1
|
Leverett A, Borland AM. Elevated nocturnal respiratory rates in the mitochondria of CAM plants: current knowledge and unanswered questions. ANNALS OF BOTANY 2023; 132:855-867. [PMID: 37638861 PMCID: PMC10799998 DOI: 10.1093/aob/mcad119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Crassulacean acid metabolism (CAM) is a metabolic adaptation that has evolved convergently in 38 plant families to aid survival in water-limited niches. Whilst primarily considered a photosynthetic adaptation, CAM also has substantial consequences for nocturnal respiratory metabolism. Here, we outline the history, current state and future of nocturnal respiration research in CAM plants, with a particular focus on the energetics of nocturnal respiratory oxygen consumption. Throughout the 20th century, research interest in nocturnal respiration occurred alongside initial discoveries of CAM, although the energetic and mechanistic implications of nocturnal oxygen consumption and links to the operation of the CAM cycle were not fully understood. Recent flux balance analysis (FBA) models have provided new insights into the role that mitochondria play in the CAM cycle. Several FBA models have predicted that CAM requires elevated nocturnal respiratory rates, compared to C3 species, to power vacuolar malic acid accumulation. We provide physiological data, from the genus Clusia, to corroborate these modelling predictions, thereby reinforcing the importance of elevated nocturnal respiratory rates for CAM. Finally, we outline five unanswered questions pertaining to nocturnal respiration which must be addressed if we are to fully understand and utilize CAM plants in a hotter, drier world.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge CB2 3EA, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
2
|
Maurino VG, Engqvist MKM. 2-Hydroxy Acids in Plant Metabolism. THE ARABIDOPSIS BOOK 2015; 13:e0182. [PMID: 26380567 PMCID: PMC4568905 DOI: 10.1199/tab.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis.
Collapse
Affiliation(s)
- Veronica G. Maurino
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Martin K. M. Engqvist
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Fahnenstich H, Saigo M, Niessen M, Zanor MI, Andreo CS, Fernie AR, Drincovich MF, Flügge UI, Maurino VG. Alteration of organic acid metabolism in Arabidopsis overexpressing the maize C4 NADP-malic enzyme causes accelerated senescence during extended darkness. PLANT PHYSIOLOGY 2007; 145:640-52. [PMID: 17885087 PMCID: PMC2048770 DOI: 10.1104/pp.107.104455] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 09/14/2007] [Indexed: 05/17/2023]
Abstract
The full-length cDNA encoding the maize (Zea mays) C(4) NADP-malic enzyme was expressed in Arabidopsis (Arabidopsis thaliana) under the control of the cauliflower mosaic virus 35S promoter. Homozygous transgenic plants (MEm) were isolated with activities ranging from 6- to 33-fold of those found in the wild type. The transformants did not show any differences in morphology and development when grown in long days; however, dark-induced senescence progressed more rapidly in MEm plants compared to the wild type. Interestingly, senescence could be retarded in the transgenic lines by exogenously supplying glucose, sucrose, or malate, suggesting that the lack of a readily mobilized carbon source is likely to be the initial factor leading to the premature induction of senescence in MEm plants. A comprehensive metabolic profiling on whole rosettes allowed determination of approximately 80 metabolites during a diurnal cycle as well as following dark-induced senescence and during metabolic complementation assays. MEm plants showed no differences in the accumulation and degradation of carbohydrates with respect to the wild type in all conditions tested, but accumulated lower levels of intermediates used as respiratory substrates, prominently malate and fumarate. The data indicated that extremely low levels of malate and fumarate are responsible for the accelerated dark-induced senescence encountered in MEm plants. Thus, in prolonged darkness these metabolites are consumed faster than in the wild type and, as a consequence, MEm plants enter irreversible senescence more rapidly. In addition, the data revealed that both malate and fumarate are important forms of fixed carbon that can be rapidly metabolized under stress conditions in Arabidopsis.
