under 0B condition exhibited the lowest values. Compared to plants grown under 0B condition, all other plants had similar but higher total chlorophyll (Chl) and carotenoids (Car) contents and higher Chl a/b ratios. However, there were no significant differences in Chl/Car ratio among all plants grown under different red- and blue-LEDs. Photosynthetic light use efficiency measured by photochemical quenching, non-photochemical quenching, and electron transport rate, demonstrated that plants grown under high blue-LED utilized more light energy and had more effective heat dissipation mechanism compared to plants grown under 0B or lower blue-LED. Statistically, there were no differences in photosynthetic O2 evolution rate, light-saturated CO2 assimilation rate (Asat), and light-saturated stomatal conductance (gssat) among plants grown under different combined red- and blue-LEDs but they were significantly higher than those of 0B plants. No statistically differences in total reduced nitrogen content were found among all plants. For the total soluble protein, all plants grown under different combined red- and blue-LEDs had similar values but they were significantly higher than that of plants grown under 0B condition. However, plants grown under higher blue-LEDs had significant higher ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) protein than those plants grown under lower blue-LED. High Asat and gssat but very low CAM acidity of all M. crystallinum plants during light period, imply that this facultative CAM plant performed C3 photosynthesis when supplied with adequate water. Results of this study suggest that compared to red- or blue-LED alone, appropriate combination of red- and blue-LED lighting enhanced plant growth and photosynthetic capacities of M. crystallinum.
Collapse
Affiliation(s)
- Jie He
- National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| | | | | | | | | |
Collapse
|
23
|
Negin B, Moshelion M. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:82-89. [PMID: 27593466 DOI: 10.1016/j.plantsci.2016.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 05/21/2023]
Abstract
Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis.
Collapse
Affiliation(s)
- Boaz Negin
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel.
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel.
| |
Collapse
|
24
|
Flowers TJ, Munns R, Colmer TD. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. ANNALS OF BOTANY 2015; 115:419-31. [PMID: 25466549 PMCID: PMC4332607 DOI: 10.1093/aob/mcu217] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/01/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Halophytes are the flora of saline soils. They adjust osmotically to soil salinity by accumulating ions and sequestering the vast majority of these (generally Na(+) and Cl(-)) in vacuoles, while in the cytoplasm organic solutes are accumulated to prevent adverse effects on metabolism. At high salinities, however, growth is inhibited. Possible causes are: toxicity to metabolism of Na(+) and/or Cl(-) in the cytoplasm; insufficient osmotic adjustment resulting in reduced net photosynthesis because of stomatal closure; reduced turgor for expansion growth; adverse cellular water relations if ions build up in the apoplast (cell walls) of leaves; diversion of energy needed to maintain solute homeostasis; sub-optimal levels of K(+) (or other mineral nutrients) required for maintaining enzyme activities; possible damage from reactive oxygen species; or changes in hormonal concentrations. SCOPE This review discusses the evidence for Na(+) and Cl(-) toxicity and the concept of tissue tolerance in relation to halophytes. CONCLUSIONS The data reviewed here suggest that halophytes tolerate cytoplasmic Na(+) and Cl(-) concentrations of 100-200 mm, but whether these ions ever reach toxic concentrations that inhibit metabolism in the cytoplasm or cause death is unknown. Measurements of ion concentrations in the cytosol of various cell types for contrasting species and growth conditions are needed. Future work should also focus on the properties of the tonoplast that enable ion accumulation and prevent ion leakage, such as the special properties of ion transporters and of the lipids that determine membrane permeability.
Collapse
Affiliation(s)
- Timothy J Flowers
- School of Plant Biology and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia, CSIRO Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia and School of Life Sciences, University of Sussex, Falmer, Brighton BN7 1BD, UK School of Plant Biology and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia, CSIRO Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia and School of Life Sciences, University of Sussex, Falmer, Brighton BN7 1BD, UK
| | - Rana Munns
- School of Plant Biology and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia, CSIRO Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia and School of Life Sciences, University of Sussex, Falmer, Brighton BN7 1BD, UK School of Plant Biology and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia, CSIRO Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia and School of Life Sciences, University of Sussex, Falmer, Brighton BN7 1BD, UK School of Plant Biology and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia, CSIRO Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia and School of Life Sciences, University of Sussex, Falmer, Brighton BN7 1BD, UK
| | - Timothy D Colmer
- School of Plant Biology and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia, CSIRO Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia and School of Life Sciences, University of Sussex, Falmer, Brighton BN7 1BD, UK
| |
Collapse
|
25
|
The epiphytic fern Elaphoglossum luridum (Fée) Christ. (Dryopteridaceae) from Central and South America: morphological and physiological responses to water stress. ScientificWorldJournal 2014; 2014:817892. [PMID: 25386618 PMCID: PMC4217239 DOI: 10.1155/2014/817892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/03/2014] [Accepted: 09/17/2014] [Indexed: 11/17/2022] Open
Abstract
Elaphoglossum luridum (Fée) Christ. (Dryopteridaceae) is an epiphytic fern of the Atlantic Forest (Brazil). Anatomical and physiological studies were conducted to understand how this plant responds to water stress. The E. luridum frond is coriaceus and succulent, presenting trichomes, relatively thick cuticle, and sinuous cell walls in both abaxial and adaxial epidermis. Three treatments were analyzed: control, water deficit, and abscisic acid (ABA). Physiological studies were conducted through analysis of relative water content (RWC), photosynthetic pigments, chlorophyll a fluorescence, and malate content. No changes in RWC were observed among treatments; however, significant decreases in chlorophyll a content and photosynthetic parameters, including optimal irradiance (I opt) and maximum electron transport rate (ETRmax), were determined by rapid light curves (RLC). No evidence of crassulacean acid metabolism (CAM) pathway was observed in E. luridum in response to either water deficit or exogenous application of ABA. On the other hand, malate content decreased in the E. luridum frond after ABA treatment, seeming to downregulate malate metabolism at night, possibly through tricarboxylic acid (TCA) cycle regulation.
