1
|
Zhu T, Dittrich M. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Front Bioeng Biotechnol 2016; 4:4. [PMID: 26835451 PMCID: PMC4718973 DOI: 10.3389/fbioe.2016.00004] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnologies, such as metal remediation, carbon sequestration, enhanced oil recovery, and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, ON , Canada
| | - Maria Dittrich
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, ON , Canada
| |
Collapse
|
2
|
Lieman-Hurwitz J, Haimovich M, Shalev-Malul G, Ishii A, Hihara Y, Gaathon A, Lebendiker M, Kaplan A. A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2by modulating low-CO2-induced gene expression. Environ Microbiol 2009; 11:927-36. [DOI: 10.1111/j.1462-2920.2008.01818.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Chen Z, Cheng H, Chen X. Effect of Cl− on photosynthetic bicarbonate uptake in two cyanobacteria Microcystis aeruginosa and Synechocystis PCC6803. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-009-0148-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Espie GS, Jalali F, Tong T, Zacal NJ, So AKC. Involvement of the cynABDS operon and the CO2-concentrating mechanism in the light-dependent transport and metabolism of cyanate by cyanobacteria. J Bacteriol 2007; 189:1013-24. [PMID: 17122352 PMCID: PMC1797288 DOI: 10.1128/jb.01328-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 11/13/2006] [Indexed: 11/20/2022] Open
Abstract
The cyanobacteria Synechococcus elongatus strain PCC7942 and Synechococcus sp. strain UTEX625 decomposed exogenously supplied cyanate (NCO-) to CO2 and NH3 through the action of a cytosolic cyanase which required HCO3- as a second substrate. The ability to metabolize NCO- relied on three essential elements: proteins encoded by the cynABDS operon, the biophysical activity of the CO2-concentrating mechanism (CCM), and light. Inactivation of cynS, encoding cyanase, and cynA yielded mutants unable to decompose cyanate. Furthermore, loss of CynA, the periplasmic binding protein of a multicomponent ABC-type transporter, resulted in loss of active cyanate transport. Competition experiments revealed that native transport systems for CO2, HCO3-, NO3-, NO2-, Cl-, PO4(2-), and SO4(2-) did not contribute to the cellular flux of NCO- and that CynABD did not contribute to the flux of these nutrients, implicating CynABD as a novel primary active NCO- transporter. In the S. elongatus strain PCC7942 DeltachpX DeltachpY mutant that is defective in the full expression of the CCM, mass spectrometry revealed that the cellular rate of cyanate decomposition depended upon the size of the internal inorganic carbon (Ci) (HCO3- + CO2) pool. Unlike wild-type cells, the rate of NCO- decomposition by the DeltachpX DeltachpY mutant was severely depressed at low external Ci concentrations, indicating that the CCM was essential in providing HCO3- for cyanase under typical growth conditions. Light was required to activate and/or energize the active transport of both NCO- and Ci. Putative cynABDS operons were identified in the genomes of diverse Proteobacteria, suggesting that CynABDS-mediated cyanate metabolism is not restricted to cyanobacteria.
Collapse
Affiliation(s)
- George S Espie
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada.
| | | | | | | | | |
Collapse
|
5
|
Chen X, Qiu CE, Shao JZ. Evidence for K+-dependent HCO3- utilization in the marine diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2006; 141:731-6. [PMID: 16632589 PMCID: PMC1475463 DOI: 10.1104/pp.106.079616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/01/2006] [Accepted: 04/02/2006] [Indexed: 05/07/2023]
Abstract
Photosynthetic utilization of inorganic carbon in the marine diatom Phaeodactylum tricornutum was investigated by the pH drift experiment, measurement of K(1/2) values of dissolved inorganic carbon (DIC) with pH change, and comparison of the rate of photosynthesis with the rate of the theoretical CO(2) formation from uncatalyzed HCO(3)(-) conversion in the medium. The higher pH compensation point (10.3) and insensitivity of the photosynthetic rate to acetazolamide indicate that the alga has good capacity for direct HCO(3)(-) utilization. The photosynthetic rate reached 150 times the theoretical CO(2) supply rate at 100 micromol L(-1) DIC (pH 9.0) in the presence of 10 mmol L(-1) K(+) and 46 times that in the absence of K(+), indicating that for pH 9.4-grown P. tricornutum, HCO(3)(-) in the medium is taken up through K(+)-dependent and -independent HCO(3)(-) transporters. The K(1/2) (CO(2)) values at pH 8.2 were about 4 times higher than those at pH 9.0, whereas the K(1/2) (HCO(3)(-)) values at pH 8.2 were slightly lower than those at pH 9.0 whether without or with K(+), providing further evidence for the presence of the two HCO(3)(-) transport patterns in this alga. Photosynthetic rate and affinity for HCO(3)(-) in the presence of K(+), respectively, were about 2- and 7-fold higher than those in the absence of K(+), indicating that K(+)-dependent HCO(3)(-) transport is a predominant pattern of HCO(3)(-) cellular uptake in low DIC concentration. However, as P. tricornutum was cultured at pH 7.2 or 8.0, photosynthetic affinities to HCO(3)(-) were not affected by K(+), implying that K(+)-dependent HCO(3)(-) transport is induced when P. tricornutum is cultured at high alkaline pH.