Collapse
|
4
|
Griffiths H, Cousins AB, Badger MR, von Caemmerer S. Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle. PLANT PHYSIOLOGY 2007; 143:1055-67. [PMID: 17142488 PMCID: PMC1803711 DOI: 10.1104/pp.106.088302] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 11/08/2006] [Indexed: 05/12/2023]
Abstract
A model defining carbon isotope discrimination (delta13C) for crassulacean acid metabolism (CAM) plants was experimentally validated using Kalanchoe daigremontiana. Simultaneous measurements of gas exchange and instantaneous CO2 discrimination (for 13C and 18O) were made from late photoperiod (phase IV of CAM), throughout the dark period (phase I), and into the light (phase II). Measurements of CO2 response curves throughout the dark period revealed changing phosphoenolpyruvate carboxylase (PEPC) capacity. These systematic changes in PEPC capacity were tracked by net CO2 uptake, stomatal conductance, and online delta13C signal; all declined at the start of the dark period, then increased to a maximum 2 h before dawn. Measurements of delta13C were higher than predicted from the ratio of intercellular to external CO2 (p(i)/p(a)) and fractionation associated with CO2 hydration and PEPC carboxylations alone, such that the dark period mesophyll conductance, g(i), was 0.044 mol m(-2) s(-1) bar(-1). A higher estimate of g(i) (0.085 mol m(-2) s(-1) bar(-1)) was needed to account for the modeled and measured delta18O discrimination throughout the dark period. The differences in estimates of g(i) from the two isotope measurements, and an offset of -5.5 per thousand between the 18O content of source and transpired water, suggest spatial variations in either CO2 diffusion path length and/or carbonic anhydrase activity, either within individual cells or across a succulent leaf. Our measurements support the model predictions to show that internal CO2 diffusion limitations within CAM leaves increase delta13C discrimination during nighttime CO2 fixation while reducing delta13C during phase IV. When evaluating the phylogenetic distribution of CAM, carbon isotope composition will reflect these diffusive limitations as well as relative contributions from C3 and C4 biochemistry.
Collapse
Affiliation(s)
- Howard Griffiths
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.
| | | | | | | |
Collapse
|
5
|
Holtum JAM, Smith JAC, Neuhaus HE. Intracellular transport and pathways of carbon flow in plants with crassulacean acid metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:429-449. [PMID: 32689145 DOI: 10.1071/fp04189] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Accepted: 02/22/2005] [Indexed: 06/11/2023]
Abstract
The massive daily reciprocal transfer of carbon between acids and carbohydrates that is unique to crassulacean acid metabolism (CAM) involves extensive and regulated transport of metabolites between chloroplasts, vacuoles, the cytosol and mitochondria. In this review of the CAM pathways of carbon flow and intracellular transport, we highlight what is known and what has been postulated. For three of the four CAM pathway variants currently known (malic enzyme- or PEP carboxykinase-type decarboxylase, and starch- or soluble sugar-type carbohydrate storage), the mechanisms of intracellular transport are still hypothetical and have yet to be demonstrated experimentally. Even in malic enzyme starch-storing species such as Kalanchoë daigremontiana Hamet et Perr. and Mesembryanthemum crystallinum L., the best-described variants of plants with the second-most common mode of photosynthetic carbon metabolism known, no tonoplast or mitochondrial transporter has been functionally described at a molecular level.
Collapse
Affiliation(s)
- Joseph A M Holtum
- School of Tropical Biology, James Cook University, Townsville, Qld 4811, Australia
| | - J Andrew C Smith
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - H Ekkehard Neuhaus
- Universität Kaiserslautern, Pflanzenphysiologie, Erwin Schrödinger-Strasse, D-67653 Kaiserslautern, Germany
| |
Collapse
|
6
|
Abstract
BACKGROUND AND SCOPE Crassulacean Acid Metabolism (CAM) as an ecophysiological modification of photosynthetic carbon acquisition has been reviewed extensively before. Cell biology, enzymology and the flow of carbon along various pathways and through various cellular compartments have been well documented and discussed. The present attempt at reviewing CAM once again tries to use a different approach, considering a wide range of inputs, receivers and outputs. INPUT Input is given by a network of environmental parameters. Six major ones, CO(2), H(2)O, light, temperature, nutrients and salinity, are considered in detail, which allows discussion of the effects of these factors, and combinations thereof, at the individual plant level ('physiological aut-ecology'). RECEIVERS Receivers of the environmental cues are the plant types genotypes and phenotypes, the latter including morphotypes and physiotypes. CAM genotypes largely remain 'black boxes', and research endeavours of genomics, producing mutants and following molecular phylogeny, are just beginning. There is no special development of CAM morphotypes except for a strong tendency for leaf or stem succulence with large cells with big vacuoles and often, but not always, special water storage tissues. Various CAM physiotypes with differing degrees of CAM expression are well characterized. OUTPUT Output is the shaping of habitats, ecosystems and communities by CAM. A number of systems are briefly surveyed, namely aquatic systems, deserts, salinas, savannas, restingas, various types of forests, inselbergs and paramós. CONCLUSIONS While quantitative census data for CAM diversity and biomass are largely missing, intuition suggests that the larger CAM domains are those systems which are governed by a network of interacting stress factors requiring versatile responses and not systems where a single stress factor strongly prevails. CAM is noted to be a strategy for variable, flexible and plastic niche occupation rather than lush productivity. 'Physiological syn-ecology' reveals that phenotypic plasticity constitutes the ecophysiological advantage of CAM.
