1
|
Gálvez-Galván A, Garrido-Ramos MA, Prieto P. The highly dynamic satellitomes of cultivated wheat species. ANNALS OF BOTANY 2024; 134:975-992. [PMID: 39212622 PMCID: PMC11687632 DOI: 10.1093/aob/mcae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Durum wheat, Triticum turgidum, and bread wheat, Triticum aestivum, are two allopolyploid species of very recent origin that have been subjected to intense selection programmes during the thousands of years they have been cultivated. In this paper, we study the durum wheat satellitome and establish a comparative analysis with the previously published bread wheat satellitome. METHODS We revealed the durum wheat satellitome using the satMiner protocol, which is based on consecutive rounds of clustering of Illumina reads by RepeatExplorer2, and we estimated abundance and variation for each identified satellite DNA (satDNA) with RepeatMasker v4.0.5. We also performed a deep satDNA family characterization including chromosomal location by fluorescence in situ hybridization (FISH) in durum wheat and its comparison with FISH patterns in bread wheat. BLAST was used for trailing each satDNA in the assembly of durum wheat genome through NCBI's Genome Data Viewer and the genome assemblies of both species were compared. Sequence divergence and consensus turnover rate between homologous satDNA families of durum and bread wheat were estimated using MEGA11. KEY RESULTS This study reveals that in an exceedingly short period, significant qualitative and quantitative changes have occurred in the set of satDNAs of both species, with expansions/contractions of the number of repeats and the loci per satellite, different in each species, and a high rate of sequence change for most of these satellites, in addition to the emergence/loss of satDNAs not shared between the two species analysed. These evolutionary changes in satDNA are common between species but what is truly remarkable and novel is that these processes have taken place in less than the last ~8000 years separating the two species, indicating an accelerated evolution of their satDNAs. CONCLUSIONS These results, together with the relationship of many of these satellites with transposable elements and the polymorphisms they generate at the level of centromeres and subtelomeric regions of their chromosomes, are analysed and discussed in the context of the evolutionary origin of these species and the selection pressure exerted by humans throughout the history of their cultivation.
Collapse
Affiliation(s)
- Ana Gálvez-Galván
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004 Córdoba, Spain
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004 Córdoba, Spain
| |
Collapse
|
2
|
He Q, Li W, Miao Y, Wang Y, Liu N, Liu J, Li T, Xiao Y, Zhang H, Wang Y, Liang H, Yun Y, Wang S, Sun Q, Wang H, Gong Z, Du H. The near-complete genome assembly of hexaploid wild oat reveals its genome evolution and divergence with cultivated oats. NATURE PLANTS 2024; 10:2062-2078. [PMID: 39627369 DOI: 10.1038/s41477-024-01866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Avena sterilis, the ancestral species of cultivated oats, is a valuable genetic resource for oat improvement. Here we generated a near-complete 10.99 Gb A. sterilis genome and a high-quality 10.89 Gb cultivated oat genome. Genome evolution analysis revealed the centromeres dynamic and structural variations landscape associated with domestication between wild and cultivated oats. Population genetic analysis of 117 wild and cultivated oat accessions worldwide detected many candidate genes associated with important agronomic traits for oat domestication and improvement. Remarkably, a large fragment duplication from chromosomes 4A to 4D harbouring many agronomically important genes was detected during oat domestication and was fixed in almost all cultivated oats from around the world. The genes in the duplication region from 4A showed significantly higher expression levels and lower methylation levels than the orthologous genes located on 4D in A. sterilis. This study provides valuable resources for evolutionary and functional genomics and genetic improvement of oat.
Collapse
Affiliation(s)
- Qiang He
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Wei Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Yuqing Miao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ningkun Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Jianan Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Tao Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yao Xiao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hongyu Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yaru Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hanfei Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yange Yun
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shuhui Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Qingbin Sun
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhizhong Gong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Huilong Du
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China.
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China.
| |
Collapse
|
3
|
Zuo Y, Dai S, Wang X, Zhang J, Yang J, Yang W, Zhao H, Shu N, Song P, Liu G, Yan Z. Development of Aegilops comosa and Aegilops caudata-specific molecular markers and fluorescence in situ hybridization probes based on specific-locus amplified fragment sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2937-2955. [PMID: 39575844 DOI: 10.1111/tpj.17140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024]
Abstract
As tertiary gene pools of wheat, Aegilops comosa and Ae. caudata contain many excellent genes/traits and gradually become important and noteworthy wild resources for wheat improvement worldwide. However, the lack of molecular markers and cytological probes with good specificity and high sensitivity limits the development and utilization of Triticum aestivum-Ae. comosa (Ta. Aeco)/Ae. caudata (Ta. Aeca) introgression lines. Using specific-locus amplified fragment sequencing, two Ae. comosa and one Ae. caudata accessions, Chinese Spring, and three Ta. Aeco and Ta. Aeca introgression lines each were sequenced to develop new molecular markers and cytological probes. After strict sequence comparison and verification in different materials, a total of 39 molecular markers specific to three chromosomes in Ae. comosa (nine, seven, and 10 markers for 1M, 2M, and 7M, respectively) and Ae. caudata (two, six, and five markers for 3C, 4C, and 5C, respectively) and 21 fluorescence in situ hybridization (FISH) probes (one centromeric probe with signals specific to the M chromosomes, two centromeric probes with signals in all the tested genomes, and six, eight, and four FISH probes specific to the M, C, and M, C, and U chromosomes, respectively) were successfully exploited. The newly developed molecular markers and cytological probes could be used in karyotype studies, centromere evolutionary analyses of Aegilops, and had the ability to detect the fusion centromeres and small-fragment translocations in introgression lines.
Collapse
Affiliation(s)
- Yuanyuan Zuo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, P.R. China
| | - Xinyu Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Jinyue Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Juan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Wen Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Haojie Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Na Shu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Pengying Song
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Gang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, P.R. China
| |
Collapse
|
4
|
Xie Y, Wang M, Mo B, Liang C. Plant kinetochore complex: composition, function, and regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1467236. [PMID: 39464281 PMCID: PMC11503545 DOI: 10.3389/fpls.2024.1467236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.
Collapse
Affiliation(s)
- Yuqian Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingliang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Feng J, Zhang W, Chen C, Liang Y, Li T, Wu Y, Liu H, Wu J, Lin W, Li J, He Y, He J, Luan A. The pineapple reference genome: Telomere-to-telomere assembly, manually curated annotation, and comparative analysis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2208-2225. [PMID: 39109967 DOI: 10.1111/jipb.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 10/19/2024]
Abstract
Pineapple is the third most crucial tropical fruit worldwide and available in five varieties. Genomes of different pineapple varieties have been released to date; however, none of them are complete, with all exhibiting substantial gaps and representing only two of the five pineapple varieties. This significantly hinders the advancement of pineapple breeding efforts. In this study, we sequenced the genomes of three varieties: a wild pineapple variety, a fiber pineapple variety, and a globally cultivated edible pineapple variety. We constructed the first gap-free reference genome (Ref) for pineapple. By consolidating multiple sources of evidence and manually revising each gene structure annotation, we identified 26,656 protein-coding genes. The BUSCO evaluation indicated a completeness of 99.2%, demonstrating the high quality of the gene structure annotations in this genome. Utilizing these resources, we identified 7,209 structural variations across the three varieties. Approximately 30.8% of pineapple genes were located within ±5 kb of structural variations, including 30 genes associated with anthocyanin synthesis. Further analysis and functional experiments demonstrated that the high expression of AcMYB528 aligns with the accumulation of anthocyanins in the leaves, both of which may be affected by a 1.9-kb insertion fragment. In addition, we developed the Ananas Genome Database, which offers data browsing, retrieval, analysis, and download functions. The construction of this database addresses the lack of pineapple genome resource databases. In summary, we acquired a seamless pineapple reference genome with high-quality gene structure annotations, providing a solid foundation for pineapple genomics and a valuable reference for pineapple breeding.
Collapse
Affiliation(s)
- Junting Feng
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 572024, China
| | - Wei Zhang
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Chengjie Chen
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yinlong Liang
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Tangxiu Li
- Nanfan Research Institute of Hainan University, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Ya Wu
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Wu
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenqiu Lin
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Jiawei Li
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yehua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Junhu He
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Aiping Luan
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
6
|
Garg V, Bohra A, Mascher M, Spannagl M, Xu X, Bevan MW, Bennetzen JL, Varshney RK. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat Genet 2024; 56:1788-1799. [PMID: 39048791 DOI: 10.1038/s41588-024-01830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences.
Collapse
Affiliation(s)
- Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Abhishek Bohra
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Manuel Spannagl
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xun Xu
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| |
Collapse
|
7
|
Huang G, Bao Z, Feng L, Zhai J, Wendel JF, Cao X, Zhu Y. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development. Nat Genet 2024; 56:1953-1963. [PMID: 39147922 DOI: 10.1038/s41588-024-01877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Assembly of complete genomes can reveal functional genetic elements missing from draft sequences. Here we present the near-complete telomere-to-telomere and contiguous genome of the cotton species Gossypium raimondii. Our assembly identified gaps and misoriented or misassembled regions in previous assemblies and produced 13 centromeres, with 25 chromosomal ends having telomeres. In contrast to satellite-rich Arabidopsis and rice centromeres, cotton centromeres lack phased CENH3 nucleosome positioning patterns and probably evolved by invasion from long terminal repeat retrotransposons. In-depth expression profiling of transposable elements revealed a previously unannotated DNA transposon (MuTC01) that interacts with miR2947 to produce trans-acting small interfering RNAs (siRNAs), one of which targets the newly evolved LEC2 (LEC2b) to produce phased siRNAs. Systematic genome editing experiments revealed that this tripartite module, miR2947-MuTC01-LEC2b, controls the morphogenesis of complex folded embryos characteristic of Gossypium and its close relatives in the cotton tribe. Our study reveals a trans-acting siRNA-based tripartite regulatory pathway for embryo development in higher plants.