Collapse
Affiliation(s)
- Xiongwen Chen
- Department of Biology and Hubei Key Laboratory of Bioanalytical Technique, Hubei Normal University, Huangshi 435002, Hubei, China.
| | | | | |
Collapse
|
6
|
Chen X, Gao K. Photosynthetic utilisation of inorganic carbon and its regulation in the marine diatom Skeletonema costatum. FUNCTIONAL PLANT BIOLOGY : FPB 2004; 31:1027-1033. [PMID: 32688971 DOI: 10.1071/fp04076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 07/26/2004] [Indexed: 06/11/2023]
Abstract
Photosynthetic uptake of inorganic carbon and regulation of photosynthetic CO2 affinity were investigated in Skeletonema costatum (Grev.) Cleve. The pH independence of K1/2(CO2) values indicated that algae grown at either ambient (12 μmol L-1) or low (3 μmol L-1) CO2 predominantly took up CO2 from the medium. The lower pH compensation point (9.12) and insensitivity of photosynthetic rate to di-isothiocyanatostilbene disulfonic acid (DIDS) indicated that the alga had poor capacity for direct HCO3- utilisation. Photosynthetic CO2 affinity is regulated by the concentration of CO2 rather than HCO3-, CO32- or total dissolved inorganic carbon (DIC) in the medium. The response of photosynthetic CO2 affinity to changes in CO2 concentration was most sensitive within the range 3-48 μmol L-1 CO2. Light was required for the induction of photosynthetic CO2 affinity, but not for its repression, when cells were shifted between high (126 μmol L-1) and ambient (12 μmol L-1) CO2. The time needed for cells grown at high CO2 (126 μmol L-1) to fully develop photosynthetic CO2 affinity at ambient CO2 was approximately 2 h, but acclimation to low or very low CO2 levels (3 and 1.3 μmol L-1, respectively) took more than 10 h. Cells grown at low CO2 (3 μmol L-1) required approximately 10 h for repression of all photosynthetic CO2 affinity when transferred to ambient or high CO2 (12 or 126 μmol L-1, respectively), and more than 10 h at very high CO2 (392 μmol L-1).
Collapse
Affiliation(s)
- Xiongwen Chen
- Department of Biology, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Kunshan Gao
- Marine Biology Institute, Shantou University, Shantou 515063, Guangdong, China. Corresponding author; email
| |
Collapse
|
7
|
Orús MI, Rodríguez-Buey ML, Marco E, Fernández-Valiente E. Changes in carboxysome structure and grouping and in photosynthetic affinity for inorganic carbon in Anabaena strain PCC 7119 (Cyanophyta) in response to modification of CO2 and Na+ supply. PLANT & CELL PHYSIOLOGY 2001; 42:46-53. [PMID: 11158443 DOI: 10.1093/pcp/pce005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In ANABAENA: PCC 7119 a 4-fold decrease in the value of the apparent photosynthetic affinity for external inorganic carbon [K1/2 (Ci)] occurred between 9 and 12 h after the transfer from high-CO2 (2% CO2-enriched air) to air-growing conditions. A slight increase in carboxysome frequency occurred, but during this transition their appearance and distribution remained unchanged. ANABAENA: PCC 7119 did not improve its K1/2 (Ci) beyond the above cited level of acclimation neither by culturing the cyanobacteria in Na+-deficient medium in air nor by aeration with CO2-depleted air. In air-grown cultures, Na+ deficiency induced a large increase in carboxysome frequency and an alteration of their appearance: the greatest proportion were electron-dense whereas this type constituted a minority in high-CO2 and in air, Na+-sufficient conditions. It also induced major changes in carboxysome distribution, whereby more than 60% were grouped, compared with only 10% in high-CO2 and in air, Na+-sufficient conditions. These changes in carboxysome expression were extremely rapid, occurring mainly during the first 2 h.
