1
|
Sineshchekov VA. Two Distinct Molecular Types of Phytochrome A in Plants: Evidence of Existence and Implications for Functioning. Int J Mol Sci 2023; 24:ijms24098139. [PMID: 37175844 PMCID: PMC10179679 DOI: 10.3390/ijms24098139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Phytochrome (phy) system in plants comprising a small number of phytochromes with phyA and phyB as major ones is responsible for acquiring light information in the red-far-red region of the solar spectrum. It provides optimal strategy for plant development under changing light conditions throughout all its life cycle beginning from seed germination and seedling establishment to fruiting and plant senescence. The phyA was shown to participate in the regulation of this cycle which is especially evident at its early stages. It mediates three modes of reactions-the very low and low fluence responses (VLFR and LFR) and the high irradiance responses (HIR). The phyA is the sole light receptor in the far-red spectral region responsible for plant's survival under a dense plant canopy where light is enriched with the far-red component. Its appearance is believed to be one of the main factors of plants' successful evolution. So far, it is widely accepted that one molecular phyA species is responsible for its complex functional manifestations. In this review, the evidence of the existence of two distinct phyA types-major, light-labile and soluble phyA' and minor, relatively light-stable and amphiphilic phyA″-is presented as what may account for the diverse modes of phyA action.
Collapse
|
2
|
Sineshchekov VA. Two Distinct Molecular Types of Phytochrome A in Plants: Evidence of Existence and Implications for Functioning. Int J Mol Sci 2023; 24:8139. [DOI: https:/doi.org/10.3390/ijms24098139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Phytochrome (phy) system in plants comprising a small number of phytochromes with phyA and phyB as major ones is responsible for acquiring light information in the red—far-red region of the solar spectrum. It provides optimal strategy for plant development under changing light conditions throughout all its life cycle beginning from seed germination and seedling establishment to fruiting and plant senescence. The phyA was shown to participate in the regulation of this cycle which is especially evident at its early stages. It mediates three modes of reactions—the very low and low fluence responses (VLFR and LFR) and the high irradiance responses (HIR). The phyA is the sole light receptor in the far-red spectral region responsible for plant’s survival under a dense plant canopy where light is enriched with the far-red component. Its appearance is believed to be one of the main factors of plants′ successful evolution. So far, it is widely accepted that one molecular phyA species is responsible for its complex functional manifestations. In this review, the evidence of the existence of two distinct phyA types—major, light-labile and soluble phyA′ and minor, relatively light-stable and amphiphilic phyA″—is presented as what may account for the diverse modes of phyA action.
Collapse
|
3
|
Sierra J, Escobar-Tovar L, Leon P. Plastids: diving into their diversity, their functions, and their role in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2508-2526. [PMID: 36738278 DOI: 10.1093/jxb/erad044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Plastids are a group of essential, heterogenous semi-autonomous organelles characteristic of plants that perform photosynthesis and a diversity of metabolic pathways that impact growth and development. Plastids are remarkably dynamic and can interconvert in response to specific developmental and environmental cues, functioning as a central metabolic hub in plant cells. By far the best studied plastid is the chloroplast, but in recent years the combination of modern techniques and genetic analyses has expanded our current understanding of plastid morphological and functional diversity in both model and non-model plants. These studies have provided evidence of an unexpected diversity of plastid subtypes with specific characteristics. In this review, we describe recent findings that provide insights into the characteristics of these specialized plastids and their functions. We concentrate on the emerging evidence that supports the model that signals derived from particular plastid types play pivotal roles in plant development, environmental, and defense responses. Furthermore, we provide examples of how new technologies are illuminating the functions of these specialized plastids and the overall complexity of their differentiation processes. Finally, we discuss future research directions such as the use of ectopic plastid differentiation as a valuable tool to characterize factors involved in plastid differentiation. Collectively, we highlight important advances in the field that can also impact future agricultural and biotechnological improvement in plants.
Collapse
Affiliation(s)
- Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| |
Collapse
|
4
|
Zhao Y, Shi H, Pan Y, Lyu M, Yang Z, Kou X, Deng XW, Zhong S. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell 2023; 186:1230-1243.e14. [PMID: 36931246 DOI: 10.1016/j.cell.2023.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 08/23/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Ying Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mohan Lyu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoxia Kou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China.
| |
Collapse
|
5
|
Liu Y, Sun Y, Yao H, Zheng Y, Cao S, Wang H. Arabidopsis Circadian Clock Repress Phytochrome a Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:809563. [PMID: 35645991 PMCID: PMC9131076 DOI: 10.3389/fpls.2022.809563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The plants' internal circadian clock can strongly influence phytochrome signaling in response to the changes in the external light environment. Phytochrome A (phyA) is the photoreceptor that mediates various far-red (FR) light responses. phyA signaling is modulated by FHY3 and FAR1, which directly activate the transcription of FHY1 and FHL, whose products are essential for light-induced phyA nuclear accumulation and subsequent light responses. However, the mechanisms by which the clock regulates phyA signaling are poorly understood. Here, we discovered that FHY1 expression is diurnally regulated, peaking in the middle of the day. Two Arabidopsis core clock components, CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and TIMING OF CAB EXPRESSION1 (TOC1), repress FHY3/FAR1-mediated FHY1/FHL activation. Consistently, the specific expression pattern of FHY1 under diurnal conditions is altered in cca1-1, toc1-101, CCA1, and TOC1 overexpression plants. Furthermore, far-red induced gene expression and particularly nuclear accumulation of phyA are compromised in TOC1 and CCA1 overexpression seedlings. Our results therefore revealed a previously unidentified FHY1 expression pattern in diurnal cycles, which is negatively regulated by CCA1 and TOC1.
Collapse
Affiliation(s)
- Yang Liu
- College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Heng Yao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yanyan Zheng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shuyuan Cao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Haiyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
von Horsten S, Essen LO. Conformational Change of Tetratricopeptide Repeats Region Triggers Activation of Phytochrome-Associated Protein Phosphatase 5. FRONTIERS IN PLANT SCIENCE 2021; 12:733069. [PMID: 34721460 PMCID: PMC8551457 DOI: 10.3389/fpls.2021.733069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Phytochrome activity is not only controlled by light but also by post-translational modifications, e. g. phosphorylation. One of the phosphatases responsible for plant phytochrome dephosphorylation and thereby increased activity is the phytochrome-associated protein phosphatase 5 (PAPP5). We show that PAPP5 recognizes phospho-site mimicking mutants of phytochrome B, when being activated by arachidonic acid (AA). Addition of AA to PAPP5 decreases the α-helical content as tracked by CD-spectroscopy. These changes correspond to conformational changes of the regulatory tetratricopeptide repeats (TPR) region as shown by mapping data from hydrogen deuterium exchange mass spectrometry onto a 3.0 Å crystal structure of PAPP5. Surprisingly, parts of the linker between the TPR and PP2A domains and of the so-called C-terminal inhibitory motif exhibit reduced deuterium uptake upon AA-binding. Molecular dynamics analyses of PAPP5 complexed to a phyB phosphopeptide show that this C-terminal motif remains associated with the TPR region in the substrate bound state, suggesting that this motif merely serves for restricting the orientations of the TPR region relative to the catalytic PP2A domain. Given the high similarity to mammalian PP5 these data from a plant ortholog show that the activation mode of these PPP-type protein phosphatases is highly conserved.
Collapse
Affiliation(s)
- Silke von Horsten
- Department of Biochemistry, Faculty of Chemistry, Philipps-University, Marburg, Germany
| | - Lars-Oliver Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps-University, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University, Marburg, Germany
| |
Collapse
|
7
|
Favero DS, Lambolez A, Sugimoto K. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:392-420. [PMID: 32986276 DOI: 10.1111/tpj.14996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Organs such as hypocotyls and petioles rapidly elongate in response to shade and temperature cues, contributing to adaptive responses that improve plant fitness. Growth plasticity in these organs is achieved through a complex network of molecular signals. Besides conveying information from the environment, this signaling network also transduces internal signals, such as those associated with the circadian clock. A number of studies performed in Arabidopsis hypocotyls, and to a lesser degree in petioles, have been informative for understanding the signaling networks that regulate elongation of aerial plant organs. In particular, substantial progress has been made towards understanding the molecular mechanisms that regulate responses to light, the circadian clock, and temperature. Signals derived from these three stimuli converge on the BAP module, a set of three different types of transcription factors that interdependently promote gene transcription and growth. Additional key positive regulators of growth that are also affected by environmental cues include the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase proteins. In this review we summarize the key signaling pathways that regulate the growth of hypocotyls and petioles, focusing specifically on molecular mechanisms important for transducing signals derived from light, the circadian clock, and temperature. While it is clear that similarities abound between the signaling networks at play in these two organs, there are also important differences between the mechanisms regulating growth in hypocotyls and petioles.
