1
|
Kwasniak-Owczarek M, Janska H. Experimental approaches to studying translation in plant semi-autonomous organelles. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5175-5187. [PMID: 38592734 PMCID: PMC11389837 DOI: 10.1093/jxb/erae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Plant mitochondria and chloroplasts are semi-autonomous organelles originated from free-living bacteria that have retained reduced genomes during evolution. As a consequence, relatively few of the mitochondrial and chloroplast proteins are encoded in the organellar genomes and synthesized by the organellar ribosomes. Since both organellar genomes encode mainly components of the energy transduction systems, oxidative phosphorylation in mitochondria and photosynthetic apparatus in chloroplasts, understanding organellar translation is critical for a thorough comprehension of key aspects of mitochondrial and chloroplast activity affecting plant growth and development. Recent studies have clearly shown that translation is a key regulatory node in the expression of plant organellar genes, underscoring the need for an adequate methodology to study this unique stage of gene expression. The organellar translatome can be analysed by studying newly synthesized proteins or the mRNA pool recruited to the organellar ribosomes. In this review, we present experimental approaches used for studying translation in plant bioenergetic organelles. Their benefits and limitations, as well as the critical steps, are discussed. Additionally, we briefly mention several recently developed strategies to study organellar translation that have not yet been applied to plants.
Collapse
Affiliation(s)
- Malgorzata Kwasniak-Owczarek
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, Wroclaw, 50-383, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, Wroclaw, 50-383, Poland
| |
Collapse
|
2
|
Brambilla M, Chiari G, Commisso M, Nerva L, Musetti R, Petraglia A, Degola F. Glutamate dehydrogenase in "Liverworld"-A study in selected species to explore a key enzyme of plant primary metabolism in Marchantiophyta. PHYSIOLOGIA PLANTARUM 2023; 175:e14071. [PMID: 38148220 DOI: 10.1111/ppl.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
In plants, glutamate dehydrogenase (GDH) is an ubiquitous enzyme that catalyzes the reversible amination of 2-oxoglutarate in glutamate. It contributes to both the amino acid homeostasis and the management of intracellular ammonium, and it is regarded as a key player at the junction of carbon and nitrogen assimilation pathways. To date, information about the GDH of terrestrial plants refers to a very few species only. We focused on selected species belonging to the division Marchantiophyta, providing the first panoramic overview of biochemical and functional features of GDH in liverworts. Native electrophoretic analyses showed an isoenzymatic profile less complex than what was reported for Arabidposis thaliana and other angiosperms: the presence of a single isoform corresponding to an α-homohexamer, differently prone to thermal inactivation on a species- and organ-basis, was found. Sequence analysis conducted on amino acid sequences confirmed a high similarity of GDH in modern liverworts with the GDH2 protein of A. thaliana, strengthening the hypothesis that the duplication event that gave origin to GDH1-homolog gene from GDH2 occurred after the evolutionary bifurcation that separated bryophytes and tracheophytes. Experiments conducted on Marchantia polymorpha and Calypogeia fissa grown in vitro and compared to A. thaliana demonstrated through in gel activity detection and monodimensional Western Blot that the aminating activity of GDH resulted in strongly enhanced responses to ammonium excess in liverworts as well, even if at a different extent compared to Arabidopsis and other vascular species. The comparative analysis by bi-dimensional Western Blot suggested that the regulation of the enzyme could be, at least partially, untied from the protein post-translational pattern. Finally, immuno-electron microscopy revealed that the GDH enzyme localizes at the subcellular level in both mitochondria and chloroplasts of parenchyma and is specifically associated to the endomembrane system in liverworts.
Collapse
Affiliation(s)
- Martina Brambilla
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giorgio Chiari
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Conegliano, Italy
| | - Rita Musetti
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Padova, Italy
| | - Alessandro Petraglia
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Valadier MH, Yoshida A, Grandjean O, Morin H, Kronenberger J, Boutet S, Raballand A, Hase T, Yoneyama T, Suzuki A. Implication of the glutamine synthetase/glutamate synthase pathway in conditioning the amino acid metabolism in bundle sheath and mesophyll cells of maize leaves. FEBS J 2008; 275:3193-206. [DOI: 10.1111/j.1742-4658.2008.06472.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Miyashita Y, Good AG. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:667-80. [PMID: 18296429 DOI: 10.1093/jxb/erm340] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.
Collapse
Affiliation(s)
- Yo Miyashita
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | | |
Collapse
|
5
|
Purnell MP, Skopelitis DS, Roubelakis-Angelakis KA, Botella JR. Modulation of higher-plant NAD(H)-dependent glutamate dehydrogenase activity in transgenic tobacco via alteration of beta subunit levels. PLANTA 2005; 222:167-80. [PMID: 15803323 DOI: 10.1007/s00425-005-1510-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 02/05/2005] [Indexed: 05/03/2023]
Abstract
Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (~51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.