Collapse
Affiliation(s)
- Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhigui Bao
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Li Feng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuxian Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Liu C, Fu S, Yi C, Liu Y, Huang Y, Guo X, Zhang K, Liu Q, Birchler JA, Han F. Unveiling the distinctive traits of functional rye centromeres: minisatellites, retrotransposons, and R-loop formation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1989-2002. [PMID: 38805064 DOI: 10.1007/s11427-023-2524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 05/29/2024]
Abstract
Centromeres play a vital role in cellular division by facilitating kinetochore assembly and spindle attachments. Despite their conserved functionality, centromeric DNA sequences exhibit rapid evolution, presenting diverse sizes and compositions across species. The functional significance of rye centromeric DNA sequences, particularly in centromere identity, remains unclear. In this study, we comprehensively characterized the sequence composition and organization of rye centromeres. Our findings revealed that these centromeres are primarily composed of long terminal repeat retrotransposons (LTR-RTs) and interspersed minisatellites. We systematically classified LTR-RTs into five categories, highlighting the prevalence of younger CRS1, CRS2, and CRS3 of CRSs (centromeric retrotransposons of Secale cereale) were primarily located in the core centromeres and exhibited a higher association with CENH3 nucleosomes. The minisatellites, mainly derived from retrotransposons, along with CRSs, played a pivotal role in establishing functional centromeres in rye. Additionally, we observed the formation of R-loops at specific regions of CRS1, CRS2, and CRS3, with both rye pericentromeres and centromeres exhibiting enrichment in R-loops. Notably, these R-loops selectively formed at binding regions of the CENH3 nucleosome in rye centromeres, suggesting a potential role in mediating the precise loading of CENH3 to centromeres and contributing to centromere specification. Our work provides insights into the DNA sequence composition, distribution, and potential function of R-loops in rye centromeres. This knowledge contributes valuable information to understanding the genetics and epigenetics of rye centromeres, offering implications for the development of synthetic centromeres in future plant modifications and beyond.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Fu
- Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James A Birchler
- Division of Biological Science, University of Missouri, Columbia, 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Cui J, Zhu C, Shen L, Yi C, Wu R, Sun X, Han F, Li Y, Liu Y. The gap-free genome of Forsythia suspensa illuminates the intricate landscape of centromeres. HORTICULTURE RESEARCH 2024; 11:uhae185. [PMID: 39247880 PMCID: PMC11374533 DOI: 10.1093/hr/uhae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Forsythia suspensa, commonly known as weeping forsythia, holds significance in traditional medicine and horticulture. Despite its ecological and cultural importance, the existing reference genome presents challenges with duplications and gaps, hindering in-depth genomic analyses. Here, we present a Telomere-to-Telomere (T2T) assembly of the F. suspensa genome, integrating Oxford Nanopore Technologies (ONT) ultra-long, Hi-C datasets, and high-fidelity (HiFi) sequencing data. The T2T reference genome (Fsus-CHAU) consists of 14 chromosomes, totaling 688.79 Mb, and encompasses 33 932 predicted protein-coding genes. Additionally, we characterize functional centromeres in the F. suspensa genome by developing a specific CENH3 antibody. We demonstrate that centromeric regions in F. suspensa exhibit a diverse array of satellites, showcasing distinctive types with unconventional lengths across various chromosomes. This discovery offers implications for the adaptability of CENH3 and the potential influence on centromere dynamics. Furthermore, after assessing the insertion time of full-length LTRs within centromeric regions, we found that they are older compared to those across the entire genome, contrasting with observations in other species where centromeric retrotransposons are typically young. We hypothesize that asexual reproduction may impact retrotransposon dynamics, influencing centromere evolution. In conclusion, our T2T assembly of the F. suspensa genome, accompanied by detailed genomic annotations and centromere analysis, significantly enhances F. suspensa potential as a subject of study in fields ranging from ecology and horticulture to traditional medicine.
Collapse
Affiliation(s)
- Jian Cui
- School of Architecture & Built Environment, The University of Adelaide, Adelaide, 5005, Australia
| | - Congle Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lisha Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Congyang Yi
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Wu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Xiaoyang Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fangpu Han
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Yang Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Heuberger M, Koo DH, Ahmed HI, Tiwari VK, Abrouk M, Poland J, Krattinger SG, Wicker T. Evolution of Einkorn wheat centromeres is driven by the mutualistic interplay of two LTR retrotransposons. Mob DNA 2024; 15:16. [PMID: 39103880 DOI: 10.1186/s13100-024-00326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Centromere function is highly conserved across eukaryotes, but the underlying centromeric DNA sequences vary dramatically between species. Centromeres often contain a high proportion of repetitive DNA, such as tandem repeats and/or transposable elements (TEs). Einkorn wheat centromeres lack tandem repeat arrays and are instead composed mostly of the two long terminal repeat (LTR) retrotransposon families RLG_Cereba and RLG_Quinta which specifically insert in centromeres. However, it is poorly understood how these two TE families relate to each other and if and how they contribute to centromere function and evolution. RESULTS Based on conservation of diagnostic motifs (LTRs, integrase and primer binding site and polypurine-tract), we propose that RLG_Cereba and RLG_Quinta are a pair of autonomous and non-autonomous partners, in which the autonomous RLG_Cereba contributes all the proteins required for transposition, while the non-autonomous RLG_Quinta contributes GAG protein. Phylogenetic analysis of predicted GAG proteins showed that the RLG_Cereba lineage was present for at least 100 million years in monocotyledon plants. In contrast, RLG_Quinta evolved from RLG_Cereba between 28 and 35 million years ago in the common ancestor of oat and wheat. Interestingly, the integrase of RLG_Cereba is fused to a so-called CR-domain, which is hypothesized to guide the integrase to the functional centromere. Indeed, ChIP-seq data and TE population analysis show only the youngest subfamilies of RLG_Cereba and RLG_Quinta are found in the active centromeres. Importantly, the LTRs of RLG_Quinta and RLG_Cereba are strongly associated with the presence of the centromere-specific CENH3 histone variant. We hypothesize that the LTRs of RLG_Cereba and RLG_Quinta contribute to wheat centromere integrity by phasing and/or placing CENH3 nucleosomes, thus favoring their persistence in the competitive centromere-niche. CONCLUSION Our data show that RLG_Cereba cross-mobilizes the non-autonomous RLG_Quinta retrotransposons. New copies of both families are specifically integrated into functional centromeres presumably through direct binding of the integrase CR domain to CENH3 histone variants. The LTRs of newly inserted RLG_Cereba and RLG_Quinta elements, in turn, recruit and/or phase new CENH3 deposition. This mutualistic interplay between the two TE families and the plant host dynamically maintains wheat centromeres.
Collapse
Affiliation(s)
- Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), Université Paul Sabatier, Toulouse, France
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20724, USA
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Xin H, Wang Y, Zhang W, Bao Y, Neumann P, Ning Y, Zhang T, Wu Y, Jiang N, Jiang J, Xi M. Celine, a long interspersed nuclear element retrotransposon, colonizes in the centromeres of poplar chromosomes. PLANT PHYSIOLOGY 2024; 195:2787-2798. [PMID: 38652695 PMCID: PMC11288735 DOI: 10.1093/plphys/kiae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat centromeric retrotransposon of maize (CRM), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here, we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. In contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared with the CRM elements. Using a phylogenetically guided approach, we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.
Collapse
Affiliation(s)
- Haoyang Xin
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yiduo Wang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenli Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice 37005, Czech Republic
| | - Yihang Ning
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yufeng Wu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Mengli Xi
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Yang T, Cai Y, Huang T, Yang D, Yang X, Yin X, Zhang C, Yang Y, Yang Y. A telomere-to-telomere gap-free reference genome assembly of avocado provides useful resources for identifying genes related to fatty acid biosynthesis and disease resistance. HORTICULTURE RESEARCH 2024; 11:uhae119. [PMID: 38966866 PMCID: PMC11220182 DOI: 10.1093/hr/uhae119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/14/2024] [Indexed: 07/06/2024]
Abstract
Avocado (Persea americana Mill.) is an economically valuable plant because of the high fatty acid content and unique flavor of its fruits. Its fatty acid content, especially the relatively high unsaturated fatty acid content, provides significant health benefits. We herein present a telomere-to-telomere gapless genome assembly (841.6 Mb) of West Indian avocado. The genome contains 40 629 predicted protein-coding genes. Repeat sequences account for 57.9% of the genome. Notably, all telomeres, centromeres, and a nucleolar organizing region are included in this genome. Fragments from these three regions were observed via fluorescence in situ hybridization. We identified 376 potential disease resistance-related nucleotide-binding leucine-rich repeat genes. These genes, which are typically clustered on chromosomes, may be derived from gene duplication events. Five NLR genes (Pa11g0262, Pa02g4855, Pa07g3139, Pa07g0383, and Pa02g3196) were highly expressed in leaves, stems, and fruits, indicating they may be involved in avocado disease responses in multiple tissues. We also identified 128 genes associated with fatty acid biosynthesis and analyzed their expression patterns in leaves, stems, and fruits. Pa02g0113, which encodes one of 11 stearoyl-acyl carrier protein desaturases mediating C18 unsaturated fatty acid synthesis, was more highly expressed in the leaves than in the stems and fruits. These findings provide valuable insights that enhance our understanding of fatty acid biosynthesis in avocado.