Collapse
Affiliation(s)
- David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Alice Lambolez
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| |
Collapse
|
8
|
PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B-photobodies in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:8603-8608. [PMID: 30948632 DOI: 10.1073/pnas.1818217116] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The members of the phytochrome (phy) family of bilin-containing photoreceptors are major regulators of plant photomorphogenesis through their unique ability to photointerconvert between a biologically inactive red light-absorbing Pr state and an active far-red light-absorbing Pfr state. While the initial steps in Pfr signaling are unclear, an early event for the phyB isoform after photoconversion is its redistribution from the cytoplasm into subnuclear foci known as photobodies (PBs), which dissipate after Pfr reverts back to Pr by far-red irradiation or by temperature-dependent nonphotochemical reversion. Here we present evidence that PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) functions both as an essential structural component of phyB-containing PBs and as a direct regulator of thermal reversion that is sufficient to stabilize phyB as Pfr in vitro. By examining the genetic interaction between a constitutively active phyBY276H-YFP allele (YHB-YFP) and PCH1, we show that the loss of PCH1 prevents YHB from coalescing into PBs without affecting its nuclear localization, whereas overexpression of PCH1 dramatically increases PB levels. Loss of PCH1, presumably by impacting phyB-PB assembly, compromises a number of events elicited in YHB-YFP plants, including their constitutive photomorphogenic phenotype, red light-regulated thermomorphogenesis, and input of phyB into the circadian clock. Conversely, elevated levels of both phyB and PCH1 generate stable, yet far-red light-reversible PBs that persisted for days. Collectively, our data demonstrate that the assembly of PCH1-containing PBs is critical for phyB signaling to multiple outputs and suggest that altering PB dynamics could be exploited to modulate plant responses to light and temperature.
Collapse
|
9
|
Sheerin DJ, Hiltbrunner A. Molecular mechanisms and ecological function of far-red light signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2509-2529. [PMID: 28102581 DOI: 10.1111/pce.12915] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Land plants possess the ability to sense and respond to far-red light (700-760 nm), which serves as an important environmental cue. Due to the nature of far-red light, it is not absorbed by chlorophyll and thus is enriched in canopy shade and will also penetrate deeper into soil than other visible wavelengths. Far-red light responses include regulation of seed germination, suppression of hypocotyl growth, induction of flowering and accumulation of anthocyanins, which depend on one member of the phytochrome photoreceptor family, phytochrome A (phyA). Here, we review the current understanding of the underlying molecular mechanisms of how plants sense far-red light through phyA and the physiological responses to this light quality. Light-activated phytochromes act on two primary pathways within the nucleus; suppression of the E3 ubiquitin ligase complex CUL4/DDB1COP1/SPA and inactivation of the PHYTOCHROME INTERACTING FACTOR (PIF) family of bHLH transcription factors. These pathways integrate with other signal transduction pathways, including phytohormones, for tissue and developmental stage specific responses. Unlike other phytochromes that mediate red-light responses, phyA is transported from the cytoplasm to the nucleus in far-red light by the shuttle proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). However, additional mechanisms must exist that shift the action of phyA to far-red light; current hypotheses are discussed.
Collapse
Affiliation(s)
- David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
10
|
Calvo P, Sahi VP, Trewavas A. Are plants sentient? PLANT, CELL & ENVIRONMENT 2017; 40:2858-2869. [PMID: 28875517 DOI: 10.1111/pce.13065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/26/2017] [Accepted: 08/27/2017] [Indexed: 05/07/2023]
Abstract
Feelings in humans are mental states representing groups of physiological functions that usually have defined behavioural purposes. Feelings, being evolutionarily ancient, are thought to be coordinated in the brain stem of animals. One function of the brain is to prioritise between competing mental states and, thus, groups of physiological functions and in turn behaviour. Plants use groups of coordinated physiological activities to deal with defined environmental situations but currently have no known mental state to prioritise any order of response. Plants do have a nervous system based on action potentials transmitted along phloem conduits but which in addition, through anastomoses and other cross-links, forms a complex network. The emergent potential for this excitable network to form a mental state is unknown, but it might be used to distinguish between different and even contradictory signals to the individual plant and thus determine a priority of response. This plant nervous system stretches throughout the whole plant providing the potential for assessment in all parts and commensurate with its self-organising, phenotypically plastic behaviour. Plasticity may, in turn, depend heavily on the instructive capabilities of local bioelectric fields enabling both a degree of behavioural independence but influenced by the condition of the whole plant.
Collapse
Affiliation(s)
- Paco Calvo
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JH, UK
- Minimal Intelligence Lab, University of Murcia, Murcia, Spain
| | - Vaidurya Pratap Sahi
- Molecular Cell Biology, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Anthony Trewavas
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JH, UK
| |
Collapse
|
11
|
Dobisova T, Hrdinova V, Cuesta C, Michlickova S, Urbankova I, Hejatkova R, Zadnikova P, Pernisova M, Benkova E, Hejatko J. Light Controls Cytokinin Signaling via Transcriptional Regulation of Constitutively Active Sensor Histidine Kinase CKI1. PLANT PHYSIOLOGY 2017; 174:387-404. [PMID: 28292856 PMCID: PMC5411129 DOI: 10.1104/pp.16.01964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 05/07/2023]
Abstract
In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The cross talk between cytokinin response and light has been known for a long time. However, the molecular mechanism underlying the interaction between light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a LONG PALE HYPOCOTYL (LPH) gene whose activity is indispensable for spatiotemporally correct expression of CYTOKININ INDEPENDENT1 (CKI1), encoding the constitutively active sensor His kinase that activates MSP signaling. lph is a new allele of HEME OXYGENASE1 (HY1) that encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertible phytochromes. Our analysis confirmed the light-dependent regulation of the CKI1 expression pattern. We show that CKI1 expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of CKI1 expression, presumably via the phyA-regulated transcription factors (TF) PHYTOCHROME INTERACTING FACTOR3 and CIRCADIAN CLOCK ASSOCIATED1. Changes in CKI1 expression observed in lph/hy1-7 and phy mutants correlate with misregulation of MSP signaling, changed cytokinin sensitivity, and developmental aberrations that were previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate a novel role of phyA-dependent CKI1 expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of CKI1 provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development.
Collapse
Affiliation(s)
- Tereza Dobisova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Vendula Hrdinova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Candela Cuesta
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Sarka Michlickova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Ivana Urbankova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Romana Hejatkova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Petra Zadnikova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Marketa Pernisova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Eva Benkova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| |
Collapse
|
12
|
Wang H, Wang H. Phytochrome signaling: time to tighten up the loose ends. MOLECULAR PLANT 2015; 8:540-51. [PMID: 25670340 DOI: 10.1016/j.molp.2014.11.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Phytochromes are red and far-red light photoreceptors that play fundamental roles in controlling many aspects of plant growth and development in response to light. The past two decades have witnessed the mechanistic elucidation of the action mode of phytochromes, including their regulation by external and endogenous factors and how they exert their function as transcriptional regulators. More importantly, recent advances have substantially deepened our understanding on the integration of the phytochrome-mediated signal into other cellular and developmental processes, such as elongation of hypocotyls, shoot branching, circadian clock, and flowering time, which often involves complex intercellular and interorgan signaling. Based on these advances, this review illustrates a blueprint of our current understanding of phytochrome signaling and its crosstalk with other signaling pathways, and also points out still open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Sheerin DJ, Menon C, zur Oven-Krockhaus S, Enderle B, Zhu L, Johnen P, Schleifenbaum F, Stierhof YD, Huq E, Hiltbrunner A. Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. THE PLANT CELL 2015; 27:189-201. [PMID: 25627066 PMCID: PMC4330587 DOI: 10.1105/tpc.114.134775] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 11/28/2014] [Accepted: 01/08/2015] [Indexed: 05/18/2023]
Abstract
Phytochromes function as red/far-red photoreceptors in plants and are essential for light-regulated growth and development. Photomorphogenesis, the developmental program in light, is the default program in seed plants. In dark-grown seedlings, photomorphogenic growth is suppressed by the action of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)/SUPPRESSOR OF phyA-105 (SPA) complex, which targets positive regulators of photomorphogenic growth for degradation by the proteasome. Phytochromes inhibit the COP1/SPA complex, leading to the accumulation of transcription factors promoting photomorphogenesis; yet, the mechanism by which they inactivate COP1/SPA is still unknown. Here, we show that light-activated phytochrome A (phyA) and phytochrome B (phyB) interact with SPA1 and other SPA proteins. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy analyses show that SPAs and phytochromes colocalize and interact in nuclear bodies. Furthermore, light-activated phyA and phyB disrupt the interaction between COP1 and SPAs, resulting in reorganization of the COP1/SPA complex in planta. The light-induced stabilization of HFR1, a photomorphogenic factor targeted for degradation by COP1/SPA, correlates temporally with the accumulation of phyA in the nucleus and localization of phyA to nuclear bodies. Overall, these data provide a molecular mechanism for the inactivation of the COP1/SPA complex by phyA- and phyB-mediated light perception.