Collapse
|
26
|
Winter K, Holtum JAM. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3425-41. [PMID: 24642847 DOI: 10.1093/jxb/eru063] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Facultative crassulacean acid metabolism (CAM) describes the optional use of CAM photosynthesis, typically under conditions of drought stress, in plants that otherwise employ C3 or C4 photosynthesis. In its cleanest form, the upregulation of CAM is fully reversible upon removal of stress. Reversibility distinguishes facultative CAM from ontogenetically programmed unidirectional C3-to-CAM shifts inherent in constitutive CAM plants. Using mainly measurements of 24h CO2 exchange, defining features of facultative CAM are highlighted in five terrestrial species, Clusia pratensis, Calandrinia polyandra, Mesembryanthemum crystallinum, Portulaca oleracea and Talinum triangulare. For these, we provide detailed chronologies of the shifts between photosynthetic modes and comment on their usefulness as experimental systems. Photosynthetic flexibility is also reviewed in an aquatic CAM plant, Isoetes howellii. Through comparisons of C3 and CAM states in facultative CAM species, many fundamental biochemical principles of the CAM pathway have been uncovered. Facultative CAM species will be of even greater relevance now that new sequencing technologies facilitate the mapping of genomes and tracking of the expression patterns of multiple genes. These technologies and facultative CAM systems, when joined, are expected to contribute in a major way towards our goal of understanding the essence of CAM.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama
| | - Joseph A M Holtum
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
27
|
Herppich W, Herppich M, VON Willert DJ. The Irreversible C3to CAM Shift in Well-watered and Salt-stressed Plants ofMesembryanthemum crystallinumis under Strict Ontogenetic Control. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1992.tb00264.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Ting IP, Hann J, Sipes D, Patel A, Walling LL. Expression of P-Enolpyruvate Carboxylase and other Aspects of CAM during the Development ofPeperomia camptotrichaLeaves. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1993.tb00754.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Taybi T, Sotta B, Gehrig H, Güçlü S, Kluge M, Brulfert J. Differential Effects of Abscisic Acid on Phosphoenolpyruvate Carboxylase and CAM Operation inKalanchoë blossfeldiana. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1995.tb00856.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Aragón C, Carvalho L, González J, Escalona M, Amancio S. The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions. PLANT CELL REPORTS 2012; 31:757-769. [PMID: 22134875 DOI: 10.1007/s00299-011-1195-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/02/2011] [Accepted: 11/20/2011] [Indexed: 05/31/2023]
Abstract
Many plant species grown under in vitro controlled conditions can be used as models for the study of physiological processes. Adult pineapple can display CAM physiology while in vitro it functions as a C3 plant. Ex vitro Ananas comosus has plastic morphology and physiology, both easy to modify from C3 to CAM by changing the environmental conditions. The yield of survival for a rentable propagation protocol of pineapple is closely related with the C3/CAM shift and the associated physiological characteristics. In the present work, ex vitro pineapple plants were divided in two sets and subjected to C3 and CAM-inducing environmental conditions, determined by light intensity and relative humidity, respectively, 40 μmol m(-2) s(-1)/85% and 260 μmol m(-2) s(-1)/50%. The results demonstrated that the stress imposed by the environmental conditions switched pineapple plants from C3 to CAM behavior. Comparing to CAM induced, C3-induced pineapple plants showed substandard growth parameters and morphological leaf characteristics but a better rooting process and a higher ABA production, a phenotype closer to adult plants, which are expected to produce fruits in a normal production cycle. We conclude that the upholding of these characteristics is conditioned by low light intensity plus high relative humidity, especially during the first 8 weeks of ex vitro growth. It is expected that the better understanding of pineapple acclimatization will contribute to the design of a protocol to apply as a rentable tool in the pineapple agronomic industry.