Collapse
Affiliation(s)
- Tianyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tianping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Gardening & Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Danni Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xingyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yin
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunqiang Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
13
|
Wang Y, Zhou F, Li Y, Yu X, Wang Y, Zhao Q, Feng X, Chen J, Lou Q. Characterization of the CsCENH3 protein and centromeric DNA profiles reveal the structures of centromeres in cucumber. HORTICULTURE RESEARCH 2024; 11:uhae127. [PMID: 38966863 PMCID: PMC11220175 DOI: 10.1093/hr/uhae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/25/2024] [Indexed: 07/06/2024]
Abstract
Centromeres in eukaryotes mediate the accurate segregation of chromosomes during cell division. They serve as essential functional units of chromosomes and play a core role in the process of genome evolution. Centromeres are composed of satellite repeats and highly repetitive centromeric retrotransposons (CRs), which vary greatly even among closely related species. Cucumber (Cucumis sativus) is a globally cultivated and economically important vegetable and the only species in the Cucumis genus with seven pairs of chromosomes. Therefore, studying the centromeres of the Cucumis subgenus may yield valuable insights into its genome structure and evolution. Using chromatin immunoprecipitation (ChIP) techniques, we isolated centromeric DNA from cucumber reference line 9930. Our investigation into cucumber centromeres uncovered the centromeric satellite sequence, designated as CentCs, and the prevalence of Ty1/Copia long terminal repeat retrotransposons. In addition, active genes were identified in the CsCENH3 nucleosome regions with low transcription levels. To the best of our knowledge, this is the first time that characterization of centromeres has been achieved in cucumber. Meanwhile, our results on the distribution of CentCs and CsCRs in the subgenus Cucumis indicate that the content of centromeric repeats in the wild variants was significantly reduced compared with the cultivated cucumber. The results provide evidence for centromeric DNA amplification that occurred during the domestication process from wild to cultivated cucumber. Furthermore, these findings may offer new information for enhancing our understanding of phylogenetic relationships in the Cucumis genus.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Fang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Yangang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Xianbo Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| |
Collapse
|
14
|
Yang Z, Gu J, Zhao M, Fan X, Guo H, Xie Y, Zhang J, Xiong H, Zhao L, Zhao S, Ding Y, Kong F, Sui L, Xu L, Liu L. Genetic Analysis and Fine Mapping of QTL for the Erect Leaf in Mutant mths29 Induced through Fast Neutron in Wheat. BIOLOGY 2024; 13:430. [PMID: 38927310 PMCID: PMC11201221 DOI: 10.3390/biology13060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The erect leaf plays a crucial role in determining plant architecture, with its growth and development regulated by genetic factors. However, there has been a lack of comprehensive studies on the regulatory mechanisms governing wheat lamina joint development, thus failing to meet current breeding demands. In this study, a wheat erect leaf mutant, mths29, induced via fast neutron mutagenesis, was utilized for QTL fine mapping and investigation of lamina joint development. Genetic analysis of segregating populations derived from mths29 and Jimai22 revealed that the erect leaf trait was controlled by a dominant single gene. Using BSR sequencing and map-based cloning techniques, the QTL responsible for the erect leaf trait was mapped to a 1.03 Mb physical region on chromosome 5A. Transcriptome analysis highlighted differential expression of genes associated with cell division and proliferation, as well as several crucial transcription factors and kinases implicated in lamina joint development, particularly in the boundary cells of the preligule zone in mths29. These findings establish a solid foundation for understanding lamina joint development and hold promise for potential improvements in wheat plant architecture.
Collapse
Affiliation(s)
- Zhixin Yang
- College of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.Y.); (X.F.); (L.X.)
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Jiayu Gu
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Minghui Zhao
- Dry-Land Farming Institute of Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, China
| | - Xiaofeng Fan
- College of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.Y.); (X.F.); (L.X.)
| | - Huijun Guo
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Yongdun Xie
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Jinfeng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Hongchun Xiong
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Linshu Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Shirong Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Yuping Ding
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Fuquan Kong
- China Institute of Atomic Energy, Beijing 102413, China; (F.K.); (L.S.)
| | - Li Sui
- China Institute of Atomic Energy, Beijing 102413, China; (F.K.); (L.S.)
| | - Le Xu
- College of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.Y.); (X.F.); (L.X.)
| | - Luxiang Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| |
Collapse
|
15
|
Huang Y, Shi Q, Zhou C, Wang C, Liu Y, Yi C, Su H, Han F. Wide hybridizations reveal the robustness of functional centromeres in Triticum-Aegilops species complex lines. J Genet Genomics 2024; 51:570-573. [PMID: 38070768 DOI: 10.1016/j.jgg.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/08/2024]
Affiliation(s)
- Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhui Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Chen C, Wu S, Sun Y, Zhou J, Chen Y, Zhang J, Birchler JA, Han F, Yang N, Su H. Three near-complete genome assemblies reveal substantial centromere dynamics from diploid to tetraploid in Brachypodium genus. Genome Biol 2024; 25:63. [PMID: 38439049 PMCID: PMC10910784 DOI: 10.1186/s13059-024-03206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Centromeres are critical for maintaining genomic stability in eukaryotes, and their turnover shapes genome architectures and drives karyotype evolution. However, the co-evolution of centromeres from different species in allopolyploids over millions of years remains largely unknown. RESULTS Here, we generate three near-complete genome assemblies, a tetraploid Brachypodium hybridum and its two diploid ancestors, Brachypodium distachyon and Brachypodium stacei. We detect high degrees of sequence, structural, and epigenetic variations of centromeres at base-pair resolution between closely related Brachypodium genomes, indicating the appearance and accumulation of species-specific centromere repeats from a common origin during evolution. We also find that centromere homogenization is accompanied by local satellite repeats bursting and retrotransposon purging, and the frequency of retrotransposon invasions drives the degree of interspecies centromere diversification. We further investigate the dynamics of centromeres during alloploidization process, and find that dramatic genetics and epigenetics architecture variations are associated with the turnover of centromeres between homologous chromosomal pairs from diploid to tetraploid. Additionally, our pangenomes analysis reveals the ongoing variations of satellite repeats and stable evolutionary homeostasis within centromeres among individuals of each Brachypodium genome with different polyploidy levels. CONCLUSIONS Our results provide unprecedented information on the genomic, epigenomic, and functional diversity of highly repetitive DNA between closely related species and their allopolyploid genomes at both coarse and fine scale.
Collapse
Affiliation(s)
- Chuanye Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siying Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yishuang Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiqian Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
17
|
Hong Y, Zhang M, Yuan Z, Zhu J, Lv C, Guo B, Wang F, Xu R. Genome-wide association studies reveal stable loci for wheat grain size under different sowing dates. PeerJ 2024; 12:e16984. [PMID: 38426132 PMCID: PMC10903348 DOI: 10.7717/peerj.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Background Wheat (Tritium aestivum L.) production is critical for global food security. In recent years, due to climate change and the prolonged growing period of rice varieties, the delayed sowing of wheat has resulted in a loss of grain yield in the area of the middle and lower reaches of the Yangtze River. It is of great significance to screen for natural germplasm resources of wheat that are resistant to late sowing and to explore genetic loci that stably control grain size and yield. Methods A collection of 327 wheat accessions from diverse sources were subjected to genome-wide association studies using genotyping-by-sequencing. Field trials were conducted under normal, delayed, and seriously delayed sowing conditions for grain length, width, and thousand-grain weight at two sites. Additionally, the additive main effects and multiplicative interaction (AMMI) model was applied to evaluate the stability of thousand-grain weight of 327 accessions across multiple sowing dates. Results Four wheat germplasm resources have been screened, demonstrating higher stability of thousand-grain weight. A total of 43, 35, and 39 significant MTAs were determined across all chromosomes except for 4D under the three sowing dates, respectively. A total of 10.31% of MTAs that stably affect wheat grain size could be repeatedly identified in at least two sowing dates, with PVE ranging from 0.03% to 38.06%. Among these, six were for GL, three for GW, and one for TGW. There were three novel and stable loci (4A_598189950, 4B_307707920, 2D_622241054) located in conserved regions of the genome, which provide excellent genetic resources for pyramid breeding strategies of superior loci. Our findings offer a theoretical basis for cultivar improvement and marker-assisted selection in wheat breeding practices.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Zechen Yuan
- Jiangsu Internet Agricultural Development Center, Nanjing, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Chang X, He X, Li J, Liu Z, Pi R, Luo X, Wang R, Hu X, Lu S, Zhang X, Wang M. High-quality Gossypium hirsutum and Gossypium barbadense genome assemblies reveal the landscape and evolution of centromeres. PLANT COMMUNICATIONS 2024; 5:100722. [PMID: 37742072 PMCID: PMC10873883 DOI: 10.1016/j.xplc.2023.100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Centromere positioning and organization are crucial for genome evolution; however, research on centromere biology is largely influenced by the quality of available genome assemblies. Here, we combined Oxford Nanopore and Pacific Biosciences technologies to de novo assemble two high-quality reference genomes for Gossypium hirsutum (TM-1) and Gossypium barbadense (3-79). Compared with previously published reference genomes, our assemblies show substantial improvements, with the contig N50 improved by 4.6-fold and 5.6-fold, respectively, and thus represent the most complete cotton genomes to date. These high-quality reference genomes enable us to characterize 14 and 5 complete centromeric regions for G. hirsutum and G. barbadense, respectively. Our data revealed that the centromeres of allotetraploid cotton are occupied by members of the centromeric repeat for maize (CRM) and Tekay long terminal repeat families, and the CRM family reshapes the centromere structure of the At subgenome after polyploidization. These two intertwined families have driven the convergent evolution of centromeres between the two subgenomes, ensuring centromere function and genome stability. In addition, the repositioning and high sequence divergence of centromeres between G. hirsutum and G. barbadense have contributed to speciation and centromere diversity. This study sheds light on centromere evolution in a significant crop and provides an alternative approach for exploring the evolution of polyploid plants.
Collapse
Affiliation(s)
- Xing Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhen Pi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
19
|
Gálvez-Galván A, Garrido-Ramos MA, Prieto P. Bread wheat satellitome: a complex scenario in a huge genome. PLANT MOLECULAR BIOLOGY 2024; 114:8. [PMID: 38291213 PMCID: PMC10827815 DOI: 10.1007/s11103-023-01404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024]
Abstract
In bread wheat (Triticum aestivum L.), chromosome associations during meiosis are extremely regulated and initiate at the telomeres and subtelomeres, which are enriched in satellite DNA (satDNA). We present the study and characterization of the bread wheat satellitome to shed light on the molecular organization of wheat subtelomeres. Our results revealed that the 2.53% of bread wheat genome is composed by satDNA and subtelomeres are particularly enriched in such DNA sequences. Thirty-four satellite DNA (21 for the first time in this work) have been identified, analyzed and cytogenetically validated. Many of the satDNAs were specifically found at particular subtelomeric chromosome regions revealing the asymmetry in subtelomere organisation among the wheat subgenomes, which might play a role in proper homologous recognition and pairing during meiosis. An integrated physical map of the wheat satellitome was also constructed. To the best of our knowledge, our results show that the combination of both cytogenetics and genome research allowed the first comprehensive analysis of the wheat satellitome, shedding light on the complex wheat genome organization, especially on the polymorphic nature of subtelomeres and their putative implication in chromosome recognition and pairing during meiosis.
