1
|
The SV, Snyder R, Tegeder M. Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. FRONTIERS IN PLANT SCIENCE 2021; 11:628366. [PMID: 33732269 PMCID: PMC7957077 DOI: 10.3389/fpls.2020.628366] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 05/22/2023]
Abstract
In agricultural cropping systems, relatively large amounts of nitrogen (N) are applied for plant growth and development, and to achieve high yields. However, with increasing N application, plant N use efficiency generally decreases, which results in losses of N into the environment and subsequently detrimental consequences for both ecosystems and human health. A strategy for reducing N input and environmental losses while maintaining or increasing plant performance is the development of crops that effectively obtain, distribute, and utilize the available N. Generally, N is acquired from the soil in the inorganic forms of nitrate or ammonium and assimilated in roots or leaves as amino acids. The amino acids may be used within the source organs, but they are also the principal N compounds transported from source to sink in support of metabolism and growth. N uptake, synthesis of amino acids, and their partitioning within sources and toward sinks, as well as N utilization within sinks represent potential bottlenecks in the effective use of N for vegetative and reproductive growth. This review addresses recent discoveries in N metabolism and transport and their relevance for improving N use efficiency under high and low N conditions.
Collapse
Affiliation(s)
| | | | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Semwal VK, Khanna-Chopra R. Reproductive sink enhanced drought induced senescence in wheat fertile line is associated with loss of antioxidant competence compared to its CMS line. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:591-604. [PMID: 30042615 PMCID: PMC6041228 DOI: 10.1007/s12298-018-0549-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 05/19/2023]
Abstract
Reproductive sinks regulate monocarpic senescence in wheat as desinking delayed flag leaf senescence under irrigated condition. In this study, wheat cv. HW 2041 and its isonuclear male sterile line (CMS) were subjected to post-anthesis water deficit stress to understand the association between sink strength, senescence and drought response in relation to oxidative stress and antioxidant defense at cellular and sub-cellular level. CMS plants maintained better water relations and exhibited delayed onset and progression of flag leaf senescence in terms of green leaf area, chlorophyll and protein content than fertile plants under water deficit stress (WDS). Delayed senescence in CMS plants under water deficit stress was associated with less reactive oxygen species generation, lower damage to membranes and better antioxidant defense both in terms of antioxidant enzyme activities and metabolite content compared to fertile plants. Expression of some senescence associated genes (SAGs) such as WRKY transcription factor (WRKY53), glutamine synthetase1 (GS1), wheat cysteine protease (WCP2) and wheat serine protease (WSP) was lower while catalse 2 (CAT2) transcript levels were higher in the CMS plants compared to HW2041 during senescence under water deficit stress. Antioxidant defense in chloroplasts was better in CMS line under water deficit stress compared to HW2041. This is the first report showing that reproductive sink enhanced drought induced senescence in flag leaf of wheat fertile line is associated with higher oxidative stress and damage and loss of antioxidant competence compared to its sterile line under water deficit stress. Higher expression of some SAGs and decline in superoxide dismutase and ascorbate peroxidase activity in the chloroplasts also contributed to the accelerated senescence in fertile line compared to its CMS line under WDS.
Collapse
Affiliation(s)
- Vimal Kumar Semwal
- Stress Physiology Lab, Water Technology Centre, Indian Agricultural Research Institute, New Delhi, 110012 India
- Present Address: Africa Rice Center (AfricaRice), C/O IITA, PMB 5320, Oyo Road, Ibadan, Nigeria
| | - Renu Khanna-Chopra
- Stress Physiology Lab, Water Technology Centre, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
3
|
Zhao B, Ata-Ui-Karim ST, Yao X, Tian Y, Cao W, Zhu Y, Liu X. A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China. PLoS One 2016; 11:e0164545. [PMID: 27732634 PMCID: PMC5061393 DOI: 10.1371/journal.pone.0164545] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022] Open
Abstract
Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0–375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China.
Collapse
Affiliation(s)
- Ben Zhao
- National Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Syed Tahir Ata-Ui-Karim
- National Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xia Yao
- National Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - YongChao Tian
- National Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - WeiXing Cao
- National Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yan Zhu
- National Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - XiaoJun Liu
- National Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Srivalli S, Khanna-Chopra R. Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:663-70. [PMID: 19394842 DOI: 10.1016/j.plaphy.2009.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 03/24/2009] [Accepted: 03/31/2009] [Indexed: 05/08/2023]
Abstract
Removal of reproductive 'sink' i.e. spikelets from wheat at anthesis delays the rate of flag leaf senescence. In this work, the antioxidant defense was studied in the flag leaf of Triticum aestivum cv. Kalyansona plants showing normal (S + plants) and delayed senescence via removal of spikelets (S- plants). This was done by measurement of metabolites and activities of enzymes such as superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase. S- plants had higher reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and antioxidant enzyme activities than the control plants and the differences were apparent from 21 days after anthesis (DAA). The removal of the reproductive sink led to an increased antioxidant defense which may be contributing towards the delayed flag leaf senescence in wheat. Chloroplasts and mitochondria, important sources of ROS, were isolated at two stages representing early (7 DAA) and late (21 DAA) senescence. Oxidative damage to proteins was studied in these organelles in relation to SOD and APX. Mitochondria had higher levels of damaged proteins than chloroplasts at 7 DAA in both S+ and S- plants. Higher damage was related to the lower antioxidant enzyme levels of SOD and APX in mitochondria as compared to chloroplasts.