Collapse
Affiliation(s)
- M I Orús
- Departamento de Biología, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T. Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci U S A 1999; 96:13571-6. [PMID: 10557362 PMCID: PMC23989 DOI: 10.1073/pnas.96.23.13571] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exposure of cells of cyanobacteria (blue-green algae) grown under high-CO(2) conditions to inorganic C-limitation induces transcription of particular genes and expression of high-affinity CO(2) and HCO(3)(-) transport systems. Among the low-CO(2)-inducible transcription units of Synechococcus sp. strain PCC 7942 is the cmpABCD operon, encoding an ATP-binding cassette transporter similar to the nitrate/nitrite transporter of the same cyanobacterium. A nitrogen-regulated promoter was used to selectively induce expression of the cmpABCD genes by growth of transgenic cells on nitrate under high CO(2) conditions. Measurements of the initial rate of HCO(3)(-) uptake after onset of light, and of the steady-state rate of HCO(3)(-) uptake in the light, showed that the controlled induction of the cmp genes resulted in selective expression of high-affinity HCO(3)(-) transport activity. The forced expression of cmpABCD did not significantly increase the CO(2) uptake capabilities of the cells. These findings demonstrated that the cmpABCD genes encode a high-affinity HCO(3)(-) transporter. A deletion mutant of cmpAB (M42) retained low CO(2)-inducible activity of HCO(3)(-) transport, indicating the occurrence of HCO(3)(-) transporter(s) distinct from the one encoded by cmpABCD. HCO(3)(-) uptake by low-CO(2)-induced M42 cells showed lower affinity for external HCO(3)(-) than for wild-type cells under the same conditions, showing that the HCO(3)(-) transporter encoded by cmpABCD has the highest affinity for HCO(3)(-) among the HCO(3)(-) transporters present in the cyanobacterium. This appears to be the first unambiguous identification and description of a primary active HCO(3)(-) transporter.
Collapse
Affiliation(s)
- T Omata
- Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Many microorganisms possess inducible mechanisms that concentrate CO2 at the carboxylation site, compensating for the relatively low affinity of Rubisco for its substrate, and allowing acclimation to a wide range of CO2 concentrations. The organization of the carboxysomes in prokaryotes and of the pyrenoids in eukaryotes, and the presence of membrane mechanisms for inorganic carbon (Ci) transport, are central to the concentrating mechanism. The presence of multiple Ci transporting systems in cyanobacteria has been indicated. Certain genes involved in structural organization, Ci transport and the energization of the latter have been identified. Massive Ci fluxes associated with the CO2-concentrating mechanism have wide-reaching ecological and geochemical implications.
Collapse
Affiliation(s)
- Aaron Kaplan
- Department of Plant Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel; e-mail:
| | | |
Collapse
|
10
|
Moroney JV, Somanchi A. How Do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation? PLANT PHYSIOLOGY 1999; 119:9-16. [PMID: 9880340 PMCID: PMC1539202 DOI: 10.1104/pp.119.1.9] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- JV Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
11
|
Kaplan A, Ronen-Tarazi M, Zer H, Schwarz R, Tchernov D, Bonfil DJ, Schatz D, Vardi A, Hassidim M, Reinhold L. The inorganic carbon-concentrating mechanism in cyanobacteria: induction and ecological significance. ACTA ACUST UNITED AC 1998. [DOI: 10.1139/b98-087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this minireview we focus on certain aspects of the induction, function, and ecophysiological significance of the inorganic carbon-concentrating mechanism in cyanobacteria. Since this entire issue is dedicated to various aspects of this mechanism, we mainly discuss some of the recent studies in our laboratory and point to open questions and perspectives.Key words: CO2, cyanobacteria, inorganic carbon-concentrating mechanism, photosynthesis.
Collapse
|
12
|
Ritchie RJ, Nadolny C, Larkum AWD. Driving Forces for Bicarbonate Transport in the Cyanobacterium Synechococcus R-2 (PCC 7942). PLANT PHYSIOLOGY 1996; 112:1573-1584. [PMID: 12226464 PMCID: PMC158090 DOI: 10.1104/pp.112.4.1573] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Air-grown Synechococcus R-2 (PCC 7942) cultures grown in BG-11 medium are very alkaline (outside pH is 10.0) and use HCO3- as their inorganic carbon source. The cells showed a dependence on Na+ for photosynthesis, but low Na+ conditions (1 mol m-3) were sufficient to support saturating photosynthesis. The intracellular dissolved inorganic carbon in the light was greater than 20 mol m-3 in both low-Na+ conditions and in BG-11 medium containing the usual [Na+] (24 mol m-3, designated high-Na+ conditions). The electrochemical potential for HCO3- in the light was in excess of 25 kJ mol-1, even in high-Na+ conditions. The Na+-motive force was greater than -12 kJ mol-1 under both Na+ conditions. On thermodynamic grounds, an Na+-driven co-port process would need to have a stoichiometry of 2 or greater ([greater than or equal to]2Na+ in/HCO3-1 in), but we show that Na+ or K+ fluxes cannot be linked to HCO3- transport. Na+ and K+ fluxes were unaffected by the presence or absence of dissolved inorganic carbon. In low-Na+ conditions, Na+ fluxes are too low to support the observed net 14C-carbon fixation rate. Active transport of HCO3- hyperpolarizes (not depolarizes) the membrane potential.