Collapse
Affiliation(s)
- Ana Gálvez-Galván
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain.
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo S/N, 14004, Córdoba, Spain.
| |
Collapse
|
20
|
Mihók E, Polgári D, Lenykó-Thegze A, Makai D, Fábián A, Ali M, Kis A, Sepsi A, Sági L. Plasticity of parental CENH3 incorporation into the centromeres in wheat × barley F1 hybrids. FRONTIERS IN PLANT SCIENCE 2024; 15:1324817. [PMID: 38313805 PMCID: PMC10834757 DOI: 10.3389/fpls.2024.1324817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Incorporating the centromere-specific histone H3 protein CENH3 into the centromeric nucleosomes is indispensable for accurate centromere function and balanced chromosome segregation in most eukaryotes, including higher plants. In the cell nuclei of interspecific hybrids, divergent centromeric DNAs cohabit and lead the corresponding parental chromosomes through the mitotic and meiotic cell divisions. Depending on the transmission of the parental chromosomes carrying the CENH3-encoding genes, CENH3 proteins from one or both parents may be present in these hybrids. The incorporation of parental CENH3 proteins into the divergent centromeres and their role in the chromosome elimination process in interspecific hybrids is still poorly understood. Here, we produced wheat × barley F1 hybrids that carried different combinations of barley chromosomes with genes encoding for either one (αCENH3) or both barley CENH3 protein variants (α- and βCENH3). We generated specific antibodies distinguishing between the wheat CENH3 proteins and barley αCENH3 and applied them together with FISH probes to detect the precise pattern of parental CENH3 deposition into the wheat and barley centromeric nucleosomes. Analysis of somatic and meiotic nuclei of the wheat × barley hybrids revealed the plasticity of the maternal (wheat) CENH3 proteins to become incorporated into the paternal (barley) centromeric nucleosomes. However, no evidence for paternal CENH3 plasticity was detected in this study. The significance of the unilateral centromere plasticity and possible patterns of CENH3 incorporation into centromeres in interspecific hybrids are discussed.
Collapse
Affiliation(s)
- Edit Mihók
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Dávid Polgári
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Martonvásár, Hungary
| | - Andrea Lenykó-Thegze
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - Diána Makai
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Attila Fábián
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - Mohammad Ali
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - András Kis
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Adél Sepsi
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - László Sági
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
21
|
Liu C, Huang Y, Guo X, Yi C, Liu Q, Zhang K, Zhu C, Liu Y, Han F. Young retrotransposons and non-B DNA structures promote the establishment of dominant rye centromere in the 1RS.1BL fused centromere. THE NEW PHYTOLOGIST 2024; 241:607-622. [PMID: 37897058 DOI: 10.1111/nph.19359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The fine centromere structure in Robertsonian wheat-rye translocation chromosomes exhibits variation among different translocation genotypes. Within extensively employed wheat-rye 1RS.1BL translocation lines in wheat breeding, their translocated chromosomes frequently display fused centromere. Nevertheless, the mechanism governing the functionality of the fused centromere in 1RS.1BL translocated chromosomes remains to be clarified. In this study, we investigated the fine centromere structure of the 1RS.1BL translocated chromosome through a combination of cytological and genomics methods. We found that only the rye-derived centromere exhibits functional activity, whether in breeding applications or artificially synthesized translocation chromosomes. The active rye-derived centromere had higher proportion of young full-length long terminal repeat retrotransposons (flLTR-RTs) and more stable non-B DNA structures, which may be beneficial toward transcription of centromeric repeats and CENH3 loading to maintain the activity of rye centromeres. High levels of DNA methylation and H3K9me2 were found in the inactive wheat-derived centromeres, suggesting that it may play a crucial role in maintaining the inactive status of the wheat centromere. Our works elucidate the fine structure of 1RS.1BL translocations and the potential mechanism of centromere inactivation in the fused centromere, contributing knowledge to the application of fused centromere in wheat breeding formation of new wheat-rye translocation lines.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congle Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Liu Y, Yi C, Fan C, Liu Q, Liu S, Shen L, Zhang K, Huang Y, Liu C, Wang Y, Tian Z, Han F. Pan-centromere reveals widespread centromere repositioning of soybean genomes. Proc Natl Acad Sci U S A 2023; 120:e2310177120. [PMID: 37816061 PMCID: PMC10589659 DOI: 10.1073/pnas.2310177120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Centromere repositioning refers to a de novo centromere formation at another chromosomal position without sequence rearrangement. This phenomenon was frequently encountered in both mammalian and plant species and has been implicated in genome evolution and speciation. To understand the dynamic of centromeres on soybean genome, we performed the pan-centromere analysis using CENH3-ChIP-seq data from 27 soybean accessions, including 3 wild soybeans, 9 landraces, and 15 cultivars. Building upon the previous discovery of three centromere satellites in soybean, we have identified two additional centromere satellites that specifically associate with chromosome 1. These satellites reveal significant rearrangements in the centromere structures of chromosome 1 across different accessions, consequently impacting the localization of CENH3. By comparative analysis, we reported a high frequency of centromere repositioning on 14 out of 20 chromosomes. Most newly emerging centromeres formed in close proximity to the native centromeres and some newly emerging centromeres were apparently shared in distantly related accessions, suggesting their emergence is independent. Furthermore, we crossed two accessions with mismatched centromeres to investigate how centromere positions would be influenced in hybrid genetic backgrounds. We found that a significant proportion of centromeres in the S9 generation undergo changes in size and position compared to their parental counterparts. Centromeres preferred to locate at satellites to maintain a stable state, highlighting a significant role of centromere satellites in centromere organization. Taken together, these results revealed extensive centromere repositioning in soybean genome and highlighted how important centromere satellites are in constraining centromere positions and supporting centromere function.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Chaolan Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Yingxiang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou510642, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
23
|
Jiang C, Liu X, Yang Z, Li G. Chromosome Rearrangement in Elymus dahuricus Revealed by ND-FISH and Oligo-FISH Painting. PLANTS (BASEL, SWITZERLAND) 2023; 12:3268. [PMID: 37765432 PMCID: PMC10535892 DOI: 10.3390/plants12183268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
As a perennial herb in Triticeae, Elymus dahuricus is widely distributed in Qinghai-Tibetan Plateau and Central Asia. It has been used as high-quality fodders for improving degraded grassland. The genomic constitution of E. dahuricus (2n = 6x = 42) has been revealed as StStHHYY by cytological approaches. However, the universal karyotyping nomenclature system of E. dahuricus is not fully established by traditional fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH). In this study, the non-denaturing fluorescent in situ hybridization (ND-FISH) using 14 tandem-repeat oligos could effectively distinguish the entire E. dahuricus chromosomes pairs, while Oligo-FISH painting by bulked oligo pools based on wheat-barley collinear regions combined with GISH analysis, is able to precisely determine the linkage group and sub-genomes of the individual E. dahuricus chromosomes. We subsequently established the 42-chromosome karyotype of E. dahuricus with distinctive chromosomal FISH signals, and characterized a new type of intergenomic rearrangement between 2H and 5Y. Furthermore, the comparative chromosomal localization of the centromeric tandem repeats and immunostaining by anti-CENH3 between cultivated barley (Hordeum vulgare L.) and E. dahuricus suggests that centromere-associated sequences in H subgenomes were continuously changing during the process of polyploidization. The precise karyotyping system based on ND-FISH and Oligo-FISH painting methods will be efficient for describing chromosomal rearrangements and evolutionary networks for polyploid Elymus and their related species.
Collapse
Affiliation(s)
| | | | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (X.L.)
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (X.L.)
| |
Collapse
|
24
|
Ma H, Ding W, Chen Y, Zhou J, Chen W, Lan C, Mao H, Li Q, Yan W, Su H. Centromere Plasticity With Evolutionary Conservation and Divergence Uncovered by Wheat 10+ Genomes. Mol Biol Evol 2023; 40:msad176. [PMID: 37541261 PMCID: PMC10422864 DOI: 10.1093/molbev/msad176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Centromeres (CEN) are the chromosomal regions that play a crucial role in maintaining genomic stability. The underlying highly repetitive DNA sequences can evolve quickly in most eukaryotes, and promote karyotype evolution. Despite their variability, it is not fully understood how these widely variable sequences ensure the homeostasis of centromere function. In this study, we investigated the genetics and epigenetics of CEN in a population of wheat lines from global breeding programs. We captured a high degree of sequences, positioning, and epigenetic variations in the large and complex wheat CEN. We found that most CENH3-associated repeats are Cereba element of retrotransposons and exhibit phylogenetic homogenization across different wheat lines, but the less-associated repeat sequences diverge on their own way in each wheat line, implying specific mechanisms for selecting certain repeat types as functional core CEN. Furthermore, we observed that CENH3 nucleosome structures display looser wrapping of DNA termini on complex centromeric repeats, including the repositioned CEN. We also found that strict CENH3 nucleosome positioning and intrinsic DNA features play a role in determining centromere identity among different lines. Specific non-B form DNAs were substantially associated with CENH3 nucleosomes for the repositioned centromeres. These findings suggest that multiple mechanisms were involved in the adaptation of CENH3 nucleosomes that can stabilize CEN. Ultimately, we proposed a remarkable epigenetic plasticity of centromere chromatin within the diverse genomic context, and the high robustness is crucial for maintaining centromere function and genome stability in wheat 10+ lines as a result of past breeding selections.
Collapse
Affiliation(s)
- Huan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wentao Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Yiqian Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
25
|
Ahmed HI, Heuberger M, Schoen A, Koo DH, Quiroz-Chavez J, Adhikari L, Raupp J, Cauet S, Rodde N, Cravero C, Callot C, Lazo GR, Kathiresan N, Sharma PK, Moot I, Yadav IS, Singh L, Saripalli G, Rawat N, Datla R, Athiyannan N, Ramirez-Gonzalez RH, Uauy C, Wicker T, Tiwari VK, Abrouk M, Poland J, Krattinger SG. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature 2023; 620:830-838. [PMID: 37532937 PMCID: PMC10447253 DOI: 10.1038/s41586-023-06389-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.