Collapse
Affiliation(s)
- Ulrich Lüttge
- Institute of Botany, Technical University of Darmstadt, Schnittspahnstrasse 3-5, D-64287 Darmstadt, Germany.
| |
Collapse
|
7
|
|
8
|
Edwards, Nguyen, Do, Roberts. Contribution of malic enzyme, pyruvate kinase, phosphoenolpyruvate carboxylase, and the krebs cycle to respiration and biosynthesis and to intracellular pH regulation during hypoxia in maize root tips observed by nuclear magnetic resonance imaging and gas chromatography-mass spectrometry. PLANT PHYSIOLOGY 1998; 116:1073-81. [PMID: 9501140 PMCID: PMC35077 DOI: 10.1104/pp.116.3.1073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/1997] [Accepted: 11/14/1997] [Indexed: 05/18/2023]
Abstract
In vivo pyruvate synthesis by malic enzyme (ME) and pyruvate kinase and in vivo malate synthesis by phosphoenolpyruvate carboxylase and the Krebs cycle were measured by 13C incorporation from [1-13C]glucose into glucose-6-phosphate, alanine, glutamate, aspartate, and malate. These metabolites were isolated from maize (Zea mays L.) root tips under aerobic and hypoxic conditions. 13C-Nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to discern the positional isotopic distribution within each metabolite. This information was applied to a simple precursor-product model that enabled calculation of specific metabolic fluxes. In respiring root tips, ME was found to contribute only approximately 3% of the pyruvate synthesized, whereas pyruvate kinase contributed the balance. The activity of ME increased greater than 6-fold early in hypoxia, and then declined coincident with depletion of cytosolic malate and aspartate. We found that in respiring root tips, anaplerotic phosphoenolpyruvate carboxylase activity was high relative to ME, and therefore did not limit synthesis of pyruvate by ME. The significance of in vivo pyruvate synthesis by ME is discussed with respect to malate and pyruvate utilization by isolated mitochondria and intracellular pH regulation under hypoxia.
Collapse
Affiliation(s)
- Edwards
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
9
|
|
10
|
Clusia: Plasticity and Diversity in a Genus of C3/CAM Intermediate Tropical Trees. CRASSULACEAN ACID METABOLISM 1996. [DOI: 10.1007/978-3-642-79060-7_20] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Cook RM, Lindsay JG, Wilkins MB, Nimmo HG. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme). PLANT PHYSIOLOGY 1995; 109:1301-1307. [PMID: 12228671 PMCID: PMC157663 DOI: 10.1104/pp.109.4.1301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The role of NAD-malic enzyme (NAD-ME) in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoe) fedtschenkoi was investigated using preparations of intact and solubilized mitochondria from fully expanded leaves. Intact, coupled mitochondria isolated during the day or night did not differ in their ability to take up [14C]malic acid from the surrounding medium or to respire using malate or succinate as substrate. However, intact mitochondria isolated from plants during the day decarboxylated added malate to pyruvate significantly faster than mitochondria isolated from plants at night. NAD-ME activity in solubilized mitochondrial extracts showed hysteretic kinetics and was stimulated by a number of activators, including acetyl-coenzyme A, fructose-1,6-bisphosphate, and sulfate ions. In the absence of these effectors, reaction progress curves were nonlinear, with a pronounced acceleration phase. The lag period before a steady-state rate was reached in assays of mitochondrial extracts decreased during the photoperiod and increased slowly during the period of darkness. However, these changes in the kinetic properties of the enzyme could not account for the changes in the rate of decarboxylation of malate by intact mitochondria. Gel-filtration experiments showed that mitochondrial extracts contained three forms of NAD-ME with different molecular weights. The relative proportions of the three forms varied somewhat throughout the light/dark cycle, but this did not account for the changes in the kinetics behavior of the enzyme during the diurnal cycle.