Collapse
Affiliation(s)
- R. J. Ritchie
- Biology A-12, School of Biological Sciences, The University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
13
|
Tyrrell PN, Kandasamy RA, Crotty CM, Espie GS. Ethoxyzolamide Differentially Inhibits CO2 Uptake and Na+-Independent and Na+-Dependent HCO3- Uptake in the Cyanobacterium Synechococcus sp. UTEX 625. PLANT PHYSIOLOGY 1996; 112:79-88. [PMID: 12226376 PMCID: PMC157926 DOI: 10.1104/pp.112.1.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of ethoxyzolamide (EZ), a carbonic anhydrase inhibitor, on the active CO2 and Na+-independent and Na+-dependent HCO3- transport systems of the unicellular cyanobacterium Synechococcus sp. UTEX 625 were examined. Measurements of transport and accumulation using radiochemical, fluorometric, and mass spectrometric assays indicated that active CO2 transport and active Na+-independent HCO3- transport were inhibited by EZ. However, Na+-independent HCO3- transport was about 1 order of magnitude more sensitive to EZ inhibition than was CO2 transport (50% inhibition = 12 [mu]M versus 80 [mu]M). The data suggest that both the active CO2 (G.D. Price, M.R. Badger [1989] Plant Physiol 89: 37-43) and the Na+ -independent HCO3 - transport systems possessed carbonic anhydrase-like activity as part of their mechanism of action. In contrast, Na+-dependent HCO3- transport was only partially (50% inhibition = 230 [mu]M) and noncompetitively inhibited by EZ. The collective evidence suggested that EZ inhibition of Na+ -dependent HCO3- transport was an indirect consequence of the action of EZ on the CO2 transport system, rather than a direct effect on HCO3- transport. A model is presented in which the core of the inorganic carbon translocating system is formed by Na+-dependent HCO3- transport and the CO2 transport system. It is argued that the Na+-independent HCO3 - utilizing system was not directly involved in translocation, but converted HCO3- to CO2 for use in CO2 transport.
Collapse
Affiliation(s)
- P. N. Tyrrell
- Department of Botany, Erindale College, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | | | | | | |
Collapse
|
14
|
Katoh A, Lee KS, Fukuzawa H, Ohyama K, Ogawa T. cemA homologue essential to CO2 transport in the cyanobacterium Synechocystis PCC6803. Proc Natl Acad Sci U S A 1996; 93:4006-10. [PMID: 8633006 PMCID: PMC39476 DOI: 10.1073/pnas.93.9.4006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have isolated mutants of Synechocystis PCC6803 that grew very slowly in a low-sodium medium, which is unfavorable for HCO3(-) transport, and examined two of these mutants (SC1 and SC2) for their ability to take up CO2 and HCO3(-) in the light. The CO2 transport activity of SC1 and SC2 was much lower than that of the wild type (WT), whereas there was no difference between the mutants and the WT in their activity of HCO3(-) transport. A clone containing a 3.9-kilobase-pair insert DNA that transforms both mutants to the WT phenotype was isolated from a genomic library of WT Synechocystis. Sequencing of the insert DNA in the region of mutations in SC1 and SC2 revealed an open reading frame (designated cotA), which showed significant amino-acid sequence homology to cemA encoding a protein found in the inner envelope membrane of chloroplasts. The cotA gene is present in a single copy and was not cotranscribed with any other gene(s). cotA encodes a protein of 247 amino acids containing four transmembrane domains. There was substitution of a single base in SC1 and two bases in SC2 in their cotA genes. A possible role of the cotA gene product in CO2 transport is discussed.