Collapse
Affiliation(s)
- Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Adam Schoen
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Nathalie Rodde
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Charlotte Cravero
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Gerard R Lazo
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, USA
| | - Nagarajan Kathiresan
- KAUST Supercomputing Core Lab (KSL), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ian Moot
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Inderjit Singh Yadav
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
26
|
Liu ZW, Liu J, Liu F, Zhong X. Depositing centromere repeats induces heritable intragenic heterochromatin establishment and spreading in Arabidopsis. Nucleic Acids Res 2023; 51:6039-6054. [PMID: 37094065 PMCID: PMC10325890 DOI: 10.1093/nar/gkad306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Stable transmission of non-DNA-sequence-based epigenetic information contributes to heritable phenotypic variants and thus to biological diversity. While studies on spontaneous natural epigenome variants have revealed an association of epialleles with a wide range of biological traits in both plants and animals, the function, transmission mechanism, and stability of an epiallele over generations in a locus-specific manner remain poorly investigated. Here, we invented a DNA sequence deposition strategy to generate a locus-specific epiallele by depositing CEN180 satellite repeats into a euchromatic target locus in Arabidopsis. Using CRISPR/Cas9-mediated knock-in system, we demonstrated that depositing CEN180 repeats can induce heterochromatin nucleation accompanied by DNA methylation, H3K9me2, and changes in the nucleosome occupancy at the insertion sites. Interestingly, both DNA methylation and H3K9me2 are restricted within the depositing sites and depletion of an H3K9me2 demethylase IBM1 enables the outward heterochromatin propagation into the neighboring regions, leading to inheritable target gene silencing to persist for at least five generations. Together, these results demonstrate the promise of employing a cis-engineering system for the creation of stable and site-specific epialleles and provide important insights into functional epigenome studies and locus-specific transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jie Liu
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xuehua Zhong
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
27
|
Xie E, Chen J, Wang B, Shen Y, Tang D, Du G, Li Y, Cheng Z. The transcribed centromeric gene OsMRPL15 is essential for pollen development in rice. PLANT PHYSIOLOGY 2023; 192:1063-1079. [PMID: 36905369 PMCID: PMC10231452 DOI: 10.1093/plphys/kiad153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 06/01/2023]
Abstract
Centromeres consist of highly repetitive sequences that are challenging to map, clone, and sequence. Active genes exist in centromeric regions, but their biological functions are difficult to explore owing to extreme suppression of recombination in these regions. In this study, we used the CRISPR/Cas9 system to knock out the transcribed gene Mitochondrial Ribosomal Protein L15 (OsMRPL15), located in the centromeric region of rice (Oryza sativa) chromosome 8, resulting in gametophyte sterility. Osmrpl15 pollen was completely sterile, with abnormalities appearing at the tricellular stage including the absence of starch granules and disrupted mitochondrial structure. Loss of OsMRPL15 caused abnormal accumulation of mitoribosomal proteins and large subunit rRNA in pollen mitochondria. Moreover, the biosynthesis of several proteins in mitochondria was defective, and expression of mitochondrial genes was upregulated at the mRNA level. Osmrpl15 pollen contained smaller amounts of intermediates related to starch metabolism than wild-type pollen, while biosynthesis of several amino acids was upregulated, possibly to compensate for defective mitochondrial protein biosynthesis and initiate consumption of carbohydrates necessary for starch biosynthesis. These results provide further insight into how defects in mitoribosome development cause gametophyte male sterility.
Collapse
Affiliation(s)
- En Xie
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiawei Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingxin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
28
|
Zhao J, Xie Y, Kong C, Lu Z, Jia H, Ma Z, Zhang Y, Cui D, Ru Z, Wang Y, Appels R, Jia J, Zhang X. Centromere repositioning and shifts in wheat evolution. PLANT COMMUNICATIONS 2023:100556. [PMID: 36739481 PMCID: PMC10398676 DOI: 10.1016/j.xplc.2023.100556] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/07/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The centromere is the region of a chromosome that directs its separation and plays an important role in cell division and reproduction of organisms. Elucidating the dynamics of centromeres is an alternative strategy for exploring the evolution of wheat. Here, we comprehensively analyzed centromeres from the de novo-assembled common wheat cultivar Aikang58 (AK58), Chinese Spring (CS), and all sequenced diploid and tetraploid ancestors by chromatin immunoprecipitation sequencing, whole-genome bisulfite sequencing, RNA sequencing, assay for transposase-accessible chromatin using sequencing, and comparative genomics. We found that centromere-associated sequences were concentrated during tetraploidization and hexaploidization. Centromeric repeats of wheat (CRWs) have undergone expansion during wheat evolution, with strong interweaving between the A and B subgenomes post tetraploidization. We found that CENH3 prefers to bind with younger CRWs, as directly supported by immunocolocalization on two chromosomes (1A and 2A) of wild emmer wheat with dicentromeric regions, only one of which bound with CENH3. In a comparison of AK58 with CS, obvious centromere repositioning was detected on chromosomes 1B, 3D, and 4D. The active centromeres showed a unique combination of lower CG but higher CHH and CHG methylation levels. We also found that centromeric chromatin was more open than pericentromeric chromatin, with higher levels of gene expression but lower gene density. Frequent introgression between tetraploid and hexaploid wheat also had a strong influence on centromere position on the same chromosome. This study also showed that active wheat centromeres were genetically and epigenetically determined.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuizheng Kong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zefu Lu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyan Jia
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zhengqiang Ma
- Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dangqun Cui
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhengang Ru
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuquan Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Rudi Appels
- Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, VIC 3083, Australia
| | - Jizeng Jia
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
29
|
Esmail SM, Omar GE, Mourad AMI. In-Depth Understanding of the Genetic Control of Stripe Rust Resistance ( Puccinia striiformis f. sp. tritici) Induced in Wheat ( Triticum aestivum) by Trichoderma asperellum T34. PLANT DISEASE 2023; 107:457-472. [PMID: 36449539 DOI: 10.1094/pdis-07-22-1593-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wheat stripe rust (caused by Puccinia striiformis f. tritici Erikss.) causes severe yield losses worldwide. Due to the continuous appearance of new stripe rust races, resistance has been broken in most of the highly resistant genotypes in Egypt and worldwide. Therefore, looking for new ways to resist such a severe disease is urgently needed. Trichoderma asperellum strain T34 has been known as an effective bioagent against many crop diseases. It exists naturally in Egyptian fields. Therefore, in our study, the effectiveness of strain T34 was tested as a bioagent against wheat stripe rust. For this purpose, 198 spring wheat genotypes were tested for their resistance against two different P. striiformis f. tritici populations collected from the Egyptian fields. The most highly aggressive P. striiformis f. tritici population was used to test the effectiveness of strain T34. Highly significant differences were found between strain T34 and stripe rust, suggesting the effectiveness of strain T34 in stripe rust resistance. A genome-wide association study identified 48 gene models controlling resistance under normal conditions and 46 gene models controlling strain T34-induced resistance. Of these gene models, only one common gene model was found, suggesting the presence of two different genetic systems controlling resistance under each condition. The pathways of the biological processes were investigated under both conditions. This study provided in-depth understanding of genetic control and, hence, will accelerate the future of wheat breeding programs for stripe rust resistance.
Collapse
Affiliation(s)
- Samar M Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ghady E Omar
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Amira M I Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
30
|
Wu D, Yang N, Xiang Q, Zhu M, Fang Z, Zheng W, Lu J, Sha L, Fan X, Cheng Y, Wang Y, Kang H, Zhang H, Zhou Y. Pseudorogneria libanotica Intraspecific Genetic Polymorphism Revealed by Fluorescence In Situ Hybridization with Newly Identified Tandem Repeats and Wheat Single-Copy Gene Probes. Int J Mol Sci 2022; 23:ijms232314818. [PMID: 36499149 PMCID: PMC9737853 DOI: 10.3390/ijms232314818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae) with its genome abbreviated 'St' accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome. Therefore, investigating its chromosomes could provide some fundamental information required for subsequent studies of St genome evolution. Here, 24 wheat cDNA probes covering seven chromosome groups were mapped in P. libanotica to distinguish homoelogous chromosomes, and newly identified tandem repeats were performed to differentiate seven chromosome pairs. Using these probes, we investigated intraspecific population chromosomal polymorphism of P. libanotica. We found that (i) a duplicated fragment of the 5St long arm was inserted into the short arm of 2St; (ii) asymmetrical fluorescence in situ hybridization (FISH) hybridization signals among 2St, 5St, and 7St homologous chromosome pairs; and (iii) intraspecific population of polymorphism in P. libanotica. These observations established the integrated molecular karyotype of P. libanotica. Moreover, we suggested heterozygosity due to outcrossing habit and adaptation to the local climate of P. libanotica. Specifically, the generated STlib_96 and STlib_98 repeats showed no cross-hybridization signals with wheat chromosomes, suggesting that they are valuable for identifying alien chromosomes or introgressed fragments of wild relatives in wheat.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Namei Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingkun Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongyan Fang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiale Lu
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lina Sha
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiran Cheng
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.Z.); (Y.Z.); Tel./Fax: +86-028-8629-0022 (Y.Z.)
| | - Yonghong Zhou
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.Z.); (Y.Z.); Tel./Fax: +86-028-8629-0022 (Y.Z.)
| |
Collapse
|
31
|
Zhou J, Liu Y, Guo X, Birchler JA, Han F, Su H. Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2051-2063. [PMID: 35722725 PMCID: PMC9616519 DOI: 10.1111/pbi.13875] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Centromeres are the genomic regions that organize and regulate chromosome behaviours during cell cycle, and their variations are associated with genome instability, karyotype evolution and speciation in eukaryotes. The highly repetitive and epigenetic nature of centromeres were documented during the past half century. With the aid of rapid expansion in genomic biotechnology tools, the complete sequence and structural organization of several plant and human centromeres were revealed recently. Here, we systematically summarize the current knowledge of centromere biology with regard to the DNA compositions and the histone H3 variant (CENH3)-dependent centromere establishment and identity. We discuss the roles of centromere to ensure cell division and to maintain the three-dimensional (3D) genomic architecture in different species. We further highlight the potential applications of manipulating centromeres to generate haploids or to induce polyploids offspring in plant for breeding programs, and of targeting centromeres with CRISPR/Cas for chromosome engineering and speciation. Finally, we also assess the challenges and strategies for de novo design and synthesis of centromeres in plant artificial chromosomes. The biotechnology applications of plant centromeres will be of great potential for the genetic improvement of crops and precise synthetic breeding in the future.