Collapse
Affiliation(s)
- C Aragón
- Laboratorio de Células y Cultivo Tejidos, Centro de Bioplantas, Universidad de Ciego de Ávila, Ciego de Ávila, Cuba
| | | | | | | | | |
Collapse
|
31
|
Freschi L, Mercier H. Connecting Environmental Stimuli and Crassulacean Acid Metabolism Expression: Phytohormones and Other Signaling Molecules. PROGRESS IN BOTANY 2012. [DOI: 10.1007/978-3-642-22746-2_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Freschi L, Rodrigues MA, Domingues DS, Purgatto E, Van Sluys MA, Magalhaes JR, Kaiser WM, Mercier H. Nitric oxide mediates the hormonal control of Crassulacean acid metabolism expression in young pineapple plants. PLANT PHYSIOLOGY 2010; 152:1971-85. [PMID: 20147491 PMCID: PMC2850025 DOI: 10.1104/pp.109.151613] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/07/2010] [Indexed: 05/24/2023]
Abstract
Genotypic, developmental, and environmental factors converge to determine the degree of Crassulacean acid metabolism (CAM) expression. To characterize the signaling events controlling CAM expression in young pineapple (Ananas comosus) plants, this photosynthetic pathway was modulated through manipulations in water availability. Rapid, intense, and completely reversible up-regulation in CAM expression was triggered by water deficit, as indicated by the rise in nocturnal malate accumulation and in the expression and activity of important CAM enzymes. During both up- and down-regulation of CAM, the degree of CAM expression was positively and negatively correlated with the endogenous levels of abscisic acid (ABA) and cytokinins, respectively. When exogenously applied, ABA stimulated and cytokinins repressed the expression of CAM. However, inhibition of water deficit-induced ABA accumulation did not block the up-regulation of CAM, suggesting that a parallel, non-ABA-dependent signaling route was also operating. Moreover, strong evidence revealed that nitric oxide (NO) may fulfill an important role during CAM signaling. Up-regulation of CAM was clearly observed in NO-treated plants, and a conspicuous temporal and spatial correlation was also evident between NO production and CAM expression. Removal of NO from the tissues either by adding NO scavenger or by inhibiting NO production significantly impaired ABA-induced up-regulation of CAM, indicating that NO likely acts as a key downstream component in the ABA-dependent signaling pathway. Finally, tungstate or glutamine inhibition of the NO-generating enzyme nitrate reductase completely blocked NO production during ABA-induced up-regulation of CAM, characterizing this enzyme as responsible for NO synthesis during CAM signaling in pineapple plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Helenice Mercier
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP 05508–900, Sao Paulo, Brazil (L.F., M.A.R., D.S.D., M.-A.V.S., H.M.); Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05422–970, Sao Paulo, Brazil (E.P.); Empresa Brasileira de Pesquisa Agropecuária, CEP 36038–330, Juiz de Fora, Brazil (J.R.M.); and Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, D–97082 Wuerzburg, Germany (W.M.K.)
| |
Collapse
|
33
|
Lanigan GJ, Betson N, Griffiths H, Seibt U. Carbon isotope fractionation during photorespiration and carboxylation in Senecio. PLANT PHYSIOLOGY 2008; 148:2013-20. [PMID: 18923019 PMCID: PMC2593675 DOI: 10.1104/pp.108.130153] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 10/12/2008] [Indexed: 05/18/2023]
Abstract
The magnitude of fractionation during photorespiration and the effect on net photosynthetic (13)C discrimination (Delta) were investigated for three Senecio species, S. squalidus, S. cineraria, and S. greyii. We determined the contributions of different processes during photosynthesis to Delta by comparing observations (Delta(obs)) with discrimination predicted from gas-exchange measurements (Delta(pred)). Photorespiration rates were manipulated by altering the O(2) partial pressure (pO(2)) in the air surrounding the leaves. Contributions from (13)C-depleted photorespiratory CO(2) were largest at high pO(2). The parameters for photorespiratory fractionation (f), net fractionation during carboxylation by Rubisco and phosphoenolpyruvate carboxylase (b), and mesophyll conductance (g(i)) were determined simultaneously for all measurements. Instead of using Delta(obs) data to obtain g(i) and f successively, which requires that b is known, we treated b, f, and g(i) as unknowns. We propose this as an alternative approach to analyze measurements under field conditions when b and g(i) are not known or cannot be determined in separate experiments. Good agreement between modeled and observed Delta was achieved with f = 11.6 per thousand +/- 1.5 per thousand, b = 26.0 per thousand +/- 0.3 per thousand, and g(i) of 0.27 +/- 0.01, 0.25 +/- 0.01, and 0.22 +/- 0.01 mol m(-2) s(-1) for S. squalidus, S. cineraria, and S. greyii, respectively. We estimate that photorespiratory fractionation decreases Delta by about 1.2 per thousand on average under field conditions. In addition, diurnal changes in Delta are likely to reflect variations in photorespiration even at the canopy level. Our results emphasize that the effects of photorespiration must be taken into account when partitioning net CO(2) exchange of ecosystems into gross fluxes of photosynthesis and respiration.