Collapse
Affiliation(s)
- A Katoh
- Graduate Division of Biochemical Regulation, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
15
|
Espie GS, Kandasamy RA. Monensin Inhibition of Na+-Dependent HCO3- Transport Distinguishes It from Na+-Independent HCO3- Transport and Provides Evidence for Na+/HCO3- Symport in the Cyanobacterium Synechococcus UTEX 625. PLANT PHYSIOLOGY 1994; 104:1419-1428. [PMID: 12232177 PMCID: PMC159308 DOI: 10.1104/pp.104.4.1419] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The effect of monensin, an ionophore that mediates Na+/H+ exchange, on the activity of the inorganic carbon transport systems of the cyanobacterium Synechococcus UTEX 625 was investigated using transport assays based on the measurement of chlorophyll a fluorescence emission or 14C uptake. In Synechococcus cells grown in standing culture at about 20 [mu]M CO2 + HCO3-, 50 [mu]M monensin transiently inhibited active CO2 and Na+-independent HCO3- transport, intracellular CO2 and HCO3- accumulation, and photosynthesis in the presence but not in the absence of 25 mM Na+. These activities returned to near-normal levels within 15 min. Transient inhibition was attributed to monensin-mediated intracellular alkalinization, whereas recovery may have been facilitated by cellular mechanisms involved in pH homeostasis or by monensin-mediated H+ uptake with concomitant K+ efflux. In air-grown cells grown at 200 [mu]M CO2 + HCO3- and standing culture cells, Na+-dependent HCO3- transport, intracellular HCO3- accumulation, and photosynthesis were also inhibited by monensin, but there was little recovery in activity over time. However, normal photosynthetic activity could be restored to air-grown cells by the addition of carbonic anhydrase, which increased the rate of CO2 supply to the cells. This observation indicated that of all the processes required to support photosynthesis only Na+-dependent HCO3- transport was significantly inhibited by monensin. Monensin-mediated dissipation of the Na+ chemical gradient between the medium and the cells largely accounted for the decline in the HCO3- accumulation ratio from 751 to 55. The two HCO3- transport systems were further distinguished in that Na+-dependent HCO3- transport was inhibited by Li+, whereas Na+-independent HCO3- transport was not. It is suggested that Na+-dependent HCO3- transport involves an Na+/HCO3- symport mechanism that is energized by the Na+ electrochemical potential.
Collapse
Affiliation(s)
- G. S. Espie
- Department of Botany, Erindale College, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | | |
Collapse
|
16
|
Crotty CM, Tyrrell PN, Espie GS. Quenching of Chlorophyll a Fluorescence in Response to Na+-Dependent HCO3- Transport-Mediated Accumulation of Inorganic Carbon in the Cyanobacterium Synechococcus UTEX 625. PLANT PHYSIOLOGY 1994; 104:785-791. [PMID: 12232126 PMCID: PMC159259 DOI: 10.1104/pp.104.2.785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the cyanobacterium Synechococcus UTEX 625, the yield of chlorophyll a fluorescence decreased in response to the transport-mediated accumulation of intracellular inorganic carbon (CO2 + HCO3- + CO32- = dissolved inorganic carbon [DIC]) and subsequently increased to a near-maximum level following photosynthetic depletion of the DIC pool. When DIC accumulation was mediated by the active Na+-dependent HCO3- transport system, the initial rate of fluorescence quenching was found to be highly correlated with the initial rate of H14CO3- transport (r = 0.96), and the extent of fluorescence quenching was correlated with the size of the internal DIC pool (r = 0.99). Na+-dependent HCO3- transport-mediated accumulation of DIC caused fluorescence quenching in either the presence or absence of the CO2 fixation inhibitor glycolaldehyde, indicating that quenching was not due simply to NADP+ reduction. The concentration of Na+ required to attain one-half the maximum rate of H14CO3- transport, at 20 [mu]M external HCO3-, declined from 9 to 1 mM as the external pH increased from 8 to 9.6. A similar pH dependency was observed when fluorescence quenching was used to determine the kinetic constants for HCO3- transport. In cells capable of Na+-dependent HCO3- transport, both the initial rate and extent of fluorescence quenching increased with increasing external HCO3-, saturating at about 150 [mu]M. In contrast Na+-independent HCO3- transport-mediated fluorescence quenching saturated at an HCO3- concentration of about 10 [mu]M. It was concluded that measurement of chlorophyll a fluorescence emission provided a convenient, but indirect, means of following Na+-dependent HCO3- transport and accumulation in Synechococcus.
Collapse
Affiliation(s)
- C. M. Crotty
- Department of Botany, Erindale College, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|
17
|
Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of Rubisco and the mode of inorganic carbon transport in cells of the cyanobacterium Synechococcus UTEX 625. Arch Microbiol 1993. [DOI: 10.1007/bf00244259] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|