Collapse
Affiliation(s)
- Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xianrui Guo
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life SciencesLinyi UniversityLinyiChina
| | - James A. Birchler
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
32
|
Kroupin PY, Badaeva ED, Sokolova VM, Chikida NN, Belousova MK, Surzhikov SA, Nikitina EA, Kocheshkova AA, Ulyanov DS, Ermolaev AS, Khuat TML, Razumova OV, Yurkina AI, Karlov GI, Divashuk MG. Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: Application in phylogenetic studies of the Triticeae. FRONTIERS IN PLANT SCIENCE 2022; 13:980764. [PMID: 36325551 PMCID: PMC9621091 DOI: 10.3389/fpls.2022.980764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Aegilops crassa Boiss. is polyploid grass species that grows in the eastern part of the Fertile Crescent, Afghanistan, and Middle Asia. It consists of tetraploid (4x) and hexaploid (6x) cytotypes (2n = 4x = 28, D1D (Abdolmalaki et al., 2019) XcrXcr and 2n = 6x = 42, D1D (Abdolmalaki et al., 2019) XcrXcrD2D (Adams and Wendel, 2005), respectively) that are similar morphologically. Although many Aegilops species were used in wheat breeding, the genetic potential of Ae. crassa has not yet been exploited due to its uncertain origin and significant genome modifications. Tetraploid Ae. crassa is thought to be the oldest polyploid Aegilops species, the subgenomes of which still retain some features of its ancient diploid progenitors. The D1 and D2 subgenomes of Ae. crassa were contributed by Aegilops tauschii (2n = 2x = 14, DD), while the Xcr subgenome donor is still unknown. Owing to its ancient origin, Ae. crassa can serve as model for studying genome evolution. Despite this, Ae. crassa is poorly studied genetically and no genome sequences were available for this species. We performed low-coverage genome sequencing of 4x and 6x cytotypes of Ae. crassa, and four Ae. tauschii accessions belonging to different subspecies; diploid wheatgrass Thinopyrum bessarabicum (Jb genome), which is phylogenetically close to D (sub)genome species, was taken as an outgroup. Subsequent data analysis using the pipeline RepeatExplorer2 allowed us to characterize the repeatomes of these species and identify several satellite sequences. Some of these sequences are novel, while others are found to be homologous to already known satellite sequences of Triticeae species. The copy number of satellite repeats in genomes of different species and their subgenome (D1 or Xcr) affinity in Ae. crassa were assessed by means of comparative bioinformatic analysis combined with quantitative PCR (qPCR). Fluorescence in situ hybridization (FISH) was performed to map newly identified satellite repeats on chromosomes of common wheat, Triticum aestivum, 4x and 6x Ae. crassa, Ae. tauschii, and Th. bessarabicum. The new FISH markers can be used in phylogenetic analyses of the Triticeae for chromosome identification and the assessment of their subgenome affinities and for evaluation of genome/chromosome constitution of wide hybrids or polyploid species.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victoria M. Sokolova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Nadezhda N. Chikida
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Maria Kh. Belousova
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Nikitina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Alina A. Kocheshkova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Daniil S. Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Thi Mai Luong Khuat
- Agricultural Genetics Institute, Department of Molecular Biology, Hanoi, Vietnam
| | - Olga V. Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Anna I. Yurkina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| |
Collapse
|
33
|
Centromere-Specific Single-Copy Sequences of Secale Species. PLANTS 2022; 11:plants11162117. [PMID: 36015420 PMCID: PMC9414614 DOI: 10.3390/plants11162117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 12/22/2022]
Abstract
Single-copy FISH analysis is a useful tool to physically locate a given sequence on chromosome. Centromeric single-copy sequences can be used to locate the position of centromere and disclose the subtle differences among different centromeres. Nine centromeric single-copy sequences 1R1, 3R1, 4R1, 4R2, 5R1, 5R2, 6R2, 6R3, and 7R1 were cloned from Kustro (Secale cereale L.). FISH analysis using these sequences as probes indicated that the signals of 1R1, 3R1, 4R1, 4R2, 5R1, 5R2, 6R1, 6R2, and 7R1 were located in the centromeric regions of rye 1R, 3R, 4R, 4R, 5R, 5R, 6R, 6R, and 7R chromosomes, respectively. In addition, for each of the centromeric single-copy sequences, high sequence similarity was observed among different Secale species. Combined with rye genomic sequence, single-copy FISH analysis indicated that the 1BL.1RS translocations in wheat cultivar CN17 and wheat line 20T363-4 contained the centromeric segment of 1R chromosome from 349,498,361 to 349,501,266 bp, and the 1BL.1RS translocations in the other two wheat cultivars did not contain this segment. The nine sequences are useful in determining the centromere location on rye chromosomes, and they have the potential to disclose the accurate structural differences of centromeres among the wheat-rye centric fusion translocation chromosomes; therefore, more centromeric single-copy sequences are needed.
Collapse
|
34
|
Nagy I, Veeckman E, Liu C, Bel MV, Vandepoele K, Jensen CS, Ruttink T, Asp T. Chromosome-scale assembly and annotation of the perennial ryegrass genome. BMC Genomics 2022; 23:505. [PMID: 35831814 PMCID: PMC9281035 DOI: 10.1186/s12864-022-08697-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The availability of chromosome-scale genome assemblies is fundamentally important to advance genetics and breeding in crops, as well as for evolutionary and comparative genomics. The improvement of long-read sequencing technologies and the advent of optical mapping and chromosome conformation capture technologies in the last few years, significantly promoted the development of chromosome-scale genome assemblies of model plants and crop species. In grasses, chromosome-scale genome assemblies recently became available for cultivated and wild species of the Triticeae subfamily. Development of state-of-the-art genomic resources in species of the Poeae subfamily, which includes important crops like fescues and ryegrasses, is lagging behind the progress in the cereal species. RESULTS Here, we report a new chromosome-scale genome sequence assembly for perennial ryegrass, obtained by combining PacBio long-read sequencing, Illumina short-read polishing, BioNano optical mapping and Hi-C scaffolding. More than 90% of the total genome size of perennial ryegrass (approximately 2.55 Gb) is covered by seven pseudo-chromosomes that show high levels of collinearity to the orthologous chromosomes of Triticeae species. The transposon fraction of perennial ryegrass was found to be relatively low, approximately 35% of the total genome content, which is less than half of the genome repeat content of cultivated cereal species. We predicted 54,629 high-confidence gene models, 10,287 long non-coding RNAs and a total of 8,393 short non-coding RNAs in the perennial ryegrass genome. CONCLUSIONS The new reference genome sequence and annotation presented here are valuable resources for comparative genomic studies in grasses, as well as for breeding applications and will expedite the development of productive varieties in perennial ryegrass and related species.
Collapse
Affiliation(s)
- Istvan Nagy
- Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200 Denmark
| | - Elisabeth Veeckman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, Melle, B-9090 Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- Present address: DLF Seeds A/S, Denmark, Højerupvej 31, Store Heddinge, DK-4660 Denmark
| | - Chang Liu
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Eberhard Karls Universität, Auf der Morgenstelle 32, Tübingen, 72076 Germany
- Present address: Institut für Biologie, Universität Hohenheim, Garbenstr. 30, Stuttgart, 70599 Germany
| | - Michiel Van Bel
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052 Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
| | - Klaas Vandepoele
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052 Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052 Belgium
| | | | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, Melle, B-9090 Belgium
| | - Torben Asp
- Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200 Denmark
| |
Collapse
|
35
|
Levy AA, Feldman M. Evolution and origin of bread wheat. THE PLANT CELL 2022; 34:2549-2567. [PMID: 35512194 PMCID: PMC9252504 DOI: 10.1093/plcell/koac130] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 05/12/2023]
Abstract
Bread wheat (Triticum aestivum, genome BBAADD) is a young hexaploid species formed only 8,500-9,000 years ago through hybridization between a domesticated free-threshing tetraploid progenitor, genome BBAA, and Aegilops tauschii, the diploid donor of the D subgenome. Very soon after its formation, it spread globally from its cradle in the fertile crescent into new habitats and climates, to become a staple food of humanity. This extraordinary global expansion was probably enabled by allopolyploidy that accelerated genetic novelty through the acquisition of new traits, new intergenomic interactions, and buffering of mutations, and by the attractiveness of bread wheat's large, tasty, and nutritious grain with high baking quality. New genome sequences suggest that the elusive donor of the B subgenome is a distinct (unknown or extinct) species rather than a mosaic genome. We discuss the origin of the diploid and tetraploid progenitors of bread wheat and the conflicting genetic and archaeological evidence on where it was formed and which species was its free-threshing tetraploid progenitor. Wheat experienced many environmental changes throughout its evolution, therefore, while it might adapt to current climatic changes, efforts are needed to better use and conserve the vast gene pool of wheat biodiversity on which our food security depends.
Collapse
Affiliation(s)
- Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Moshe Feldman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
36
|
Chaves ALA, Carvalho PHM, Ferreira MTM, Benites FRG, Techio VH. Genomic constitution, allopolyploidy, and evolutionary proposal for Cynodon Rich. based on GISH. PROTOPLASMA 2022; 259:999-1011. [PMID: 34709474 DOI: 10.1007/s00709-021-01716-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Polyploidy is the main mechanism for chromosome number variation in Cynodon. Taxonomic boundaries are difficult to define and, although phylogenetic studies indicate that some species are closely related, the degree of genomic similarity remains unknown. Furthermore, the Cynodon species classification as auto or allopolyploids is still controversial. Thus, this study aimed to investigate the genomic constitution in diploid and polyploid species using different approaches of genomic in situ hybridization (GISH). To better understand the hybridization events, we also investigated the occurrence of unreduced gametes in C. dactylon diploid pollen grains. We suggest a genomic nomenclature of diploid species as DD, D1D1, and D2D2 for C. dactylon, C. incompletus, and C. nlemfuensis, and DDD2D2 and DD2D1D1 for the segmental allotetraploids of Cynodon dactylon and C. transvaalensis, respectively. Furthermore, an evolutionary proposal was built based on our results and previous data from other studies, showing possible crosses that may have occurred between Cynodon species.