Collapse
Affiliation(s)
- Gary J Lanigan
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | | | |
Collapse
|
34
|
Jou Y, Wang YL, Yen HE. Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:353-359. [PMID: 32689362 DOI: 10.1071/fp06269] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/10/2007] [Indexed: 06/11/2023]
Abstract
The halophyte Mesembryanthemum crytallinum L. (ice plant) is marked by giant epidermal bladder cells (EBC). The differentiation of pavement cells into EBC occurs at an early developmental stage. EBC occupy most of the surface area in the aerial parts of salt-stressed mature ice plants. A large vacuolar reservoir for ion and water storage plays an important role in salinity adaptation. To monitor the acidity of the vacuole at different developmental stages of EBC, peels from the abaxial surface were stained with a pH-sensitive dye, neutral red (NR). Presence of both NR-stained (acidic) and NR-unstained (neutral) EBC were found at the juvenile stage in ice plants. Continuous exposure to illumination decreased the acidity of the NR-stained cells. The EBC protein profile illustrated the prominent co-existence of highly acidic and basic proteins in these specialised cells. Major proteins that accumulate in EBC are involved in photosynthesis, sodium compartmentalisation, and defence. Numerous raphide crystals were found in well fertilised ice plants. Salt-stressed cells exhibited changes in the surface charge and element composition of raphide crystals. A disappearance of potassium in the high-salt grown crystals suggests that these crystals might serve as a potassium reservoir to maintain the Na+/K+ homeostasis in this halophyte.
Collapse
Affiliation(s)
- Yingtzy Jou
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ya-Ling Wang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
35
|
Kumar N, Kumar S, Vats SK, Ahuja PS. Effect of altitude on the primary products of photosynthesis and the associated enzymes in barley and wheat. PHOTOSYNTHESIS RESEARCH 2006; 88:63-71. [PMID: 16450048 DOI: 10.1007/s11120-005-9028-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 10/19/2005] [Indexed: 05/06/2023]
Abstract
There is little information available on the primary products of photosynthesis and the change in the activity of the associated enzymes with altitude. We studied the same in varieties of barley and wheat grown at 1300 (low altitude, LA) and 4200 m (high altitude, HA) elevations above mean sea level in the western Himalayas. Plants at both the locations had similar photosynthetic rates, leaf water potential and the chlorophyll fluorescence kinetics. The short-term radio-labelling experiments in leaves showed appearance of (14)CO(2) in phosphoglyceric acid and sugar phosphates in plants at both the LA and HA, suggesting a major role of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in CO(2) fixation in the plants at two altitudes, whereas the appearance of labelled carbon in aspartate (Asp) and glutamate (Glu) at HA suggested a role of phosphoenolpyruvate carboxylase (PEPCase) in photosynthesis metabolism. Plants at HA had significantly higher activities of PEPCase, carboxylase and oxygenase activity of Rubisco, aspartate aminotransferase (AspAT), and glutamine synthetase (GS). However, the activities of malate dehydrogenase, NAD-malic enzyme and citrate synthase were similar at the two locations. Such an altered metabolism at HA suggested that PEPCase probably captured CO(2) directly from the atmosphere and/or that generated metabolically e.g. from photorespiration at HA. Higher oxygenase activity at HA suggests high photorespiratory activity. OAA thus produced could be additionally channelised for Asp synthesis using Glu as a source of ammonia. Higher GS activity ensures higher assimilation rate of NH(3) and the synthesis of Glu through GS-GOGAT (glutamine:2-oxoglutarate aminotransferase) pathway, also as supported by the appearance of radiolabel in Glu at HA. Enhanced PEPCase activity coupled with higher activities of AspAT and GS suggests a role in conserving C and N in the HA environment.
Collapse
Affiliation(s)
- Narinder Kumar
- Biotechnology Division, Institute of Himalayan Bioresource Technology, 176 061, Palampur, HP, India
| | | | | | | |
Collapse
|
36
|
Jou Y, Chou PH, He M, Hung Y, Yen HE. Tissue-specific expression and functional complementation of a yeast potassium-uptake mutant by a salt-induced ice plant gene mcSKD1. PLANT MOLECULAR BIOLOGY 2004; 54:881-93. [PMID: 15604658 DOI: 10.1007/s11103-004-0335-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A full-length salt-induced transcript homologous to SKD1 (suppressor of K(+) transport growth defect) of the AAA (ATPase associated with a variety of cellular activities)-type ATPase family has been identified from the halophyte Mesembryanthemum crystallinum (ice plant). The expression of mcSKD1 was induced by 200 mM NaCl or higher in cultured ice plant cells. When cultured ice plant cells were grown in a high K(+) (42.6 mM) medium, the level of mcSKD1 expression decreased. At the whole plant level, constitutive expression of mcSKD1 was observed in roots, stems, leaves and floral organs. Addition of 400 mM NaCl increased the transcript level in roots and stems. The expression of atSKD1 , a homologue gene in Arabidopsis , was down regulated by salt stress. Under salt stress, mcSKD1 was preferentially expressed in the outer cortex of roots and stems and in the epidermal bladder cells of leaves. The mcSKD1 transcript was constitutively expressed in placenta and integuments of the developing floral buds. Expression of the full-length or C-terminal deletion of mcSKD1 was able to complement the K(+) uptake-defect phenotype in mutant Saccharomyces cerevisiae , which is defective in high- and low-affinity K(+) uptake. Deletion of the N-terminal coiled-coil motif of mcSKD1, a structure required for membrane association, resulted in greatly reduced K(+) transport. Expression of mcSKD1 also increased the salt-tolerant ability of yeast mutants and either N- or C-terminal deletion decreased the efficiency. The physiological relevancies of mcSKD1 for K(+) uptake under high salinity environments are discussed.