Collapse
Affiliation(s)
- R. M. Cook
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | |
Collapse
|
12
|
Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC, Maxwell C. Carbon-Isotope Composition of Biochemical Fractions and the Regulation of Carbon Balance in Leaves of the C3-Crassulacean Acid Metabolism Intermediate Clusia minor L. Growing in Trinidad. PLANT PHYSIOLOGY 1994; 106:493-501. [PMID: 12232344 PMCID: PMC159554 DOI: 10.1104/pp.106.2.493] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbon-isotope ratios ([delta]13Cs) were measured for various bio-chemical fractions quantitatively extracted from naturally exposed and shaded leaves of the C3-Crassulacean acid metabolism (CAM) intermediate Clusia minor, sampled at dawn and dusk on days during the wet and dry seasons in Trinidad. As the activity of CAM increased in response to decreased availability of water and higher photon flux density, organic acids and soluble sugars were enriched in 13C by approximately 3.5 to 4%[per mille (thousand) sign] compared to plants sampled during the wet season. The induction of CAM was accompanied by a doubling in size of the reserve carbohydrate pools. Moreover, stoichiometric measurements indicated that degradation of both chloroplastic reserves and soluble sugars were necessary to supply phosphoenolpyruvate for the synthesis of organic acids at night. Results also suggest that two pools of soluble sugars exist in leaves of C. minor that perform CAM, one a vacuolar pool enriched in 13C and the second a transport pool depleted in 13C. Estimates of carbon-isotope discrimination expressed during CAM, derived from the trafficking among inorganic carbon, organic acids, and carbohydrate pools overnight, ranged from 0.9 to 3.1%[per mille (thousand) sign]. The [delta]13C of structural material did not change significantly between wet and dry seasons, indicating that most of the carbon used in growth was derived from C3 carboxylation.
Collapse
Affiliation(s)
- A. M. Borland
- Department of Agricultural and Environmental Science, Ridley Building, The University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC, Maxwell C. Short-term changes in carbon-isotope discrimination in the C3-CAM intermediate Clusia minor L. growing in Trinidad. Oecologia 1993; 95:444-453. [DOI: 10.1007/bf00321001] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1993] [Accepted: 06/10/1993] [Indexed: 10/26/2022]
|
14
|
13C nuclear magnetic resonance studies of malate and citrate synthesis and compartmentation in higher plant cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53568-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Robinson SA, Yakir D, Ribas-Carbo M, Giles L, Osmond CB, Siedow JN, Berry JA. Measurements of the Engagement of Cyanide-Resistant Respiration in the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana with the Use of On-Line Oxygen Isotope Discrimination. PLANT PHYSIOLOGY 1992; 100:1087-91. [PMID: 16653089 PMCID: PMC1075750 DOI: 10.1104/pp.100.3.1087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Discrimination against (18)O during dark respiration in tissues of Kalanchoë daigremontiana, Medicago sativa, and Glycine max was measured using an on-line system that enabled direct measurements of the oxygen fractionation of samples in a gas-phase leaf disk electrode unit. Discrimination factors for cytochrome pathway respiration were 18.6 to 19.8%(o) for all tissues. However, discrimination in cyanide-resistant respiration was significantly higher in green tissues (30.4-31.2%(o)) compared with nongreen tissues (25.3-25.9%(o)). Using these discrimination factors, the partitioning of electron transport to these pathways was calculated from measurements of discrimination in the absence of inhibitors. Changes in flux through the alternative pathway were measured during the light and dark phases of Crassulacean acid metabolism in leaf disks of K. daigremontiana. The flux of electrons through the alternative pathway was higher during deacidification than during the other phases of Crassulacean acid metabolism. The increase in alternative pathway electron flux accounted for all of the increased respiration in the light phase. Despite this increase, simultaneous measurements of malate concentration and respiratory flux confirm that only a small proportion of the total malate decarboxylation occurs in the mitochondria.
Collapse
Affiliation(s)
- S A Robinson
- Department of Botany, Duke University, Durham, North Carolina 27706
| | | | | | | | | | | | | |
Collapse
|