Collapse
Affiliation(s)
- Ana Luisa Arantes Chaves
- Department of Biology (DBI), Plant Cytogenetics Laboratory, Federal University of Lavras (UFLA), P.O. Box 3037, Lavras, Minas Gerais State, Brazil
| | - Pedro Henrique Mendes Carvalho
- Department of Biology (DBI), Plant Cytogenetics Laboratory, Federal University of Lavras (UFLA), P.O. Box 3037, Lavras, Minas Gerais State, Brazil
| | - Marco Tulio Mendes Ferreira
- Department of Biology (DBI), Plant Cytogenetics Laboratory, Federal University of Lavras (UFLA), P.O. Box 3037, Lavras, Minas Gerais State, Brazil
| | | | - Vânia Helena Techio
- Department of Biology (DBI), Plant Cytogenetics Laboratory, Federal University of Lavras (UFLA), P.O. Box 3037, Lavras, Minas Gerais State, Brazil.
| |
Collapse
|
37
|
Kong Z, Cheng R, Yan H, Yuan H, Zhang Y, Li G, Jia H, Xue S, Zhai W, Yuan Y, Ma Z. Fine mapping KT1 on wheat chromosome 5A that conditions kernel dimensions and grain weight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1101-1111. [PMID: 35083509 DOI: 10.1007/s00122-021-04020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
KT1 was validated as a novel thickness QTL with major effects on wheat kernel dimensions and weight and fine mapped to a 0.04 cM interval near the chromosome-5A centromere. Kernel size, the principal grain weight determining factor of wheat and a target trait for both domestication and artificial breeding, is mainly defined by kernel length (KL), kernel width (KW) and kernel thickness (KT), of which KW and KT have been shown to be positively related to grain weight (GW). Qkt.nau-5A, a major QTL for KT, was validated using the QTL near-isogenic lines (NILs) in three genetic backgrounds. Genetic analysis using two F2 populations derived from the NILs showed that Qkt.nau-5A was dominant for thicker kernel and inherited like a single gene and therefore was designated as Kernel Thickness 1 (KT1). With 77 recombinant lines identified from a total of 19,160 F2 plants from the two NIL-derived F2 populations, KT1 was mapped to the 0.04 cM Xwgrb1356-Xwgrb1619 interval, which was near the centromere and displayed strong recombination suppression. The KT1 interval showed positive correlation with KW and GW and negative correlation with KL and therefore could be used in breeding for cultivars with round-shaped kernels that are beneficial to higher flour yield. KT1 candidate identification could be achieved through combination of sequence variation analysis with expression profiling of the annotated genes in the interval.
Collapse
Affiliation(s)
- Zhongxin Kong
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruiru Cheng
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haisheng Yan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haiyun Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yong Zhang
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Huaiyin Institute of Agriculture Sciences of Xuhuai Region in Jiangsu, Huaian, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shulin Xue
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenling Zhai
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yang Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
38
|
Mehmetbeyoglu E, Kianmehr L, Borlu M, Yilmaz Z, Basar Kılıc S, Rajabi-Maham H, Taheri S, Rassoulzadegan M. Decrease in RNase HII and Accumulation of lncRNAs/DNA Hybrids: A Causal Implication in Psoriasis? Biomolecules 2022; 12:biom12030368. [PMID: 35327560 PMCID: PMC8945458 DOI: 10.3390/biom12030368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Functional long non-coding RNAs (lncRNAs) have been in the limelight in aging research because short telomeres are associated with higher levels of TERRA (Telomeric Repeat containing RNA). The genomic instability, which leads to short telomeres, is a mechanism observed in cell aging and in a class of cancer cells. Psoriasis, a skin disease, is a disorder of epidermal keratinocytes, with altered telomerase activity. Research on the fraction of nascent RNAs in hybrid with DNA offers avenues for new strategies. Skin and blood samples from patients were fractionated to obtain the RNA associated with DNA as a R-loop structure. The higher amount of TERRA levels attached with each chromosome end was found with psoriasis patients in blood and skin. In addition to telomeric TERRA, we evidenced accumulation of others non-coding RNA, such as non-telomeric TERRA and centromeric transcripts. Increased levels of non-coding RNAs attached to DNA correlates with a decreased in Ribonuclease HII (RNase-HII) transcript which means that overall unresolved DNA–RNA hybrids can ultimately weaken DNA and cause skin lesions. Since the genome is actively transcribed, cellular RNase-HII is essential for removing RNA from the DNA–RNA hybrid in controls of genome stability and epigenome shaping and can be used as a causal prognostic marker in patients with psoriasis.
Collapse
Affiliation(s)
- Ecmel Mehmetbeyoglu
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey; (E.M.); (Z.Y.)
- Department of Medical Biology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey
| | - Leila Kianmehr
- Animal Sciences and Marine Biology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983963411, Iran; (H.R.-M.); (L.K.)
| | - Murat Borlu
- Dermatology and Venereology Department, Medical School, Erciyes University, 38280 Kayseri, Turkey;
| | - Zeynep Yilmaz
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey; (E.M.); (Z.Y.)
- Department of Medical Biology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey
| | - Seyma Basar Kılıc
- Dermatology and Venereology Department, Training and Research Hospital, Aksaray University, 68000 Aksaray, Turkey;
| | - Hassan Rajabi-Maham
- Animal Sciences and Marine Biology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983963411, Iran; (H.R.-M.); (L.K.)
| | - Serpil Taheri
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey; (E.M.); (Z.Y.)
- Department of Medical Biology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey
- Correspondence: (S.T.); (M.R.)
| | - Minoo Rassoulzadegan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, 38280 Kayseri, Turkey; (E.M.); (Z.Y.)
- INSERM-CNRS, Université de Nice, 06000 Nice, France
- Correspondence: (S.T.); (M.R.)
| |
Collapse
|
39
|
Kuo P, Da Ines O, Lambing C. Rewiring Meiosis for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:708948. [PMID: 34349775 PMCID: PMC8328115 DOI: 10.3389/fpls.2021.708948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Meiosis is a specialized cell division that contributes to halve the genome content and reshuffle allelic combinations between generations in sexually reproducing eukaryotes. During meiosis, a large number of programmed DNA double-strand breaks (DSBs) are formed throughout the genome. Repair of meiotic DSBs facilitates the pairing of homologs and forms crossovers which are the reciprocal exchange of genetic information between chromosomes. Meiotic recombination also influences centromere organization and is essential for proper chromosome segregation. Accordingly, meiotic recombination drives genome evolution and is a powerful tool for breeders to create new varieties important to food security. Modifying meiotic recombination has the potential to accelerate plant breeding but it can also have detrimental effects on plant performance by breaking beneficial genetic linkages. Therefore, it is essential to gain a better understanding of these processes in order to develop novel strategies to facilitate plant breeding. Recent progress in targeted recombination technologies, chromosome engineering, and an increasing knowledge in the control of meiotic chromosome segregation has significantly increased our ability to manipulate meiosis. In this review, we summarize the latest findings and technologies on meiosis in plants. We also highlight recent attempts and future directions to manipulate crossover events and control the meiotic division process in a breeding perspective.
Collapse
Affiliation(s)
- Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Liu Y, Liu Q, Su H, Liu K, Xiao X, Li W, Sun Q, Birchler JA, Han F. Genome-wide mapping reveals R-loops associated with centromeric repeats in maize. Genome Res 2021; 31:1409-1418. [PMID: 34244230 PMCID: PMC8327920 DOI: 10.1101/gr.275270.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
R-loops are stable chromatin structures comprising a DNA:RNA hybrid and a displaced single-stranded DNA. R-loops have been implicated in gene expression and chromatin structure, as well as in replication blocks and genome instability. Here, we conducted a genome-wide identification of R-loops and identified more than 700,000 R-loop peaks in the maize (Zea mays) genome. We found that sense R-loops were mainly enriched in promoters and transcription termination sites and relatively less enriched in gene bodies, which is different from the main gene-body localization of sense R-loops in Arabidopsis and Oryza sativa. At the chromosome scale, maize R-loops were enriched in pericentromeric heterochromatin regions, and a significant portion of R-loops were derived from transposable elements. In centromeres, R-loops preferentially formed within the binding regions of the centromere-specific histone CENH3, and centromeric retrotransposons were strongly associated with R-loop formation. Furthermore, centromeric retrotransposon R-loops were observed by applying the single-molecule imaging technique of atomic force microscopy. These findings elucidate the fundamental character of R-loops in the maize genome and reveal the potential role of R-loops in centromeres.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kunpeng Liu
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Kadluczka D, Grzebelus E. Using carrot centromeric repeats to study karyotype relationships in the genus Daucus (Apiaceae). BMC Genomics 2021; 22:508. [PMID: 34225677 PMCID: PMC8259371 DOI: 10.1186/s12864-021-07853-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background In the course of evolution, chromosomes undergo evolutionary changes; thus, karyotypes may differ considerably among groups of organisms, even within closely related taxa. The genus Daucus seems to be a promising model for exploring the dynamics of karyotype evolution. It comprises some 40 wild species and the cultivated carrot, a crop of great economic significance. However, Daucus species are very diverse morphologically and genetically, and despite extensive research, the taxonomic and phylogenetic relationships between them have still not been fully resolved. Although several molecular cytogenetic studies have been conducted to investigate the chromosomal structure and karyotype evolution of carrot and other Daucus species, detailed karyomorphological research has been limited to carrot and only a few wild species. Therefore, to better understand the karyotype relationships within Daucus, we (1) explored the chromosomal distribution of carrot centromeric repeats (CentDc) in 34 accessions of Daucus and related species by means of fluorescence in situ hybridization (FISH) and (2) performed detailed karyomorphological analysis in 16 of them. Results We determined the genomic organization of CentDc in 26 accessions of Daucus (belonging to both Daucus I and II subclades) and one accession of closely related species. The CentDc repeats were present in the centromeric regions of all chromosomes of 20 accessions (representing 11 taxa). In the other Daucus taxa, the number of chromosome pairs with CentDc signals varied depending on the species, yet their centromeric localization was conserved. In addition, precise chromosome measurements performed in 16 accessions showed the inter- and intraspecific karyological relationships among them. Conclusions The presence of the CentDc repeats in the genomes of taxa belonging to both Daucus subclades and one outgroup species indicated the ancestral status of the repeat. The results of our study provide useful information for further evolutionary, cytotaxonomic, and phylogenetic research on the genus Daucus and may contribute to a better understanding of the dynamic evolution of centromeric satellites in plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07853-2.