Collapse
Affiliation(s)
- Yingtzy Jou
- Department of Life Sciences, National Chung-Hsing University, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Reddy AR, Sundar D, Gnanam A. Photosynthetic flexibility in Pedilanthus tithymaloides poit, a CAM plant. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:75-80. [PMID: 12685049 DOI: 10.1078/0176-1617-00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The induction of CAM in Pedilanthus tithymaloides (Euphorbiaceae) under water-limited conditions was evaluated by following diurnal oscillations of CO2 fixation, titratable acidity and malic acid content in the leaf extracts. CAM induction was assessed by measuring the activities of phosphoenolpyruvate carboxylase (PEPC), NADH-malate dehydrogenase (MDH) and phosphoenolpyruvate caroxykinase (PEPCK) in the leaves as well. Drought resulted in large increases in the nocturnal acid accumulation and rates of CO2 uptake in the leaves of P. tithymaloides. The drought-induced CAM activity tended to be reversible after re-watering. Nevertheless, under well-watered conditions, plants of P. tithymaloides showed day time CO2 uptake patterns with less pronounced diurnal oscillations of organic acids. Our data indicate that although P. tithymaloides is a CAM plant, environmental variables like drought induce photosynthetic flexibility in this species. This type of plasticity in CAM and metabolic versatility in P. tithymaloides should be an adaptation for prolonged survival under natural adverse edaphic and microclimate situations.
Collapse
|
38
|
Yang J, Yen HE. Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. PLANT PHYSIOLOGY 2002; 130:1032-42. [PMID: 12376666 PMCID: PMC166628 DOI: 10.1104/pp.004325] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Revised: 04/04/2002] [Accepted: 06/03/2002] [Indexed: 05/19/2023]
Abstract
A technique based on Fourier transform infrared (FT-IR) spectrometry was developed to detect the corresponding changes in chemical composition associated with the rapid changes in sodium and water content in 200 mM NaCl-stressed halophyte ice plants (Mesembryanthemum crystallinum). The changes in glycophyte Arabidopsis stressed with 50 mM NaCl were also examined for comparison. The obtained IR spectra were further processed by deconvolution and curve fitting to examine the chemical nature of the responding sources in the leaves. Using three stages of ice plant leaves, absorption bands corresponding to carbohydrates, cell wall pectin, and proteins were identified, with distinct IR spectra representing each developmental stage. Within 48 h of mild salt stress, the absorption band intensities in the fingerprint region increased continuously in both plants, suggesting that the carbon assimilation was not affected at the early stage of stress. The intensities of ester and amide I absorption bands decreased slightly in Arabidopsis but increased in ice plant, suggesting that the cell expansion and protein synthesis ceased in Arabidopsis but continued in ice plant. In both plants, the shift in amide I absorption band was observed hourly after salt stress, indicating a rapid conformational change of cellular proteins. Analyses of the ratio between major and minor amide I absorption band revealed that ice plant was able to maintain a higher-ordered form of proteins under stress. Furthermore, the changes in protein conformation showed a positive correlation to the leaf sodium contents in ice plant, but not in Arabidopsis.
Collapse
Affiliation(s)
- Jyisy Yang
- Department of Chemistry, National Chung-Hsing University, Taichung, Taiwan 40227
| | | |
Collapse
|
39
|
Cushman JC, Borland AM. Induction of Crassulacean acid metabolism by water limitation. PLANT, CELL & ENVIRONMENT 2002; 25:295-310. [PMID: 11841671 DOI: 10.1046/j.0016-8025.2001.00760.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Crassulacean acid metabolism (CAM), a key adaptation of photosynthetic carbon fixation to limited water availability, is characterized by nocturnal CO2 fixation and daytime CO2 re-assimilation, which generally results in improved water-use efficiency. However, CAM plants display a remarkable degree of photosynthetic plasticity within a continuum of diel gas exchange patterns. Genotypic, ontogenetic and environmental factors combine to govern the extent to which CAM is expressed. The ecological diversity of CAM is mirrored by plasticity in a range of biochemical and physiological attributes. In C3/CAM-intermediate plants, limited water availability can induce or enhance the expression of CAM. CAM induction is controlled by a combination of transcriptional, post-transcriptional and post-translational regulatory events. Early events in CAM induction point to a requirement for calcium and calcium-dependent protein kinase activities. Gene discovery efforts, improved transformation technologies and genetic models for CAM plants, coupled with detailed physiological investigations, will lead to new insights into the molecular genetic basis of induction processes and the circadian oscillator that governs carbon flux during CAM. Future integration of genomic, biochemical and physiological approaches in selected CAM models promise to provide a detailed view of the complex regulatory dynamics involved in CAM induction and modulation by water deficit. Such information is expected to have broad significance as the ecological and agricultural importance of CAM species increases in the face of global warming trends and the associated expansion of desertification in semi-arid regions around the world.