Collapse
Affiliation(s)
- David J Sheerin
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Chiara Menon
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Sven zur Oven-Krockhaus
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Beatrix Enderle
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ling Zhu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Philipp Johnen
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Frank Schleifenbaum
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - York-Dieter Stierhof
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
14
|
Sineshchekov V, Sudnitsin A, Ádám É, Schäfer E, Viczián A. phyA-GFP is spectroscopically and photochemically similar to phyA and comprises both its native types, phyA’ and phyA”. Photochem Photobiol Sci 2014; 13:1671-1679. [DOI: https:/doi.org/10.1039/c4pp00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2023]
|
15
|
Sineshchekov V, Sudnitsin A, Ádám É, Schäfer E, Viczián A. phyA-GFP is spectroscopically and photochemically similar to phyA and comprises both its native types, phyA' and phyA''. Photochem Photobiol Sci 2014; 13:1671-9. [PMID: 25297540 DOI: 10.1039/c4pp00220b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/16/2014] [Indexed: 12/16/2023]
Abstract
Low-temperature fluorescence investigations of phyA-GFP used in experiments on its nuclear-cytoplasmic partitioning were carried out. In etiolated hypocotyls of phyA-deficient Arabidopsis thaliana expressing phyA-GFP, it was found that it is similar to phyA in spectroscopic parameters with both its native types, phyA' and phyA'', present and their ratio shifted towards phyA'. In transgenic tobacco hypocotyls, native phyA and rice phyA-GFP were also identical to phyA in the wild type whereas phyA-GFP belonged primarily to the phyA' type. Finally, truncated oat Δ6-12 phyA-GFP expressed in phyA-deficient Arabidopsis was represented by the phyA' type in contrast to full-length oat phyA-GFP with an approximately equal proportion of the two phyA types. This correlates with a previous observation that Δ6-12 phyA-GFP can form only numerous tiny subnuclear speckles while its wild-type counterpart can also localize into bigger and fewer subnuclear protein complexes. Thus, phyA-GFP is spectroscopically and photochemically similar or identical to the native phyA, suggesting that the GFP tag does not affect the chromophore. phyA-GFP comprises phyA'-GFP and phyA''-GFP, suggesting that both of them are potential participants in nuclear-cytoplasmic partitioning, which may contribute to its complexity.
Collapse
Affiliation(s)
- Vitaly Sineshchekov
- Biology Department, MV Lomonosov Moscow State University, Moscow 119899, Russia.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Extensive studies in both lower and higher plants indicate that plant phytochrome photoreceptors signal not only by regulating transcription in the nucleus but also by acting within the cytoplasm, the latter signaling routes acting within minutes or even seconds and also providing directional information. Directional signals seem to arise from phytochromes attached anisotropically to the plasma membrane. Neochromes-phytochrome-phototropin hybrid photoreceptors probably attached to the plasma membrane-provide this signal in various ferns and perhaps certain algae but are absent from other groups. In mosses and probably higher plants too, a subpopulation of canonical phytochromes interact with phototropins at the plasma membrane and thereby steer directional responses. Phytochromes also seem able to regulate translation in the cytoplasm. This review discusses putative phytochrome functions in these contexts.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, D35390 Giessen, Germany.
| |
Collapse
|
17
|
A phytochrome-phototropin light signaling complex at the plasma membrane. Proc Natl Acad Sci U S A 2012; 109:12231-6. [PMID: 22773817 DOI: 10.1073/pnas.1120203109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phytochromes are red/far-red photochromic photoreceptors central to regulating plant development. Although they are known to enter the nucleus upon light activation and, once there, regulate transcription, this is not the complete picture. Various phytochrome effects are manifested much too rapidly to derive from changes in gene expression, whereas others seem to occur without phytochrome entering the nucleus. Phytochromes also guide directional responses to light, excluding a genetic signaling route and implying instead plasma membrane association and a direct cytoplasmic signal. However, to date, no such association has been demonstrated. Here we report that a phytochrome subpopulation indeed associates physically with another photoreceptor, phototropin, at the plasma membrane. Yeast two-hybrid methods using functional photoreceptor molecules showed that the phytochrome steering growth direction in Physcomitrella protonemata binds several phototropins specifically in the photoactivated Pfr state. Split-YFP studies in planta showed that the interaction occurs exclusively at the plasma membrane. Coimmunoprecipitation experiments provided independent confirmation of in vivo phy-phot binding. Consistent with this interaction being associated with a cellular signal, we found that phytochrome-mediated tropic responses are impaired in Physcomitrella phot(-) mutants. Split-YFP revealed a similar interaction between Arabidopsis phytochrome A and phototropin 1 at the plasma membrane. These associations additionally provide a functional explanation for the evolution of neochrome photoreceptors. Our results imply that the elusive phytochrome cytoplasmic signal arises through binding and coaction with phototropin at the plasma membrane.
Collapse
|
18
|
Oka Y, Ono Y, Toledo-Ortiz G, Kokaji K, Matsui M, Mochizuki N, Nagatani A. Arabidopsis phytochrome a is modularly structured to integrate the multiple features that are required for a highly sensitized phytochrome. THE PLANT CELL 2012; 24:2949-62. [PMID: 22843485 PMCID: PMC3426125 DOI: 10.1105/tpc.111.094201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phytochrome is a red (R)/far-red (FR) light-sensing photoreceptor that regulates various aspects of plant development. Among the members of the phytochrome family, phytochrome A (phyA) exclusively mediates atypical phytochrome responses, such as the FR high irradiance response (FR-HIR), which is elicited under prolonged FR. A proteasome-based degradation pathway rapidly eliminates active Pfr (the FR-absorbing form of phyA) under R. To elucidate the structural basis for the phyA-specific properties, we systematically constructed 16 chimeric phytochromes in which each of four parts of the phytochrome molecule, namely, the N-terminal extension plus the Per/Arnt/Sim domain (N-PAS), the cGMP phosphodiesterase/adenyl cyclase/FhlA domain (GAF), the phytochrome domain (PHY), and the entire C-terminal half, was occupied by either the phyA or phytochrome B sequence. These phytochromes were expressed in transgenic Arabidopsis thaliana to examine their physiological activities. Consequently, the phyA N-PAS sequence was shown to be necessary and sufficient to promote nuclear accumulation under FR, whereas the phyA sequence in PHY was additionally required to exhibit FR-HIR. Furthermore, the phyA sequence in PHY alone substantially increased the light sensitivity to R. In addition, the GAF phyA sequence was important for rapid Pfr degradation. In summary, distinct structural modules, each of which confers different properties to phyA, are assembled on the phyA molecule.
Collapse
Affiliation(s)
- Yoshito Oka
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
- Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumiku, Yokohama, Kanagawa 2300-0045, Japan
| | - Yuya Ono
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Gabriela Toledo-Ortiz
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Keio Kokaji
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Minami Matsui
- Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumiku, Yokohama, Kanagawa 2300-0045, Japan
| | - Nobuyoshi Mochizuki
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Akira Nagatani
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
19
|
Viczián A, Ádám É, Wolf I, Bindics J, Kircher S, Heijde M, Ulm R, Schäfer E, Nagy F. A short amino-terminal part of Arabidopsis phytochrome A induces constitutive photomorphogenic response. MOLECULAR PLANT 2012; 5:629-641. [PMID: 22498774 DOI: 10.1093/mp/sss035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phytochrome A (phyA) is the dominant photoreceptor of far-red light sensing in Arabidopsis thaliana. phyA accumulates at high levels in the cytoplasm of etiolated seedlings, and light-induced phyA signaling is mediated by a complex regulatory network. This includes light- and FHY1/FHL protein-dependent translocation of native phyA into the nucleus in vivo. It has also been shown that a short N-terminal fragment of phyA (PHYA406) is sufficient to phenocopy this highly regulated cellular process in vitro. To test the biological activity of this N-terminal fragment of phyA in planta, we produced transgenic phyA-201 plants expressing the PHYA406-YFP (YELLOW FLUORESCENT PROTEIN)-DD, PHYA406-YFP-DD-NLS (nuclear localization signal), and PHYA406-YFP-DD-NES (nuclear export signal) fusion proteins. Here, we report that PHYA406-YFP-DD is imported into the nucleus and this process is partially light-dependent whereas PHYA406-YFP-DD-NLS and PHYA406-YFP-DD-NES display the expected constitutive localization patterns. Our results show that these truncated phyA proteins are light-stable, they trigger a constitutive photomorphogenic-like response when localized in the nuclei, and neither of them induces proper phyA signaling. We demonstrate that in vitro and in vivo PHYA406 Pfr and Pr bind COP1, a general repressor of photomorphogenesis, and co-localize with it in nuclear bodies. Thus, we conclude that, in planta, the truncated PHYA406 proteins inactivate COP1 in the nuclei in a light-independent fashion.
Collapse
Affiliation(s)
- András Viczián
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tsuboi H, Nakamura S, Schäfer E, Wada M. Red light-induced phytochrome relocation into the nucleus in Adiantum capillus-veneris. MOLECULAR PLANT 2012; 5:611-8. [PMID: 22266427 DOI: 10.1093/mp/ssr119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phytochromes in seed plants are known to move into nuclei in a red light-dependent manner with or without interacting factors. Here, we show phytochrome relocation to the nuclear region in phytochrome-dependent Adiantum capillus-veneris spore germination by partial spore-irradiation experiments. The nuclear or non-nuclear region of imbibed spores was irradiated with a microbeam of red and/or far-red light and the localization of phytochrome involved in spore germination was estimated from the germination rate. The phytochrome for spore germination existed throughout whole spore under darkness after imbibition, but gradually migrated to the nuclear region following red light irradiation. Intracellular distribution of PHY-GUS fusion proteins expressed in germinated spores by particle bombardment showed the migration of Acphy2, but not Acphy1, into nucleus in a red light-dependent manner, suggesting that Acphy2 is the photoreceptor for fern spore germination.