Collapse
|
6
|
Lawit SJ, Miller PW, Dunn WI, Mirabile JS, Schmidt RR. Heterologous expression of cDNAs encoding Chlorella sorokiniana NADP-specific glutamate dehydrogenase wild-type and mutant subunits in Escherichia coli cells and comparison of kinetic and thermal stability properties of their homohexamers. PLANT MOLECULAR BIOLOGY 2003; 52:605-616. [PMID: 12956530 DOI: 10.1023/a:1024822312038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Full-length cDNAs encoding the alpha- and beta-subunits and a truncated mutant subunit of the Chlorella sorokiniana NADP-GDH isozymes were constructed and expressed in Escherichia coli cells. The kinetic and thermal stability properties of the resultant homohexamers were examined. The electrophoretic mobility of the recombinant alpha- and beta-subunits was identical to that of the native subunits as determined by immunoblotting. The homohexamers were purified by anion-exchange and gel-filtration chromatography. The alpha- and beta-homohexamers that were synthesized in the bacterial cells were shown to have similar Michaelis constants for their substrates as previously shown after synthesis in C. sorokiniana cells (Bascomb and Schmidt, 1987). The alpha homohexamer synthesized in the bacterium was allosteric with respect to NADPH but to a lesser degree than when isolated from the alga. The mutant homohexamer was composed of subunits that were truncated by 40 amino acids at their N-termini. This mutant isozyme was kinetically similar to the larger, anabolic alpha-homohexamer, but it did not display the allosteric response to NADPH shown by the alpha-homohexamer. The three isozymes had significant thermal tolerance and were stable at 50 degrees C. The temperature optimum for catalytic activity for the alpha- and beta-homohexamers was 60 degrees C, and 65 degrees C for the delta40N homohexamer. This study demonstrated that most of the kinetic properties of the Chlorella sorokiniana NADP-GDH isozymes were retained after their synthesis in a heterologous system, and that the distinctive N-terminal domains of these isozymes have dramatic effects on their biochemical characteristics.
Collapse
Affiliation(s)
- Shai J Lawit
- Microbiology and Cell Science Department, University of Florida, PO Box 110700, Building 981, Gainesville, FL 32611-0700, USA
| | | | | | | | | |
Collapse
|
7
|
Choi H, Kim S, Son J, Hong S, Lee H, Lee H. Enhancement of paclitaxel production by temperature shift in suspension culture of Taxus chinensis. Enzyme Microb Technol 2000; 27:593-598. [PMID: 11024522 DOI: 10.1016/s0141-0229(00)00255-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effect of temperature shift during culture period on cell growth and paclitaxel was investigated to optimize paclitaxel production in suspension culture of Taxus chinensis. Cell growth showed the optimum at 24 degrees C while paclitaxel synthesis showed the maximum at 29 degrees C. To minimize the inhibitory effect of higher temperature on cell growth, temperature was shifted after a certain period of culture time at 24 degrees C. Paclitaxel synthesis in plant cell culture increased dramatically during day 14 to day 21 regardless of treatment, reaching the maximum production of 137.5 mg paclitaxel/L. When the temperature was maintained at 29 degrees C after day 21, the specific productivity of paclitaxel was sustained for prolonged period of 42 days. The possible relationship between temperature and paclitaxel synthetic pathway was also suggested.
Collapse
Affiliation(s)
- H Choi
- Samyang Genex Biotech Research Institute, 305-348, Taejon, South Korea
| | | | | | | | | | | |
Collapse
|
8
|
Turano FJ, Dashner R, Upadhyaya A, Caldwell CR. Purification of Mitochondrial Glutamate Dehydrogenase from Dark-Grown Soybean Seedlings. PLANT PHYSIOLOGY 1996; 112:1357-1364. [PMID: 12226451 PMCID: PMC158064 DOI: 10.1104/pp.112.3.1357] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Proteins in extracts from cotyledons, hypocotyls, and roots of 5-d-old, dark-grown soybean (Glycine max L. Merr. cv Williams) seedlings were separated by polyacrylamide gel electrophoresis. Three isoforms of glutamate dehydrogenase (GDH) were resolved and visualized in gels stained for GDH activity. Two isoforms with high electrophoretic mobility, GDH1 and GDH2, were in protein extracts from cotyledons and a third isoform with the lowest electrophoretic mobility, GDH3, was identified in protein extracts from root and hypocotyls. Subcellular fractionation of dark-grown soybean tissues demonstrated that GDH3 was associated with intact mitochondria. GDH3 was purified to homogeneity, as determined by native and sodium dodecyl sulfate-polyacrylamide gels. The isoenzyme was composed of a single 42-kD subunit. The pH optima for the reductive amination and the oxidative deamination reactions were 8.0 and 9.3, respectively. At any given pH, GDH activity was 12- to 50-fold higher in the direction of reductive amination than in the direction of the oxidative deamination reaction. GDH3 had a cofactor preference for NAD(H) over NADP(H). The apparent Michaelis constant values for [alpha]-ketoglutarate, ammonium, and NADH at pH 8.0 were 3.6, 35.5, and 0.07 mM, respectively. The apparent Michaelis constant values for glutamate and NAD were 15.8 and 0.10 mM at pH 9.3, respectively. To our knowledge, this is the first biochemical and physical characterization of a purified mitochondrial NAD(H)-dependent GDH isoenzyme from soybean.
Collapse
Affiliation(s)
- F. J. Turano
- United States Department of Agriculture, Agricultural Research Service, Climate Stress Laboratory, Beltsville, Maryland 20705
| | | | | | | |
Collapse
|
9
|
|
10
|
Genetic control of plastidic l-glutamate dehydrogenase isozymes in the genus Capsella (Brassicaceae). Heredity (Edinb) 1994. [DOI: 10.1038/hdy.1994.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|