1
|
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4433-4453. [PMID: 28981786 DOI: 10.1093/jxb/erx291] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass.
Collapse
Affiliation(s)
- Gregory J MacNeill
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sahar Mehrpouyan
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mark A A Minow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jenelle A Patterson
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
2
|
|
3
|
Kaschuk G, Hungria M, Leffelaar PA, Giller KE, Kuyper TW. Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:60-9. [PMID: 20653888 DOI: 10.1111/j.1438-8677.2009.00211.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biological N(2) fixation can fulfil the N demand of legumes but may cost as much as 14% of current photosynthate. This photosynthate (C) sink strength would result in loss of productivity if rates of photosynthesis did not increase to compensate for the costs. We measured rates of leaf photosynthesis, concentrations of N, ureides and protein in leaves of two soybean cultivars (Glycine max [L.] Merrill) differing in potential shoot biomass production, either associated with Bradyrhizobium japonicum strains, or amended with nitrate. Our results show that the C costs of biological N(2) fixation can be compensated by increased photosynthesis. Nodulated plants shifted N metabolism towards ureide accumulation at the start of the reproductive stage, at which time leaf N concentration of nodulated plants was greater than that of N-fertilized plants. The C sink strength of N(2) fixation increased photosynthetic N use efficiency at the beginning of plant development. At later stages, although average protein concentrations were similar between the groups of plants, maximum leaf protein of nodulated plants occurred a few days later than in N-fertilized plants. The chlorophyll content of nodulated plants remained high until the pod-filling stage, whereas the chlorophyll content of N-fertilized plants started to decrease as early as the flowering stage. These results suggest that, due to higher C sink strength and efficient N(2) fixation, nodulated plants achieve higher rates of photosynthesis and have delayed leaf senescence.
Collapse
Affiliation(s)
- G Kaschuk
- Plant Production Systems Group, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
4
|
Mitchell-Olds T, Pedersen D. The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis. Genetics 1998; 149:739-47. [PMID: 9611188 PMCID: PMC1460200 DOI: 10.1093/genetics/149.2.739] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To find the genes controlling quantitative variation, we need model systems where functional information on physiology, development, and gene regulation can guide evolutionary inferences. We mapped quantitative trait loci (QTLs) influencing quantitative levels of enzyme activity in primary and secondary metabolism in Arabidopsis. All 10 enzymes showed highly significant quantitative genetic variation. Strong positive genetic correlations were found among activity levels of 5 glycolytic enzymes, PGI, PGM, GPD, FBP, and G6P, suggesting that enzymes with closely related metabolic functions are coregulated. Significant QTLs were found influencing activity of most enzymes. Some enzyme activity QTLs mapped very close to known enzyme-encoding loci (e.g., hexokinase, PGI, and PGM). A hexokinase QTL is attributable to cis-acting regulatory variation at the AtHXK1 locus or a closely linked regulatory locus, rather than polypeptide sequence differences. We also found a QTL on chromosome IV that may be a joint regulator of GPD, PGI, and G6P activity. In addition, a QTL affecting PGM activity maps within 700 kb of the PGM-encoding locus. This QTL is predicted to alter starch biosynthesis by 3.4%, corresponding with theoretical models, suggesting that QTLs reflect pleiotropic effects of mutant alleles.
Collapse
Affiliation(s)
- T Mitchell-Olds
- Max-Planck-Institut für Chemishe Okologie, 07745 Jena, Germany.
| | | |
Collapse
|
5
|
Robinson JM. Leaflet photosynthesis rate and carbon metabolite accumulation patterns in nitrogen-limited, vegetative soybean plants. PHOTOSYNTHESIS RESEARCH 1996; 50:133-148. [PMID: 24271931 DOI: 10.1007/bf00014884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/1996] [Accepted: 09/23/1996] [Indexed: 06/02/2023]
Abstract
Prolonged inorganic nitrogen (NO3 (-)+NH4 (+)) limitation of non-N2-fixing soybean plants affected leaflet photosynthesis rates, photosynthate accumulation rates and levels, and anaplerotic carbon metabolite levels. Leaflets of nitrogen-limited (N-Lim), 27-31-day-old plants displayed ≈ 15 to 23% lower photosynthesis rates than leaflets of nitrogen-sufficient (N-Suff) plants. In contrast, N-Lim plant leaflets displayed higher sucrose and starch levels and rates of accumulation, as well as higher levels of carbon metabolites associated with sucrose and starch synthesis, e. g., glycerate-3-phosphate and glucose phosphates, than N-Suff plant leaflets. Concurrently, levels of soluble protein, chlorophyll, and anaplerotic metabolites, e.g., malate and phosphoenolpyruvate, were lower in leaflets of N-Lim plants than N-Suff plants, suggesting that the enzymes of the anaplerotic carbon metabolite pathway were lower in activity in N-Lim plant leaflets. Malate net accumulation rates in the earliest part of the illumination period were lower in N-Lim than in N-Suff plant leaflets; however, by the midday period, malate accumulation rate in N-Lim plant leaflets exceeded that in leaflets of N-Suff plants. Further, soluble protein accumulation rates in leaflets of N-Suff and N-Lim plants were similar, and the rate of dark respiration, measured in the early part of the dark period, was higher in N-Lim plant leaflets than in N-Suff plant leaflets. It was concluded that during prolonged N-limitation, foliar metabolite conditions favored the channelling of a large proportion of the carbon assimilate into sucrose and starch, while assimilate flow through the anaplerotic pathway was diminished. However, in some daytime periods, there was a normal level of carbon assimilate channelled through the anaplerotic pathway for ultimate use in amino acid and protein synthesis.