Collapse
|
21
|
Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc Natl Acad Sci U S A 2012; 109:5892-7. [PMID: 22451940 DOI: 10.1073/pnas.1120764109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phytochromes (phy) are red/far-red-absorbing photoreceptors that regulate the adaption of plant growth and development to changes in ambient light conditions. The nuclear transport of the phytochromes upon light activation is regarded as a key step in phytochrome signaling. Although nuclear import of phyA is regulated by the transport facilitators far red elongated hypocotyl 1 (FHY1) and fhy1-like, an intrinsic nuclear localization signal was proposed to be involved in the nuclear accumulation of phyB. We recently showed that nuclear import of phytochromes can be analyzed in a cell-free system consisting of isolated nuclei of the unicellular green algae Acetabularia acetabulum. We now show that this system is also versatile to elucidate the mechanism of the nuclear transport of phyB. We tested the nuclear transport characteristics of full-length phyB as well as N- and C-terminal phyB fragments in vitro and showed that the nuclear import of phyB can be facilitated by phytochrome-interacting factor 3 (PIF3). In vivo measurements of phyB nuclear accumulation in the absence of PIF1, -3, -4, and -5 indicate that these PIFs are the major transport facilitators during the first hours of deetiolation. Under prolonged irradiations additional factors might be responsible for phyB nuclear transport in the plant.
Collapse
|
22
|
Van Buskirk EK, Decker PV, Chen M. Photobodies in light signaling. PLANT PHYSIOLOGY 2012; 158:52-60. [PMID: 21951469 PMCID: PMC3252093 DOI: 10.1104/pp.111.186411] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/22/2011] [Indexed: 05/17/2023]
|
23
|
Oka Y, Kong SG, Matsushita T. A non-covalently attached chromophore can mediate phytochrome B signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2011; 52:2088-102. [PMID: 22006939 DOI: 10.1093/pcp/pcr139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phytochrome B (phyB) is the major informational photoreceptor in light-grown plants. The phyB polypeptide is folded into two domains, the N-terminal domain and the C-terminal domain. The N-terminal domain covalently binds to the chromophore via a particular cysteine residue, which allows the holoprotein to absorb light and undergo a photoreversible conformational change. The N-terminal domain of phyB interacts with transcription factors, such as PIF3 (PHYTOCHROME-INTERACTING FACTOR 3), to transduce the light signal to downstream components. Since substitution of the chromophore attachment site, Cys357, with alanine (C357A) abolishes the biological activity of Arabidopsis phyB, the covalent attachment with the chromophore is widely assumed to be necessary for phyB signal transduction. In this study, we show that Arabidopsis phyB is capable of transducing signals with a non-covalently retained chromophore. Substituting the Tyr276 residue of phyB with histidine (Y276H) is known to confer constitutive phyB signaling. PhyB containing both Y276H and C357A substitutions exhibited light-independent biological activity in transgenic Arabidopsis plants in a chromophore-dependent manner. Spectrophotometric analysis showed that the N-terminal domain of phyB containing just the C357A substitution could retain the chromophore non-covalently. The N-terminal domain containing both the Y276H and C357A substitutions interacted with PIF3 in a light-independent but chromophore-dependent fashion in yeast two-hybrid assays. From these results, we conclude that the constitutive phyB signaling conferred by Y276H requires the chromophore, but that the chromophore does not need to be covalently bonded to phyB.
Collapse
Affiliation(s)
- Yoshito Oka
- RIKEN Plant Science Center, Yokohama, 230-0045 Japan
| | | | | |
Collapse
|
24
|
Li J, Li G, Wang H, Wang Deng X. Phytochrome signaling mechanisms. THE ARABIDOPSIS BOOK 2011; 9:e0148. [PMID: 22303272 PMCID: PMC3268501 DOI: 10.1199/tab.0148] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phytochromes are red (R)/far-red (FR) light photoreceptors that play fundamental roles in photoperception of the light environment and the subsequent adaptation of plant growth and development. There are five distinct phytochromes in Arabidopsis thaliana, designated phytochrome A (phyA) to phyE. phyA is light-labile and is the primary photoreceptor responsible for mediating photomorphogenic responses in FR light, whereas phyB-phyE are light stable, and phyB is the predominant phytochrome regulating de-etiolation responses in R light. Phytochromes are synthesized in the cytosol in their inactive Pr form. Upon light irradiation, phytochromes are converted to the biologically active Pfr form, and translocate into the nucleus. phyB can enter the nucleus by itself in response to R light, whereas phyA nuclear import depends on two small plant-specific proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). Phytochromes may function as light-regulated serine/threonine kinases, and can phosphorylate several substrates, including themselves in vitro. Phytochromes are phosphoproteins, and can be dephosphorylated by a few protein phosphatases. Photoactivated phytochromes rapidly change the expression of light-responsive genes by repressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), an E3 ubiquitin ligase targeting several photomorphogenesis-promoting transcription factors for degradation, and by inducing rapid phosphorylation and degradation of Phytochrome-Interacting Factors (PIFs), a group of bHLH transcription factors repressing photomorphogenesis. Phytochromes are targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway.
Collapse
Affiliation(s)
- Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| | - Gang Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| | - Haiyang Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06520-8104
| |
Collapse
|
25
|
Wolf I, Kircher S, Fejes E, Kozma-Bognár L, Schäfer E, Nagy F, Ádám É. Light-regulated nuclear import and degradation of Arabidopsis phytochrome-A N-terminal fragments. PLANT & CELL PHYSIOLOGY 2011; 52:361-72. [PMID: 21169346 PMCID: PMC3037077 DOI: 10.1093/pcp/pcq194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/09/2010] [Indexed: 05/20/2023]
Abstract
The photoreceptor phytochrome-A (phyA) regulates germination and seedling establishment by mediating very low fluence (VLFR) and far-red high irradiance (FR-HIR) responses in Arabidopsis thaliana. In darkness, phyA homodimers exist in the biologically inactive Pr form and are localized in the cytoplasm. Light induces formation of the biologically active Pfr form and subsequent rapid nuclear import. PhyA Pfr, in contrast to the Pr form, is labile and has a half-life of ∼30 min. We produced transgenic plants in a phyA-201 null background that express the PHYA-yellow fluorescent protein (YFP) or the PHYA686-YFP-dimerization domain (DD) and PHYA686-YFP-DD-nuclear localization signal (NLS) or PHYA686-YFP-DD-nuclear exclusion signal (NES) fusion proteins. The PHYA686-YFP fusion proteins contained the N-terminal domain of phyA (686 amino acid residues), a short DD and the YFP. Here we report that (i) PHYA686-YFP-DD fusion protein is imported into the nucleus in a light-dependent fashion; (ii) neither of the PHYA686 fusion proteins is functional in FR-HIR and nuclear VLFR; and (iii) the phyA-dependent, blue light-induced inhibition of hypocotyl growth is mediated by the PHYA686-YFP-DD-NES but not by the PHYA686-YFP-DD-NLS and PHYA686-YFP-DD fusion proteins. We demonstrate that (i) light induces degradation of all PHYA N-terminal-containing fusion proteins and (ii) these N-terminal domain-containing fusion proteins including the constitutively nuclear PHYA686-YFP-DD-NLS and predominantly cytoplasmic PHYA686-YFP-DD-NES degrade at comparable rates but markedly more slowly than PHYA-YFP, whereas (iii) light-induced degradation of the native phyA is faster compared with PHYA-YFP.
Collapse
Affiliation(s)
- Iris Wolf
- Institute of Botany, Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Stefan Kircher
- Institute of Botany, Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Erzsébet Fejes
- Plant Biology Institute, Biological Research Centre, Temesvari krt. 62, H-6726 Szeged, Hungary
| | - László Kozma-Bognár
- Plant Biology Institute, Biological Research Centre, Temesvari krt. 62, H-6726 Szeged, Hungary
| | - Eberhard Schäfer
- Institute of Botany, Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Ferenc Nagy
- Plant Biology Institute, Biological Research Centre, Temesvari krt. 62, H-6726 Szeged, Hungary
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Éva Ádám
- Plant Biology Institute, Biological Research Centre, Temesvari krt. 62, H-6726 Szeged, Hungary
- *Corresponding author: E-mail, ; Fax, +36-62-433-434
| |
Collapse
|
26
|
Li J, Li G, Wang H, Wang Deng X. Phytochrome signaling mechanisms. THE ARABIDOPSIS BOOK 2011. [PMID: 22303272 DOI: 10.1199/2ftab.0148e0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phytochromes are red (R)/far-red (FR) light photoreceptors that play fundamental roles in photoperception of the light environment and the subsequent adaptation of plant growth and development. There are five distinct phytochromes in Arabidopsis thaliana, designated phytochrome A (phyA) to phyE. phyA is light-labile and is the primary photoreceptor responsible for mediating photomorphogenic responses in FR light, whereas phyB-phyE are light stable, and phyB is the predominant phytochrome regulating de-etiolation responses in R light. Phytochromes are synthesized in the cytosol in their inactive Pr form. Upon light irradiation, phytochromes are converted to the biologically active Pfr form, and translocate into the nucleus. phyB can enter the nucleus by itself in response to R light, whereas phyA nuclear import depends on two small plant-specific proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). Phytochromes may function as light-regulated serine/threonine kinases, and can phosphorylate several substrates, including themselves in vitro. Phytochromes are phosphoproteins, and can be dephosphorylated by a few protein phosphatases. Photoactivated phytochromes rapidly change the expression of light-responsive genes by repressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), an E3 ubiquitin ligase targeting several photomorphogenesis-promoting transcription factors for degradation, and by inducing rapid phosphorylation and degradation of Phytochrome-Interacting Factors (PIFs), a group of bHLH transcription factors repressing photomorphogenesis. Phytochromes are targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway.