Collapse
Affiliation(s)
- J. C. Cushman
- Department of Biochemistry/MS200, University of Nevada, Reno, NV 89557-0014, USA and Department of Agricultural and Environmental Science, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK
| | | |
Collapse
|
40
|
Yen SK, Chung MC, Chen PC, Yen HE. Environmental and developmental regulation of the wound-induced cell wall protein WI12 in the halophyte ice plant. PLANT PHYSIOLOGY 2001. [PMID: 11598226 DOI: 10.1104/pp.010205] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A wounded gene WI12 was used as a marker to examine the interaction between biotic stress (wounding) and abiotic stress (high salt) in the facultative halophyte ice plant (Mesembryanthemum crystallinum). The deduced WI12 amino acid sequence has 68% similarity to WUN1, a known potato (Solanum tuberosum) wound-induced protein. Wounding, methyl jasmonate, and pathogen infection induced local WI12 expression. Upon wounding, the expression of WI12 reached a maximum level after 3 h in 4-week-old juvenile leaves, whereas the maximum expression was after 24 h in 8-week-old adult leaves. The temporal expression of WI12 in salt-stressed juvenile leaves was similar to that of adult leaves. The result suggests that a salt-induced switch from C3 to Crassulacean acid metabolism has a great influence on the ice plant's response to wounding. The expression of WI12 and the accumulation of WI12 protein were constitutively found in phloem and in wounded mesophyll cells. At the reproductive stage, WI12 was constitutively found in petals and styles, and developmentally regulated in the placenta and developing seeds. The histochemical analysis showed that the appearance of WI12 is controlled by both environmental and developmental factors. Immunogold labeling showed WI12 preferentially accumulates in the cell wall, suggesting its role in the reinforcement of cell wall composition after wounding and during plant development.
Collapse
Affiliation(s)
- S K Yen
- Department of Botany, National Chung-Hsing University, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|
41
|
Guralnick LJ, Ku MS, Edwards GE, Strand D, Hockema B, Earnest J. Induction of PEP carboxylase and crassulacean acid metabolism by gibberellic acid in Mesembryanthemum crystallinum. PLANT & CELL PHYSIOLOGY 2001; 42:236-239. [PMID: 11230579 DOI: 10.1093/pcp/pce020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The induction of Crassulacean acid metabolism in M:esembryanthemum crystallinum was investigated in response to foliar application of gibberellic acid (GA). After 5 weeks of treatment, GA-treated plants showed 1.7- to almost a 4-fold increase of phosphoenolpyruvate carboxylase (PEPcase) activity with a concomitant increase in acid metabolism when compared to control plants. Immunoblot analysis indicated an increase in the PEPcase protein similar to that of salt treatment while Rubisco did not show a similar rise. The results indicate that exogenously applied GA accelerates plant developmental expression of PEPcase and Crassulacean acid metabolism in M: crystallinum.
Collapse
Affiliation(s)
- L J Guralnick
- Division of Natural Science and Mathematics, Western Oregon University, Monmouth, OR 97361, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Dai Z, Hooker BS, Anderson DB, Thomas SR. Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Transgenic Res 2000; 9:43-54. [PMID: 10853268 DOI: 10.1023/a:1008922404834] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The expression of the Acidothermus cellulolyticus endoglucanase E1 gene in transgenic tobacco (Nicotiana tabacum) was examined in this study, where E1 coding sequence was transcribed under the control of a leaf specific Rubisco small subunit promoter (tomato RbcS-3C). Targeting the E1 protein to the chloroplast was established using a chloroplast transit peptide of Rubisco small subunit protein (tomato RbcS-2A) and confirmed by immunocytochemistry. The E1 produced in transgenic tobacco plants was found to be biologically active, and to accumulate in leaves at levels of up to 1.35% of total soluble protein. Optimum temperature and pH for E1 enzyme activity in leaf extracts were 81 degrees C and 5.25, respectively. E1 activity remained constant on a gram fresh leaf weight basis, but dramatically increased on a total leaf soluble protein basis as leaves aged, or when leaf discs were dehydrated. E1 protein in old leaves, or after 5 h dehydration, was partially degraded although E1 activity remained constant. Transgenic plants exhibited normal growth and developmental characteristics with photosynthetic rates similar to those of untransformed SR1 tobacco plants. Results from these biochemical and physiological analyses suggest that the chloroplast is a suitable cellular compartment for accumulation of the hydrolytic E1 enzyme.