Collapse
Affiliation(s)
- J M Robinson
- Agricultural Research Service, Beltsville Agricultural Research Center, Natural Resources Institute, Climate Stress Laboratory, USDA, Building 046A, 20705-2350, Beltsville, MD, USA
| |
Collapse
|
6
|
Robinson JM, Rowland RA. Carbohydrate and carbon metabolite accumulation responses in leaves of ozone tolerant and ozone susceptible spinach plants after acute ozone exposure. PHOTOSYNTHESIS RESEARCH 1996; 50:103-115. [PMID: 24271929 DOI: 10.1007/bf00014882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/1996] [Accepted: 09/10/1996] [Indexed: 06/02/2023]
Abstract
The objective of this study was to determine whether exposure of plants to ozone (O3) increased the foliar levels of glucose, glucose sources, e.g., sucrose and starch, and glucose-6-phosphate (G6P), because in leaf cells, glucose is the precursor of the antioxidant, L-ascorbate, and glucose-6-phosphate is a source of NADPH needed to support antioxidant capacity. A further objective was to establish whether the response of increased levels of glucose, sucrose, starch and G6P in leaves could be correlated with a greater degree of plant tolerance to O3. Four commercially available Spinacia oleracea varieties were screened for tolerance or susceptibility to detrimental effects of O3 employing one 6.5 hour acute exposure to 25O nL O3 L(-1) air during the light. One day after the termination of ozonation (29 d post emergence), leaves of the plants were monitored both for damage and for gas exchange characteristics. Cultivar Winter Bloomsdale (cv Winter) leaves were least damaged on a quantitative grading scale. The leaves of cv Nordic, the most susceptible, were approximately 2.5 times more damaged. Photosynthesis (Pn) rates in the ozonated mature leaves of cv Winter were 48.9% less, and in cv Nordic, 66.2% less than in comparable leaves of their non-ozonated controls. Stomatal conductance of leaves of ozonated plants was found not to be a factor in the lower Pn rates in the ozonated plants. At some time points in the light, leaves of ozonated cv Winter plants had significantly higher levels of glucose, sucrose, starch, G6P, G1P, pyruvate and malate than did leaves of ozonated cv Nordic plants. It was concluded that leaves of cv Winter displayed a higher tolerance to ozone mediated stress than those of cv Nordic, in part because they had higher levels of glucose and G6P that could be mobilized during diminished photosynthesis to generate antioxidants (e.g., ascorbate) and reductants (e.g., NADPH). Elevated levels of both pyruvate and malate in the leaves of ozonated cv Winter suggested an increased availability of respiratory substrates to support higher respiratory capacity needed for repair, growth, and maintenance.
Collapse
Affiliation(s)
- J M Robinson
- Agricultural Research Service, Beltsville Agricultural Research Center-West, Climate Stress Laboratory, Natural Resources Institute, USDA, Building 046A, 20705-2350, Beltsville, MD, USA
| | | |
Collapse
|
7
|
Wingler A, Einig W, Schaeffer C, Wallenda T, Hampp R, Wallander H, Nylund JE. Influence of different nutrient regimes on the regulation of carbon metabolism in Norway spruce [Picea abies (L.) Karst.] seedlings. THE NEW PHYTOLOGIST 1994; 128:323-330. [PMID: 33874368 DOI: 10.1111/j.1469-8137.1994.tb04016.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) activity, fructose 2, 6-bisphosphate (F26BP), starch and soluble sugar contents were determined m needles and roots of Norway spruce seedlings grown in a semi-hydroponic cultivation system under different nutrient regimes, tn needles, a surplus of nitrogen caused an increase in specific PEPC activity (up to six times control activity) and F26BP content (up to three times control level) while starch content was reduced. Sucrose contents were not affected. Basically, the responses in root samples were similar. Here, PEPC was highest at an imbalance in nutrition (+ N/ -P) F26BP, with root contents being 3- to 11 -times higher than those in needles, significantly exceeded control values at + N/+ P. The results show that alteration of nitrogen supply leads to marked changes in allocation of carbon between pathways, which is also influenced by P-nutrition. Pool sizes of F26BP and activity of PEPC are indicators for these changes in leaf as well as in root tissues of Norway spruce.
Collapse
Affiliation(s)
- Astrid Wingler
- Physiologische Okoiogie der Pflamsen, Botanisches Institute Universitat Tubingen, Auf der Morgenstelle 1, D-72076 Tubingen, Germany
| | - Werner Einig
- Physiologische Okoiogie der Pflamsen, Botanisches Institute Universitat Tubingen, Auf der Morgenstelle 1, D-72076 Tubingen, Germany
| | - Christoph Schaeffer
- Physiologische Okoiogie der Pflamsen, Botanisches Institute Universitat Tubingen, Auf der Morgenstelle 1, D-72076 Tubingen, Germany
| | - Thomas Wallenda
- Physiologische Okoiogie der Pflamsen, Botanisches Institute Universitat Tubingen, Auf der Morgenstelle 1, D-72076 Tubingen, Germany
| | - Rüdiger Hampp
- Physiologische Okoiogie der Pflamsen, Botanisches Institute Universitat Tubingen, Auf der Morgenstelle 1, D-72076 Tubingen, Germany
| | - Håkan Wallander
- Department of Microbial Ecology, University of Lund, Helgonavagen 5, S-223 62 Lund, Sweden
| | - Jan-Erik Nylund
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Box 7026, S-750 07 Uppsala, Sweden
| |
Collapse
|