Collapse
|
27
|
Toledo-Ortiz G, Kiryu Y, Kobayashi J, Oka Y, Kim Y, Nam HG, Mochizuki N, Nagatani A. Subcellular sites of the signal transduction and degradation of phytochrome A. PLANT & CELL PHYSIOLOGY 2010; 51:1648-1660. [PMID: 20739301 DOI: 10.1093/pcp/pcq121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phytochrome regulates various physiological and developmental processes throughout the life cycle of plants. Among the members of the phytochrome family, phytochrome A (phyA) exclusively mediates the far-red light high irradiance response (FR-HIR), which is elicited by continuous far-red light. In FR-HIR, nuclear accumulation of phyA, which precedes physiological responses, is proposed to be required for the response. In contrast to FR, red light induces rapid degradation of phyA to suppress undesirable long-term photomorphogenic responses of phyA. In the present study, we compared biological activities between phyA derivatives to which either a nuclear localization (NLS) or export (NES) signal sequence was attached. Those derivatives were expressed under the control of the PHYA promoter in the Arabidopsis phyA mutant. Detailed microscopic observation revealed that the phyA-green fluorescent protein (GFP) without a signal sequence is localized exclusively in the cytoplasm in darkness. Rapid nuclear entry was observed after exposure to both red and far-red light. Interestingly, both phyA-GFP-NLS and phyA-GFP-NES were rapidly degraded under continuous red light. Furthermore, a proteasome inhibitor delayed degradation equally under these two conditions. Therefore, similar mechanisms for phyA degradation may exist in the cytoplasm and nucleus. As expected from previous reports, phyA-GFP-NLS, but not phyA-GFP-NES, mediated different aspects of FR-HIR, such as inhibition of hypocotyl elongation and rapid induction of gene expression, confirming that phyA nuclear localization is required for FR-HIR. In addition, a detailed time course analysis of phyA-GFP and phyA-GFP-NLS responses revealed that they were almost indistinguishable, raising the question of the physiological relevance of phyA cytoplasmic retention in darkness.
Collapse
Affiliation(s)
- Gabriela Toledo-Ortiz
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rösler J, Jaedicke K, Zeidler M. Cytoplasmic phytochrome action. PLANT & CELL PHYSIOLOGY 2010; 51:1248-1254. [PMID: 20576692 DOI: 10.1093/pcp/pcq091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phytochrome photoperception is a common mechanism for the detection of red and far-red light in bacteria, cyanobacteria, fungi and plants. However, the responses following phytochrome activation appear to be quite diverse between species. Lower plants, such as mosses, show phytochrome-mediated directional responses, namely phototropism and polarotropism. These cannot be explained by nuclear gene regulation and are thought to be triggered by phytochromes in the cytoplasm or at the plasma membrane. In higher plants, similar directional responses are mediated via phototropin, a blue light receptor, with phytochromes mainly controlling morphogenetic responses through gene regulation. However, cytoplasmic phytochrome responses exist in higher plants too, which appear to be intertwined with directional blue light perception. By summarizing the respective findings, a possible conservation of cytoplasmic phytochrome function in higher and lower plants is addressed here.
Collapse
Affiliation(s)
- Jutta Rösler
- Department of Plant Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
29
|
Müller R, Fernández AP, Hiltbrunner A, Schäfer E, Kretsch T. The histidine kinase-related domain of Arabidopsis phytochrome a controls the spectral sensitivity and the subcellular distribution of the photoreceptor. PLANT PHYSIOLOGY 2009; 150:1297-309. [PMID: 19403732 PMCID: PMC2705050 DOI: 10.1104/pp.109.135988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/26/2009] [Indexed: 05/19/2023]
Abstract
Phytochrome A (phyA) is the primary photoreceptor for sensing extremely low amounts of light and for mediating various far-red light-induced responses in higher plants. Translocation from the cytosol to the nucleus is an essential step in phyA signal transduction. EID1 (for EMPFINDLICHER IM DUNKELROTEN LICHT1) is an F-box protein that functions as a negative regulator in far-red light signaling downstream of the phyA in Arabidopsis (Arabidopsis thaliana). To identify factors involved in EID1-dependent light signal transduction, pools of ethylmethylsulfonate-treated eid1-3 seeds were screened for seedlings that suppress the hypersensitive phenotype of the mutant. The phenotype of the suppressor mutant presented here is caused by a missense mutation in the PHYA gene that leads to an amino acid transition in its histidine kinase-related domain. The novel phyA-402 allele alters the spectral sensitivity and the persistence of far-red light-induced high-irradiance responses. The strong eid1-3 suppressor phenotype of phyA-402 contrasts with the moderate phenotype observed when phyA-402 is introgressed into the wild-type background, which indicates that the mutation mainly alters functions in an EID1-dependent signaling cascade. The mutation specifically inhibits nuclear accumulation of the photoreceptor molecule upon red light irradiation, even though it still interacts with FHY1 (for far-red long hypocotyl 1) and FHL (for FHY1-like protein), two factors that are essential for nuclear accumulation of phyA. Degradation of the mutated phyA is unaltered even under light conditions that inhibit its nuclear accumulation, indicating that phyA degradation may occur mostly in the cytoplasm.
Collapse
Affiliation(s)
- Rebecca Müller
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie 2/Botanik, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Riemann M, Bouyer D, Hisada A, Müller A, Yatou O, Weiler EW, Takano M, Furuya M, Nick P. Phytochrome A requires jasmonate for photodestruction. PLANTA 2009; 229:1035-45. [PMID: 19184094 DOI: 10.1007/s00425-009-0891-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/07/2009] [Indexed: 05/23/2023]
Abstract
The plant photoreceptor phytochrome is organised in a small gene family with phytochrome A (phyA) being unique, because it is specifically degraded upon activation by light. This so called photodestruction is thought to be important for dynamic aspects of sensing such as measuring day length or shading by competitors. Signal-triggered proteolytic degradation has emerged as central element of signal crosstalk in plants during recent years, but many of the molecular players are still unknown. We therefore analyzed a jasmonate (JA)-deficient rice mutant, hebiba, that in several aspects resembles a mutant affected in photomorphogenesis. In this mutant, the photodestruction of phyA is delayed as shown by in vivo spectroscopy and Western blot analysis. Application of methyl-JA (MeJA) can rescue the delayed phyA photodestruction in the mutant in a time- and dose-dependent manner. Light regulation of phyA transcripts thought to be under control of stable phytochrome B (phyB) is still functional. The delayed photodestruction is accompanied by an elevated sensitivity of phytochrome-dependent growth responses to red and far-red light.
Collapse
Affiliation(s)
- Michael Riemann
- Institute of Botany 1, Universität Karlsruhe, Kaiserstrasse 2, 76128 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamada K, Hasegawa T, Shigemori H. Raphanusanin-induced genes and the characterization of RsCSN3, a raphanusanin-induced gene in etiolated radish hypocotyls. PHYTOCHEMISTRY 2008; 69:2781-92. [PMID: 18952246 DOI: 10.1016/j.phytochem.2008.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 09/03/2008] [Accepted: 09/07/2008] [Indexed: 05/23/2023]
Abstract
Raphanusanin is a light-induced growth inhibitor involved in inhibition of hypocotyl growth in response to unilateral blue light illumination in radish seedlings. To understand better the role of raphanusanin in growth inhibition, we randomly analyzed raphanusanin-induced genes using a modified DD-RT-PCR (differential display RT-PCR) approach. The differential expression RT-PCR approach resulted in identification of four known candidate genes, of which three encoded functional proteins known to be related to responsiveness to diverse environmental stimuli. One of these genes appeared to be an essential element in the inhibition of hypocotyl growth, and was named RsCSN3 (a homologue of subunit 3 of the COP9 signalosome). During the growth inhibition that was observed within minutes of irradiation, the expression of the RsCSN3 gene was increased by phototropic stimulation, as well as by raphanusanin treatment, suggesting that this gene is involved in light-induced growth inhibition. In addition, down-regulation of the RsCSN3 transcript, that is specifically expressed at 60 min after the onset of stimulation under blue light, green light, and raphanusanin treatment, shows a functional correlation with the phototropic response.
Collapse
|
32
|
Fankhauser C, Chen M. Transposing phytochrome into the nucleus. TRENDS IN PLANT SCIENCE 2008; 13:596-601. [PMID: 18824397 DOI: 10.1016/j.tplants.2008.08.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 05/19/2023]
Abstract
To control many physiological responses, phytochromes directly modulate gene expression. A key regulatory event in this signal transduction pathway is the light-controlled translocation of the photoreceptor from the cytoplasm into the nucleus. Recent publications are beginning to shed light on the molecular mechanisms underlying this central control point. Interestingly, there is a specific mechanism for phytochrome A (phyA) nuclear accumulation. The dedicated phyA nuclear import pathway might be important for the distinct photosensory specificity of this atypical phytochrome. Recent studies in the field also provide a starting point for investigating how the different subcellular pools of phytochrome can control distinct responses to light.