Collapse
Affiliation(s)
- S Srivalli
- Stress Physiology Laboratory, Water Technology Centre, Indian Agricultural Research Institute, Pusa Campus, New Delhi - 110 012, India
| | | |
Collapse
|
5
|
Bertheloot J, Andrieu B, Fournier C, Martre P. A process-based model to simulate nitrogen distribution in wheat (Triticum aestivum) during grain-filling. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:781-796. [PMID: 32688832 DOI: 10.1071/fp08064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 09/30/2008] [Indexed: 06/11/2023]
Abstract
Nitrogen (N) distribution among plant organs plays a major role in crop production and, in general, plant fitness to the environment. In the present study, a process-based model simulating N distribution within a wheat (Triticum aestivum L.) culm during grain filling was developed using a functional-structural approach. A model of turnover of the photosynthetic apparatus was used to describe the fluxes between a common pool of mobile N and each leaf lamina. Grain N accumulation within a time-step was modelled as the minimum between the quantity calculated by a potential function and the N available in the common pool. Nitrogen dynamics in the other organs (i.e. stem, chaff, root N uptake and remobilisation) were accounted for by forced variables. Using a unique set of six parameters, the model was able to simulate the observed N kinetics of each lamina and of the grains under a wide range of crop N supplies and for three cultivars. The time-course of the vertical gradient of lamina N during grain filling was realistically simulated as an emerging property of the local processes defined at the lamina scale. The model described in the present study offers new insight into the interactions between N metabolism, plant architecture and productivity.
Collapse
Affiliation(s)
| | - Bruno Andrieu
- INRA, UMR 1091 EGC, F-78850 Thiverval-Grignon, France
| | | | - Pierre Martre
- INRA, UMR 1095 GDEC, F-63100 Clermont-Ferrand, France
| |
Collapse
|
6
|
Srivalli B, Khanna-Chopra R. The developing reproductive ‘sink’ induces oxidative stress to mediate nitrogen mobilization during monocarpic senescence in wheat. Biochem Biophys Res Commun 2004; 325:198-202. [PMID: 15522219 DOI: 10.1016/j.bbrc.2004.09.221] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Removal of reproductive 'sink,' i.e., spikelets from wheat, after anthesis delays the rate of flag leaf senescence. Oxidative stress and the oxidative damage to proteins were studied in relation to nitrogen mobilization in wheat plants showing normal and delayed senescence. Wheat plants lacking a reproductive sink showed decreased oxidative stress, lower lipid peroxidation and maintained higher protein, oxidatively damaged proteins, and nitrogen levels as compared to plants with reproductive sink during monocarpic senescence. Oxidative damage to the proteins when not followed by high proteolytic activities led to a slower nitrogen mobilization in wheat plants lacking a reproductive sink. Thus, the influence of the reproductive sink was due to its ability to drive forward the nitrogen mobilization process through high ROS levels which mediated both damage to the proteins and influenced proteolytic activities.
Collapse
Affiliation(s)
- B Srivalli
- Stress Physiology Laboratory, Water Technology Centre, Indian Agricultural Research Institute, New Delhi 110 012, India
| | | |
Collapse
|
9
|
Abstract
The first step in flower development is the generation of a floral meristem by the inflorescence meristem. We have analyzed how this process is affected by mutant alleles of the Arabidopsis gene LEAFY. We show that LEAFY interacts with another floral control gene, APETALA1, to promote the transition from inflorescence to floral meristem. We have cloned the LEAFY gene, and, consistent with the mutant phenotype, we find that LEAFY RNA is expressed strongly in young flower primordia. LEAFY expression procedes expression of the homeotic genes AGAMOUS and APETALA3, which specify organ identify within the flower. Furthermore, we demonstrate that LEAFY is the Arabidopsis homolog of the FLORICAULA gene, which controls floral meristem identity in the distantly related species Antirrhinum majus.
Collapse
Affiliation(s)
- D Weigel
- California Institute of Technology, Division of Biology 156-29, Pasadena 91125
| | | | | | | | | |
Collapse
|