Collapse
Affiliation(s)
- Z Dai
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | |
Collapse
|
43
|
|
44
|
Taybi T, Cushman JC. Signaling events leading to crassulacean acid metabolism induction in the common ice plant. PLANT PHYSIOLOGY 1999; 121:545-56. [PMID: 10517846 PMCID: PMC59417 DOI: 10.1104/pp.121.2.545] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/1999] [Accepted: 06/22/1999] [Indexed: 05/22/2023]
Abstract
A rapid, semiquantitative reverse transcriptase-polymerase chain reaction assay was developed to investigate signal transduction events involved in the induction of Crassulacean acid metabolism (CAM) in detached common ice plant (Mesembryanthemum crystallinum) leaves. Transcript abundance of Ppc1, a gene encoding the CAM-specific isoform of phosphoenolpyruvate carboxylase, increased rapidly in response to osmotic stress (dehydration and mannitol), ionic stress (NaCl), and exogenous abscisic acid treatment, but failed to accumulate in response to exogenous cytokinin or methyl jasmonate. Stress-induced accumulation of Ppc1, GapC1, and Mdh1 transcripts was inhibited by pretreating leaves with the calcium chelator ethyleneglycol-bis(aminoethyl ether)-N,N'-tetraacetic acid, suggesting that extracellular calcium participates in signaling events leading to CAM induction. Treatment of unstressed detached leaves with ionomycin, a Ca(2+) ionophore, and thapsigargin, a Ca(2+)-ATPase inhibitor, enhanced Ppc1 transcript accumulation, indicating that elevations in cytosolic [Ca(2+)] are likely to participate in signaling CAM induction. Inhibitors of Ca(2+)- or calmodulin-dependent protein kinases (N-[6-aminohexyl]-5-chloro-1-napthalenesulfonamide, Lavendustin C) and protein phosphatase 1 and 2A (okadaic acid) activity suppressed Ppc1 transcript accumulation in response to ionic and osmotic stresses, as well as abscisic acid treatment. These results suggest that both protein phosphorylation and dephosphorylation events participate in signaling during CAM induction. In contrast, pretreatment with cyclosporin A or ascomycin, inhibitors of protein phosphatase 2B activity, stimulated Ppc1 gene expression either directly or indirectly through promoting water loss.
Collapse
Affiliation(s)
- T Taybi
- Department of Biochemistry and Molecular Biology, 147 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | |
Collapse
|
45
|
Herrera A. Effects of photoperiod and drought on the induction of crassulacean acid metabolism and the reproduction of plants of Talinum triangulare. ACTA ACUST UNITED AC 1999. [DOI: 10.1139/b99-036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the effects of day length on the induction of crassulacean acid metabolism (CAM) by drought in the tropical species, Talinum triangulare (Jacq.) Willd. (Portulacaceae), plants were subjected to drought under different photoperiods. Nocturnal acid accumulation was 52 µmol H+··g-1 fresh mass (FM) in plants grown under a 10 h light : 14 h dark photoperiod and 76 µmol H+·g-1 FM in plants grown under 13 h light : 11 h dark, whereas it was only 10 µmol H+·g-1 FM in plants grown under 18 h light : 6 h dark. Plants were subjected to drought under short days and under short days with a night interruption of 1.5 h white light, aiming to simulate a long day, while minimally affecting daily carbon balance. Only droughted plants under normal short days accumulated acids during the night. Absence of CAM could not be attributed to differences due to photoperiod in either biomass allocation, chlorophyll content, or leaf water content. Photoperiod did not significantly affect fecundity in watered plants, whereas drought markedly reduced fecundity in plants with night interruption relative to plants under normal short days. Reproductive effort, calculated as seeds per gram leaf, was significantly higher in droughted plants under normal short days and watered plants with and without night interruption than in droughted plants with night interruption.Key words: CAM, crassulacean acid metabolism, drought, fecundity, induction, photoperiod, reproductive effort, reproduction, Talinum triangulare
Collapse
|
46
|
Barkla, Vera-Estrella, Maldonado-Gama, Pantoja. Abscisic acid induction of vacuolar H+-ATPase activity in mesembryanthemum crystallinum is developmentally regulated. PLANT PHYSIOLOGY 1999; 120:811-20. [PMID: 10398716 PMCID: PMC59319 DOI: 10.1104/pp.120.3.811] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/1999] [Accepted: 04/02/1999] [Indexed: 05/21/2023]
Abstract
Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways.