Collapse
Affiliation(s)
- Christian Fankhauser
- Centre for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, Switzerland.
| | | |
Collapse
|
33
|
Chico JM, Chini A, Fonseca S, Solano R. JAZ repressors set the rhythm in jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:503-8. [PMID: 18653378 DOI: 10.1016/j.pbi.2008.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/18/2008] [Accepted: 06/27/2008] [Indexed: 05/08/2023]
Abstract
Jasmonates (JAs) are essential hormones for plant defense and development. In spite of their importance, the molecular details of their signaling pathways remain largely unknown. A new family of regulators of JA signaling named JAZ, jasmonate ZIM-domain proteins, has recently been described. JAZ proteins repress of JA signaling and are targeted by the E3-ubiquitin ligase SCF(COI1) for proteasome degradation in response to JA. Hormone binding depends on a functional COI1 protein suggesting that COI1 is the JA receptor. MYC2, a positive regulator of JA-dependent responses, has been identified as a target of JAZ repressors. Interestingly, MYC2 and JAZ proteins are involved in a negative regulatory feedback loop, suggesting a model to explain how transcriptional reprogramming is turned on and off in response to JA. The discovery of JAZ repressors provides a new framework to understand JA-signaling pathways from hormonal perception to transcriptional activation.
Collapse
Affiliation(s)
- Jose M Chico
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Mutant screen distinguishes between residues necessary for light-signal perception and signal transfer by phytochrome B. PLoS Genet 2008; 4:e1000158. [PMID: 18704165 PMCID: PMC2494609 DOI: 10.1371/journal.pgen.1000158] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 07/10/2008] [Indexed: 01/21/2023] Open
Abstract
The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651–amino acid domain of phyB (N651), which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals in the cell nucleus. The N651 domain comprises several subdomains: the N-terminal extension, the Per/Arnt/Sim (PAS)-like subdomain (PLD), the cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) subdomain, and the phytochrome (PHY) subdomain. To define functional roles for these subdomains, we mutagenized an Arabidopsis thaliana line expressing N651 fused in tandem to green fluorescent protein, β-glucuronidase, and a nuclear localization signal. A large-scale screen for long hypocotyl mutants identified 14 novel intragenic missense mutations in the N651 moiety. These new mutations, along with eight previously identified mutations, were distributed throughout N651, indicating that each subdomain has an important function. In vitro analysis of the spectral properties of these mutants enabled them to be classified into two principal classes: light-signal perception mutants (those with defective spectral activity), and signaling mutants (those normal in light perception but defective in intracellular signal transfer). Most spectral mutants were found in the GAF and PHY subdomains. On the other hand, the signaling mutants tend to be located in the N-terminal extension and PLD. These observations indicate that the N-terminal extension and PLD are mainly involved in signal transfer, but that the C-terminal GAF and PHY subdomains are responsible for light perception. Among the signaling mutants, R110Q, G111D, G112D, and R325K were particularly interesting. Alignment with the recently described three-dimensional structure of the PAS-GAF domain of a bacterial phytochrome suggests that these four mutations reside in the vicinity of the phytochrome light-sensing knot. Adapting to the light environment, plants have evolved several photoreceptors, of which the phytochromes are specialized in perceiving the red and far-red light region of the spectrum. Although phytochrome was first discovered in plants, the phytochrome species are present in several organisms, including bacteria. The mechanisms by which phytochromes transduce light signals to downstream components are most well studied in plants. Upon light activation, phytochromes translocate from the cytoplasm into nucleus and regulate the gene expression network through interaction with nuclear transcription factors. The phytochrome molecule can be divided into two major domains: the N-terminal moiety, which is responsible for the light perception, and the C-terminal moiety. Although the C-terminal moiety was though to be involved in signal transduction, it has recently been shown that the N-terminal moiety has a role not only in the light perception, but also in light signal transfer to the downstream network. However, no signaling motifs have been found in the N-terminal moiety. In this study, we analyzed intragenic mutations derived from a genetic screen and found a cluster of residues necessary for signal transduction in a small region neighboring the light-sensing chromophore moiety on the three-dimensional structure. This is an important step towards understanding how a major plant photoreceptor, phytochrome, intramolecularly processes the light signal to trigger diverse physiological responses.
Collapse
|
35
|
Paul LK, Khurana JP. Phytochrome-mediated light signaling in plants: emerging trends. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:9-22. [PMID: 23572870 PMCID: PMC3550659 DOI: 10.1007/s12298-008-0002-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytochromes maximally absorb in the red and far-red region of the solar spectrum and play a key role in regulating plant growth and development. Our understanding of the phytochrome-mediated light perception and signal transduction has improved dramatically during the past decade. However, some recent findings challenge a few of the well-accepted earlier models regarding phytochrome structure and function. Identification of a serine/threonine specific protein phosphatase 2A (FyPP) and a type 5 protein phosphatases (PAPP5), and the phytochrome-mediated phosphorylation of phytochrome interacting factor 3 (PIF3), auxin inducible genes (Aux/IAA) and cryptochromes have opened new vistas in phytochrome biology. Importantly, the significance of proteolysis and chromatin-remodeling pathways in phytochrome signaling is becoming more apparent. The emerging concept of phytochrome as a master regulator in orchestrating downstream signaling components has become more convincing with the advent of global expression profiling of genes. Upcoming data also provide fresh insights into the nuclear localization, speckle formation, nucleo-cytoplasmic partitioning and organ-specificity aspects of phytochromes. This article highlights recent advances in phytochrome biology with emphasis on the elucidation of novel components of light signal transduction.
Collapse
Affiliation(s)
- Laju K. Paul
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Jitendra P. Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
36
|
Kneissl J, Shinomura T, Furuya M, Bolle C. A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light. MOLECULAR PLANT 2008; 1:84-102. [PMID: 20031917 DOI: 10.1093/mp/ssm010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The phytochrome (phy)A and phyB photoreceptors mediate three photobiological response modes in plants; whereas phyA can mediate the very-low-fluence response (VLFR), the high-irradiance response (HIR) and, to some extent, the low fluence response (LFR), phyB and other type II phytochromes only mediate the LFR. To investigate to what level a rice phyA can complement for Arabidopsis phyA or phyB function and to evaluate the role of the serine residues in the first 20 amino acids of the N-terminus of phyA, we examined VLFR, LFR, and HIR responses in phyB and phyAphyB mutant plants transformed with rice PHYA cDNA or a mutant rice PHYA cDNA in which the first 10 serine residues were mutated to alanines (phyA SA). Utilizing mutants without endogenous phyB allowed the evaluation of red-light-derived responses sensed by the rice phyA. In summary, the WT rice phyA could complement VLFR and LFR responses such as inhibition of hypocotyl elongation under pulses of FR or continuous R light, induction of flowering and leaf expansion, whereas the phyA SA was more specific for HIR responses (e.g. inhibition of hypocotyl elongation and anthocyanin accumulation under continuous far-red light). As the N-terminal serines can no longer be phosphorylated in the phyA SA mutant, this suggests a role for phosphorylation discriminating between the different phyA-dependent responses. The efficacy of the rice phyA expressed in Arabidopsis was dependent upon the developmental age of the plants analyzed and on the physiological response, suggesting a stage-dependent downstream modulation of phytochrome signaling.
Collapse
Affiliation(s)
- Julia Kneissl
- Ludwig-Maximilians-Universität München, Bereich Botanik, Menzinger Str. 67, 80638 München, Germany
| | | | | | | |
Collapse
|
37
|
Uenaka H, Kadota A. Functional analyses of the Physcomitrella patens phytochromes in regulating chloroplast avoidance movement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:1050-61. [PMID: 17662030 DOI: 10.1111/j.1365-313x.2007.03202.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Red light-induced chloroplast movement in Physcomitrella patens (Pp) is mediated by dichroic phytochrome in the cytoplasm. To analyze the molecular function of the photoreceptor in the cytoplasm, we developed a protoplast system in which chloroplast photomovement was exclusively dependent on the expression of phytochrome cDNA constructs introduced by polyethylene glycol (PEG) transformation. YFP was fused to the phytochrome constructs and their expression was detected by fluorescence. The chloroplast avoidance response was induced in the protoplasts expressing a YFP fusion of PHY1-PHY3, but not of PHY4 or YFP alone. Phy::yfp fluorescence was detected in the cytoplasm. No change in the location of phy1::yfp or phy2::yfp was revealed before and after photomovement. When phy1::yfp and phy2::yfp were targeted to the nucleus by fusing a nuclear localization signal to the constructs, red light avoidance was not induced. To determine the domains of PHY2 essential for avoidance response, various partially-deleted PHY2::YFP constructs were tested. The N-terminal extension domain (NTE) was found to be necessary but the C-terminal histidine kinase-related domain (HKRD) was dispensable. An avoidance response was not induced under expression of phytochrome N-terminal half domain [deleting both the PAS (Per, Arnt, Sim)-related domain (PRD) and HKRD]. GUS fusion of this N-terminal half domain, reported to be fully functional in Arabidopsis for several phyA- and phyB-regulated responses was not effective in chloroplast avoidance movement. Domain requirement and GUS fusion effect were also confirmed in PHY1. These results indicate that Pp phy1-Pp phy3 in the cytoplasm mediate chloroplast avoidance movement, and that NTE and PRD, but not HKRD, are required for their function.
Collapse
Affiliation(s)
- Hidetoshi Uenaka
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
38
|
Sineshchekov V, Hennig L, Lamparter T, Hughes J, Gärtner W, Schäfer E. Recombinant Phytochrome A in Yeast Differs by its Spectroscopic and Photochemical Properties from the Major phyA′ and is Close to the Minor phyA″: Evidence for Posttranslational Modification of the Pigment in Plants¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730692rpaiyd2.0.co2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Trupkin SA, Debrieux D, Hiltbrunner A, Fankhauser C, Casal JJ. The serine-rich N-terminal region of Arabidopsis phytochrome A is required for protein stability. PLANT MOLECULAR BIOLOGY 2007; 63:669-78. [PMID: 17160561 DOI: 10.1007/s11103-006-9115-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 11/06/2006] [Indexed: 05/12/2023]
Abstract
Deletion or substitution of the serine-rich N-terminal stretch of grass phytochrome A (phyA) has repeatedly been shown to yield a hyperactive photoreceptor when expressed under the control of a constitutive promoter in transgenic tobacco or Arabidopsis seedlings retaining their native phyA. These observations have lead to the proposal that the serine-rich region is involved in negative regulation of phyA signaling. To re-evaluate this conclusion in a more physiological context we produced transgenic Arabidopsis seedlings of the phyA-null background expressing Arabidopsis PHYA deleted in the sequence corresponding to amino acids 6-12, under the control of the native PHYA promoter. Compared to the transgenic seedlings expressing wild-type phyA, the seedlings bearing the mutated phyA showed normal responses to pulses of far-red (FR) light and impaired responses to continuous FR light. In yeast two-hybrid experiments, deleted phyA interacted normally with FHY1 and FHL, which are required for phyA accumulation in the nucleus. Immunoblot analysis showed reduced stability of deleted phyA under continuous red or FR light. The reduced physiological activity can therefore be accounted for by the enhanced destruction of the mutated phyA. These findings do not support the involvement of the serine-rich region in negative regulation but they are consistent with a recent report suggesting that phyA turnover is regulated by phosphorylation.
Collapse
Affiliation(s)
- Santiago A Trupkin
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
40
|
Mateos JL, Luppi JP, Ogorodnikova OB, Sineshchekov VA, Yanovsky MJ, Braslavsky SE, Gärtner W, Casal JJ. Functional and Biochemical Analysis of the N-terminal Domain of Phytochrome A. J Biol Chem 2006; 281:34421-9. [PMID: 16966335 DOI: 10.1074/jbc.m603538200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochrome A (phyA) is a versatile plant photoreceptor that mediates responses to brief light exposures (very low fluence responses, VLFR) as well as to prolonged irradiation (high irradiance responses, HIR). We identified the phyA-303 mutant allele of Arabidopsis thaliana bearing an R384K substitution in the GAF subdomain of the N-terminal half of phyA. phyA-303 showed reduced phyA spectral activity, almost normal VLFR, and severely impaired HIR. Recombinant N-terminal half oat of PHYA bearing the phyA-303 mutation showed poor incorporation of chromophore in vitro, despite the predicted relatively long distance (>13 A) between the mutation and the closest ring of the chromophore. Fusion proteins bearing the N-terminal domain of oat phyA, beta-glucuronidase, green fluorescent protein, and a nuclear localization signal showed physiological activity in darkness and mediated VLFR but not HIR. At equal protein levels, the phyA-303 mutation caused slightly less activity than the fusions containing the wild-type sequence. Taken together, these studies highlight the role of the N-terminal domain of phyA in signaling and of distant residues of the GAF subdomain in the regulation of phytochrome bilin-lyase activity.
Collapse
Affiliation(s)
- Julieta L Mateos
- Max-Planck-Institut für Bioanorganische Chemie, Postfach 101356, D-45413 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hiltbrunner A, Tscheuschler A, Viczián A, Kunkel T, Kircher S, Schäfer E. FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. PLANT & CELL PHYSIOLOGY 2006; 47:1023-34. [PMID: 16861711 DOI: 10.1093/pcp/pcj087] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The phytochrome family of red/far-red photoreceptors is involved in the regulation of a wide range of developmental responses in plants. The Arabidopsis genome contains five phytochromes (phyA-E), among which phyA and phyB play the most important roles. Phytochromes localize to the cytosol in the dark and accumulate in the nucleus under light conditions, inducing specific phytochrome-mediated responses. Light-regulated nuclear accumulation of the phytochrome photoreceptors is therefore considered a key regulatory step of these pathways. In fact, one of the most severe phyA signaling mutants, fhy1 (far red elongated hypocotyl 1), is strongly affected in nuclear accumulation of phyA. The fhy1 fhl (fhy1 like) double mutant, lacking both FHY1 and its only close homolog FHL, is virtually blind to far-red light like phyA null seedlings. Here we show that FHL accounts for residual amounts of phyA in the nucleus in a fhy1 background and that nuclear accumulation of phyA is completely inhibited in an fhy1 FHL RNAi knock-down line. Moreover, we demonstrate that FHL and phyA interact with each other in a light-dependent manner and that they co-localize in light-induced nuclear speckles. We also identify a phyA-binding site at the C-terminus of FHY1 and FHL, and show that the N-terminal 406 amino acids of phyA are sufficient for the interaction with FHY1/FHL.
Collapse
Affiliation(s)
- Andreas Hiltbrunner
- Institut für Biologie II/Botanik, Albert Ludwigs Universität, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Hiltbrunner A, Viczián A, Bury E, Tscheuschler A, Kircher S, Tóth R, Honsberger A, Nagy F, Fankhauser C, Schäfer E. Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 2006; 15:2125-30. [PMID: 16332538 DOI: 10.1016/j.cub.2005.10.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/13/2005] [Accepted: 10/14/2005] [Indexed: 11/15/2022]
Abstract
The phytochrome family of red/far-red (R/FR)-responsive photoreceptors plays a key role throughout the life cycle of plants . Arabidopsis has five phytochromes, phyA-phyE, among which phyA and phyB play the most predominant functions . Light-regulated nuclear accumulation of the phytochromes is an important regulatory step of this pathway, but to this date no factor specifically required for this event has been identified . Among all phyA signaling mutants, fhy1 and fhy3 (far-red elongated hypocotyl 1 and 3) have the most severe hyposensitive phenotype, indicating that they play particularly important roles . FHY1 is a small plant-specific protein of unknown function localized both in the nucleus and the cytoplasm . Here we show that FHY1 is specifically required for the light-regulated nuclear accumulation of phyA but not phyB. Moreover, phyA accumulation is only slightly affected in fhy3, indicating that the diminished nuclear accumulation of phyA observed in fhy1 seedlings is not simply a general consequence of reduced phyA signaling. By in vitro pull-down and yeast two-hybrid analyses, we demonstrate that FHY1 physically interacts with phyA, preferentially in its active Pfr form. Furthermore, FHY1 and phyA colocalize in planta. We therefore identify the first component required for light-regulated phytochrome nuclear accumulation.
Collapse
Affiliation(s)
- Andreas Hiltbrunner
- Institut für Biologie II/Botanik, Albert Ludwigs Universität, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Uenaka H, Wada M, Kadota A. Four distinct photoreceptors contribute to light-induced side branch formation in the moss Physcomitrella patens. PLANTA 2005; 222:623-31. [PMID: 16034589 DOI: 10.1007/s00425-005-0009-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 04/23/2005] [Indexed: 05/03/2023]
Abstract
Side branch formation in the moss, Physcomitrella patens, has been shown to be light dependent with cryptochrome 1a and 1b (Ppcry1a and Ppcry1b), being the blue light receptors for this response (Imaizumi et al. in Plant Cell 14:373, 2002). In this study, detailed photobiological analyses were performed, which revealed that this response involves multiple photoreceptors including cryptochromes. For light induction of branches, blue light of a fluence rate higher than 6 micromol m(-2) s(-1) for period longer than 3 h is required. The number of branches increased with the increase in fluence rate and in the irradiation period. The number of branches also increased when red light was applied together with the blue light, although red light alone had a very few effect. By partially irradiating a cell, both receptive sites for blue and red light were found to be located around the nucleus. Further, both red and blue light determine the positions of branches being dependent upon the vibration plane of polarized light. Red light control of branch position was nullified by simultaneous far-red light irradiation. A blue light effect on branch position was not found in lines with disrupted phototropin genes. Thus, dichroic phytochrome and phototropin, possibly on the plasma membrane, regulate branch position. These results indicate that at least four distinct photoreceptor systems, namely, cryptochromes and red light receptor around or in the nucleus, dichroic phytochrome and phototropin around the cell periphery, are involved in the light induction of side branches in the moss Physcomitrella patens.
Collapse
Affiliation(s)
- Hidetoshi Uenaka
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo, 1920397, Japan
| | | | | |
Collapse
|
44
|
Abstract
Plants utilize several families of photoreceptors to fine-tune growth and development over a large range of environmental conditions. The UV-A/blue light sensing phototropins mediate several light responses enabling optimization of photosynthetic yields. The initial event occurring upon photon capture is a conformational change of the photoreceptor that activates its protein kinase activity. The UV-A/blue light sensing cryptochromes and the red/far-red sensing phytochromes coordinately control seedling establishment, entrainment of the circadian clock, and the transition from vegetative to reproductive growth. In addition, the phytochromes control seed germination and shade-avoidance responses. The molecular mechanisms involved include light-regulated subcellular localization of the photoreceptors, a large reorganization of the transcriptional program, and light-regulated proteolytic degradation of several photoreceptors and signaling components.