Collapse
Affiliation(s)
- Barkla
- Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, A.P. 510-3, Colonia Miraval, Cuernavaca, Morelos, Mexico 62250, USA
| | | | | | | |
Collapse
|
47
|
Abstract
▪ Abstract Crassulacean acid metabolism (CAM) is an adaptation of photosynthesis to limited availability of water or CO2. CAM is characterized by nocturnal CO2 fixation via the cytosolic enzyme PEP carboxylase (PEPC), formation of PEP by glycolysis, malic acid accumulation in the vacuole, daytime decarboxylation of malate and CO2 re-assimilation via ribulose-1,5-bisphosphate carboxylase (RUBISCO), and regeneration of storage carbohydrates from pyruvate and/or PEP by gluconeogenesis. Within this basic framework, the pathway exhibits an extraordinary range of metabolic plasticity governed by environmental, developmental, tissue-specific, hormonal, and circadian cues. Characterization of genes encoding key CAM enzymes has shown that a combination of transcriptional, posttranscriptional, translational, and posttranslational regulatory events govern the expression of the pathway. Recently, this information has improved our ability to dissect the regulatory and signaling events that mediate the expression and operation of the pathway. Molecular analysis and sequence information have also provided new ways of assessing the evolutionary origins of CAM. Genetic and physiological analysis of transgenic plants currently under development will improve our further understanding of the molecular genetics of CAM.
Collapse
Affiliation(s)
- John C. Cushman
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-0454; e-mail: , Department of Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088; e-mail:
| | | |
Collapse
|
48
|
Barkla BJ, Vera-Estrella R, Pantoja O. Towards the production of salt-tolerant crops. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 464:77-89. [PMID: 10335387 DOI: 10.1007/978-1-4615-4729-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Crop production is affected by numerous environmental factors, with soil salinity and drought having the most detrimental effects. Attempts to improve yield under stress conditions by plant breeding have been unsuccessful, primarily due to the multigenic origin of the adaptive responses. The transfer of genes through genetic engineering of crop plants appears more feasible. Important adaptive mechanisms targeted for potential gene transfer would be the tonoplast Na+/H+ antiport, compatible solute synthesis and, regulation of water channel activity and expression, mechanisms involved in cellular osmoregulation. In this review we discuss recent advances in our understanding of these adaptive mechanisms.
Collapse
Affiliation(s)
- B J Barkla
- Departamento de Biología Molecular de Plantas, UNAM, Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|
49
|
Abstract
Plants subjected to water stress undergo numerous physiological and metabolic changes. A general decrease in photosynthetic rate is among the most common responses. This is due to a programmed process involving the closure of stomata and reduction in the activity of photosynthetic enzymes. The plant hormone abscisic acid plays an important role in this process. Accumulation of compatible solutes, during water stress, is thought to be an adaptive response which has been developed by some plant species. Engineering the genes involved in the synthesis of these compounds, into nonaccumulating plants, has demonstrated promising results for genetic improvement of drought tolerance. Drought stress induces alteration of gene expression. A large number of genes which are upregulated by water stress have been isolated and characterized. Proteins encoded by some of these genes share several characteristics. The biochemical role of most of these gene products is unknown, but potential adaptive functions have been suggested. Abscisic acid is involved in the regulation of some of these genes.
Collapse
Affiliation(s)
- Z Tabaeizadeh
- Department of Biological Sciences, University of Quebec, Montreal, Canada
| |
Collapse
|
50
|
Ueno O. Induction of kranz anatomy and C4-like biochemical characteristics in a submerged amphibious plant by abscisic acid. THE PLANT CELL 1998; 10:571-84. [PMID: 9548983 PMCID: PMC144017 DOI: 10.1105/tpc.10.4.571] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The amphibious leafless sedge Eleocharis vivipara develops C4-like traits as well as Kranz anatomy under terrestrial conditions, but it develops C3-like traits without Kranz anatomy under submerged conditions. When submerged plants are exposed to aerial conditions, they rapidly produce new photosynthetic tissues with C4-like traits. In this study, experiments were performed to determine whether abscisic acid (ABA), a plant stress hormone, could induce the formation of photosynthetic tissues with Kranz anatomy and C4-like biochemical traits under water in the submerged form. When the submerged plants were grown in water containing 5 &mgr;M ABA, they developed new photosynthetic tissues with Kranz anatomy, forming well-developed Kranz (bundle sheath) cells that contained many organelles. The ABA-induced tissues accumulated large amounts of phosphoenolpyruvate carboxylase, pyruvate orthophosphate dikinase, and NAD-malic enzyme at the appropriate cellular sites. The tissues had 3.4 to 3.8 times more C4 enzyme activity than did tissues of the untreated submerged plants. Carbon-14 pulse and carbon-12 chase experiments revealed that the ABA-induced tissues fixed higher amounts of carbon-14 into C4 compounds and lower amounts of carbon-14 into C3 compounds as initial products than did the submerged plants and that they exhibited a C4-like pattern of carbon fixation under aqueous conditions of low carbon, indicating enhanced C4 capacity in the tissues. This report provides an example of the hormonal control of the differentiation of the structural and functional traits required for the C4 pathway.
Collapse
Affiliation(s)
- O Ueno
- Department of Plant Physiology, National Institute of Agrobiological Resources, Kannondai 2-1-2, Tsukuba, Ibaraki 305, Japan
| |
Collapse
|