Collapse
Affiliation(s)
- Meng Chen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
45
|
Shen Y, Kim JI, Song PS. NDPK2 as a signal transducer in the phytochrome-mediated light signaling. J Biol Chem 2004; 280:5740-9. [PMID: 15561724 DOI: 10.1074/jbc.m408965200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside-diphosphate kinase (NDPK) 2 in Arabidopsis has been identified as a phytochrome-interacting protein by using the C-terminal domain of phytochrome A (PhyA) as the bait in yeast two-hybrid screening. The far-red light-absorbing form of phytochrome (Pfr) A stimulates NDPK2 gamma-phosphate exchange activity in vitro. To better understand the multiple functions of NDPK and its role in phytochrome-mediated signaling, we characterized the interaction between phytochrome and NDPK2. Domain studies revealed that PER-ARNT-SIM domain A in the C-terminal domain of phytochrome is the binding site for NDPK2. Additionally, phytochrome recognizes both the NDPK2 C-terminal fragment and the NDPK2 hexameric structure to fulfill its binding. To illustrate the mechanism of how the Pfr form of phytochrome stimulates NDPK2, His-197-surrounding residue mutants were made and tested. Results suggested that the H-bonding with His-197 inside the nucleotide-binding pocket is critical for NDPK2 functioning. The pH dependence profiles of NDPK2 indicated that mutants with different activities from the wild type have different pK(a) values of His-197 and that NDPK2 hyperactive mutants possess lower pK(a) values. Because a lower pK(a) value of His-197 accelerates NDPK2 autophosphorylation and the phospho-transfer between the phosphorylated NDPK2 and its kinase substrate, we concluded that the Pfr form of phytochrome stimulates NDPK2 by lowering the pK(a) value of His-197.
Collapse
Affiliation(s)
- Yu Shen
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | | | |
Collapse
|
46
|
Böse G, Schwille P, Lamparter T. The mobility of phytochrome within protonemal tip cells of the moss Ceratodon purpureus, monitored by fluorescence correlation spectroscopy. Biophys J 2004; 87:2013-21. [PMID: 15345577 PMCID: PMC1304604 DOI: 10.1529/biophysj.103.038521] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2003] [Accepted: 05/07/2004] [Indexed: 11/18/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a versatile tool for investigating the mobilities of fluorescent molecules in cells. In this article, we show that it is possible to distinguish between freely diffusing and membrane-bound forms of biomolecules involved in signal transduction in living cells. Fluorescence correlation spectroscopy was used to measure the mobility of phytochrome, which plays a role in phototropism and polarotropism in protonemal tip cells of the moss Ceratodon purpureus. The phytochrome was loaded with phycoerythrobilin, which is fluorescent only in the phytochrome-bound state. Confocal laser scanning microscopy was used for imaging and selecting the xy measuring position in the apical zone of the tip cell. Fluorescence correlation was measured at ancient z-positions in the cell. Analysis of the diffusion coefficients by nonlinear least-square fits showed a subcellular fraction of phytochrome at the cell periphery with a sixfold higher diffusion coefficient than in the core fraction. This phytochrome is apparently bound to the membrane and probably controls the phototropic and polarotropic response.
Collapse
Affiliation(s)
- Guido Böse
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, D-37077 Germany
| | | | | |
Collapse
|
47
|
Weller JL, Batge SL, Smith JJ, Kerckhoffs LHJ, Sineshchekov VA, Murfet IC, Reid JB. A dominant mutation in the pea PHYA gene confers enhanced responses to light and impairs the light-dependent degradation of phytochrome A. PLANT PHYSIOLOGY 2004; 135:2186-95. [PMID: 15286297 PMCID: PMC520789 DOI: 10.1104/pp.103.036103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 04/14/2004] [Accepted: 04/29/2004] [Indexed: 05/18/2023]
Abstract
Phytochrome A (phyA) is an important photoreceptor controlling many processes throughout the plant life cycle. It is unique within the phytochrome family for its ability to mediate photomorphogenic responses to continuous far-red light and for the strong photocontrol of its transcript level and protein stability. Here we describe a dominant mutant of garden pea (Pisum sativum) that displays dramatically enhanced responses to light, early photoperiod-independent flowering, and impaired photodestruction of phyA. The mutant carries a single base substitution in the PHYA gene that is genetically inseparable from the mutant phenotype. This substitution is predicted to direct the replacement of a conserved Ala in an N-terminal region of PHYA that is highly divergent between phyA and other phytochromes. This result identifies a region of the phyA photoreceptor molecule that may play an important role in its fate after photoconversion.
Collapse
Affiliation(s)
- James L Weller
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | | | | | | | | | | | | |
Collapse
|
48
|
Weller JL, Batge SL, Smith JJ, Kerckhoffs LHJ, Sineshchekov VA, Murfet IC, Reid JB. A Dominant Mutation in the Pea PHYA Gene Confers Enhanced Responses to Light and Impairs the Light-Dependent Degradation of Phytochrome A. PLANT PHYSIOLOGY 2004; 135:2186-2195. [DOI: https:/doi.org/10.1104/pp.103.036103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Abstract
Phytochrome A (phyA) is an important photoreceptor controlling many processes throughout the plant life cycle. It is unique within the phytochrome family for its ability to mediate photomorphogenic responses to continuous far-red light and for the strong photocontrol of its transcript level and protein stability. Here we describe a dominant mutant of garden pea (Pisum sativum) that displays dramatically enhanced responses to light, early photoperiod-independent flowering, and impaired photodestruction of phyA. The mutant carries a single base substitution in the PHYA gene that is genetically inseparable from the mutant phenotype. This substitution is predicted to direct the replacement of a conserved Ala in an N-terminal region of PHYA that is highly divergent between phyA and other phytochromes. This result identifies a region of the phyA photoreceptor molecule that may play an important role in its fate after photoconversion.
Collapse
Affiliation(s)
- James L. Weller
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - Shona L. Batge
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - Jennifer J. Smith
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - L. Huub J. Kerckhoffs
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - Vitaly A. Sineshchekov
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - Ian C. Murfet
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - James B. Reid
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| |
Collapse
|
49
|
Oka Y, Matsushita T, Mochizuki N, Suzuki T, Tokutomi S, Nagatani A. Functional analysis of a 450-amino acid N-terminal fragment of phytochrome B in Arabidopsis. THE PLANT CELL 2004; 16:2104-16. [PMID: 15273294 PMCID: PMC519201 DOI: 10.1105/tpc.104.022350] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 05/31/2004] [Indexed: 05/20/2023]
Abstract
Phytochrome, a major photoreceptor in plants, consists of two domains: the N-terminal photosensory domain and the C-terminal domain. Recently, the 651-amino acid photosensory domain of phytochrome B (phyB) has been shown to act as a functional photoreceptor in the nucleus. The phytochrome (PHY) domain, which is located at the C-terminal end of the photosensory domain, is required for the spectral integrity of phytochrome; however, little is known about the signal transduction activity of this domain. Here, we have established transgenic Arabidopsis thaliana lines expressing an N-terminal 450-amino acid fragment of phyB (N450) lacking the PHY domain on a phyB-deficient background. Analysis of these plants revealed that N450 can act as an active photoreceptor when attached to a short nuclear localization signal and beta-glucuronidase. In vitro spectral analysis of reconstituted chromopeptides further indicated that the stability of the N450 Pfr form, an active form of phytochrome, is markedly reduced in comparison with the Pfr form of full-length phyB. Consistent with this, plants expressing N450 failed to respond to intermittent light applied at long intervals, indicating that N450 Pfr is short-lived in vivo. Taken together, our findings show that the PHY domain is dispensable for phyB signal transduction but is required for stabilizing the Pfr form of phyB.
Collapse
Affiliation(s)
- Yoshito Oka
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Folta KM. Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. PLANT PHYSIOLOGY 2004. [PMID: 15247396 DOI: 10.1104/pp.104.038893.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
During the transition from darkness to light, the rate of hypocotyl elongation is determined from the integration of light signals sensed through the phototropin, cryptochrome, and phytochrome signaling pathways. In all light conditions studied, from UV to far-red, early hypocotyl growth is rapidly and robustly suppressed within minutes of illumination in a manner dependent upon light quality and quantity. In this study, it is shown that green light (GL) irradiation leads to a rapid increase in the growth rate of etiolated Arabidopsis seedlings. GL-mediated growth promotion was detected in response to constant irradiation or a short, single pulse of light with a similar time course. The response has a threshold between 10(-1) and 10(0) micromol m(-2), is saturated before 10(2) micromol m(-2) and obeys reciprocity. Genetic analyses indicate that the cryptochrome or phototropin photoreceptors do not participate in the response. The major phytochrome receptors influence the normal amplitude and timing of the GL response, yet the GL response is normal in seedlings grown for hours under constant dim-red light. Therefore, phytochrome activation enhances, but is not required for, the GL response. Seedlings grown under green, red, and blue light together are longer than those grown under red and blue alone. These data indicate that a novel GL-activated light sensor promotes early stem elongation that antagonizes growth inhibition.
Collapse
Affiliation(s)
- Kevin M Folta
- Plant Molecular and Cellular Biology Program and Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|