Collapse
Affiliation(s)
- Dariusz Kadluczka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Krakow, Poland.
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Krakow, Poland.
| |
Collapse
|
42
|
Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proc Natl Acad Sci U S A 2021; 118:2104254118. [PMID: 34088847 PMCID: PMC8201846 DOI: 10.1073/pnas.2104254118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.
Collapse
|
43
|
Yang Z, Ge X, Li W, Jin Y, Liu L, Hu W, Liu F, Chen Y, Peng S, Li F. Cotton D genome assemblies built with long-read data unveil mechanisms of centromere evolution and stress tolerance divergence. BMC Biol 2021; 19:115. [PMID: 34082735 PMCID: PMC8176745 DOI: 10.1186/s12915-021-01041-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many of genome features which could help unravel the often complex post-speciation evolution of closely related species are obscured because of their location in chromosomal regions difficult to accurately characterize using standard genome analysis methods, including centromeres and repeat regions. RESULTS Here, we analyze the genome evolution and diversification of two recently diverged sister cotton species based on nanopore long-read sequence assemblies and Hi-C 3D genome data. Although D genomes are conserved in gene content, they have diversified in gene order, gene structure, gene family diversification, 3D chromatin structure, long-range regulation, and stress-related traits. Inversions predominate among D genome rearrangements. Our results support roles for 5mC and 6mA in gene activation, and 3D chromatin analysis showed that diversification in proximal-vs-distal regulatory-region interactions shape the regulation of defense-related-gene expression. Using a newly developed method, we accurately positioned cotton centromeres and found that these regions have undergone obviously more rapid evolution relative to chromosome arms. We also discovered a cotton-specific LTR class that clarifies evolutionary trajectories among diverse cotton species and identified genetic networks underlying the Verticillium tolerance of Gossypium thurberi (e.g., SA signaling) and salt-stress tolerance of Gossypium davidsonii (e.g., ethylene biosynthesis). Finally, overexpression of G. thurberi genes in upland cotton demonstrated how wild cottons can be exploited for crop improvement. CONCLUSIONS Our study substantially deepens understanding about how centromeres have developed and evolutionarily impacted the divergence among closely related cotton species and reveals genes and 3D genome structures which can guide basic investigations and applied efforts to improve crops.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Weinan Li
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Yuying Jin
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lisen Liu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuyan Liu
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Yanli Chen
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China. .,School of Computer Science, National University of Defense Technology, Changsha, 410073, China. .,Peng Cheng Lab, Shenzhen, 518000, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China. .,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
44
|
Huang Y, Ding W, Zhang M, Han J, Jing Y, Yao W, Hasterok R, Wang Z, Wang K. The formation and evolution of centromeric satellite repeats in Saccharum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:616-629. [PMID: 33547688 DOI: 10.1111/tpj.15186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 05/04/2023]
Abstract
Centromeres in eukaryotes are composed of tandem DNAs and retrotransposons. However, centromeric repeats exhibit considerable diversity, even among closely related species, and their origin and evolution are largely unknown. We conducted a genome-wide characterization of the centromeric sequences in sugarcane (Saccharum officinarum). Four centromeric tandem repeat sequences, So1, So103, So137 and So119, were isolated. So1 has a monomeric length of 137 bp, typical of a centromeric satellite, and has evolved four variants. However, these So1 variants had distinct centromere distributions and some were unique to an individual centromere. The distributions of the So1 variants were unexpectedly consistent among the Saccharum species that had different basic chromosome numbers or ploidy levels, thus suggesting evolutionary stability for approximately 7 million years in sugarcane. So103, So137 and So119 had unusually longer monomeric lengths that ranged from 327 to 1371 bp and lacked translational phasing on the CENH3 nucleosomes. Moreover, So103, So137 and So119 seemed to be highly similar to retrotransposons, which suggests that they originated from these mobile elements. Notably, all three repeats were flanked by direct repeats, and formed extrachromosomal circular DNAs (eccDNAs). The presence of circular molecules for these retrotransposon-derived centromeric satellites suggests an eccDNA-mediated centromeric satellite formation pathway in sugarcane.
Collapse
Affiliation(s)
- Yongji Huang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenjie Ding
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Jinlei Han
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanfen Jing
- Ruili Breeding Station, Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Ruili, 678600, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Zonghua Wang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Kai Wang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
45
|
Usai G, Vangelisti A, Simoni S, Giordani T, Natali L, Cavallini A, Mascagni F. DNA Modification Patterns within the Transposable Elements of the Fig ( Ficus carica L.) Genome. PLANTS 2021; 10:plants10030451. [PMID: 33673593 PMCID: PMC7997441 DOI: 10.3390/plants10030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Transposable element activity can be harmful to the host’s genome integrity, but it can also provide selective advantages. One strategy to cope with transposons is epigenetic control through DNA base modifications. We report the non-canonic DNA modification dynamics of fig (Ficus carica L.) by exploiting high-quality genome reference and related N4-methylcytosine (4mC) and N6-methyladenine (6mA) data. Overall, 1.49% of transposon nucleotides showed either 4mC or 6mA modifications: the 4mC/6mA ratio was similar in Class I and Class II transposons, with a prevalence of 4mC, which is comparable to coding genes. Different percentages of 4mC or 6mA were observed among LTR-retrotransposon lineages and sub-lineages. Furthermore, both the Copia and Gypsy retroelements showed higher modification rates in the LTR and coding regions compared with their neighbour regions. Finally, the unconventional methylation of retrotransposons is unrelated to the number of close genes, suggesting that the 4mC and 6mA frequency in LTR-retrotransposons should not be related to transcriptional repression in the adjacency of the element. In conclusion, this study highlighted unconventional DNA modification patterns in fig transposable elements. Further investigations will focus on functional implications, in regards to how modified retroelements affect the expression of neighbouring genes, and whether these epigenetic markers can spread from repeats to genes, shaping the plant phenotype.
Collapse
|
46
|
Zhang Y, Fan C, Chen Y, Wang RRC, Zhang X, Han F, Hu Z. Genome evolution during bread wheat formation unveiled by the distribution dynamics of SSR sequences on chromosomes using FISH. BMC Genomics 2021; 22:55. [PMID: 33446108 PMCID: PMC7809806 DOI: 10.1186/s12864-020-07364-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the bread wheat speciation by polyploidization, a series of genome rearrangement and sequence recombination occurred. Simple sequence repeat (SSR) sequences, predominately located in heterochromatic regions of chromosomes, are the effective marker for tracing the genomic DNA sequence variations. However, to date the distribution dynamics of SSRs on chromosomes of bread wheat and its donors, including diploid and tetraploid Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum turgidum ssp. dicocoides, reflecting the genome evolution events during bread wheat formation had not been comprehensively investigated. RESULTS The genome evolution was studied by comprehensively comparing the distribution patterns of (AAC)n, (AAG)n, (AGC)n and (AG)n in bread wheat Triticum aestivum var. Chinese Spring and its progenitors T. urartu, A. speltoides, Ae. tauschii, wild tetroploid emmer wheat T. dicocoides, and cultivated emmer wheat T. dicoccum. Results indicated that there are specific distribution patterns in different chromosomes from different species for each SSRs. They provided efficient visible markers for identification of some individual chromosomes and SSR sequence evolution tracing from the diploid progenitors to hexaploid wheat. During wheat speciation, the SSR sequence expansion occurred predominately in the centromeric and pericentromeric regions of B genome chromosomes accompanied by little expansion and elimination on other chromosomes. This result indicated that the B genome might be more sensitive to the "genome shock" and more changeable during wheat polyplodization. CONCLUSIONS During the bread wheat evolution, SSRs including (AAC)n, (AAG)n, (AGC)n and (AG)n in B genome displayed the greatest changes (sequence expansion) especially in centromeric and pericentromeric regions during the polyploidization from Ae. speltoides S genome, the most likely donor of B genome. This work would enable a better understanding of the wheat genome formation and evolution and reinforce the viewpoint that B genome was originated from S genome.
Collapse
Affiliation(s)
- Yingxin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard R-C Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT, 84322-6300, USA
| | - Xiangqi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Agriculture, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
47
|
Kuo YT, Ishii T, Fuchs J, Hsieh WH, Houben A, Lin YR. The Evolutionary Dynamics of Repetitive DNA and Its Impact on the Genome Diversification in the Genus Sorghum. FRONTIERS IN PLANT SCIENCE 2021; 12:729734. [PMID: 34475879 PMCID: PMC8407070 DOI: 10.3389/fpls.2021.729734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/23/2021] [Indexed: 05/11/2023]
Abstract
Polyploidization is an evolutionary event leading to structural changes of the genome(s), particularly allopolyploidization, which combines different genomes of distinct species. The tetraploid species, Sorghum halepense, is assumed an allopolyploid species formed by hybridization between diploid S. bicolor and S. propinquum. The repeat profiles of S. bicolor, S. halepense, and their relatives were compared to elucidate the repeats' role in shaping their genomes. The repeat frequencies and profiles of the three diploid accessions (S. bicolor, S. bicolor ssp. verticilliflorum, and S. bicolor var. technicum) and two tetraploid accessions (S. halepense) are similar. However, the polymorphic distribution of the subtelomeric satellites preferentially enriched in the tetraploid S. halepense indicates drastic genome rearrangements after the allopolyploidization event. Verified by CENH3 chromatin immunoprecipitation (ChIP)-sequencing and fluorescence in situ hybridization (FISH) analysis the centromeres of S. bicolor are mainly composed of the abundant satellite SorSat137 (CEN38) and diverse CRMs, Athila of Ty3_gypsy and Ty1_copia-SIRE long terminal repeat (LTR) retroelements. A similar centromere composition was found in S. halepense. The potential contribution of S. bicolor in the formation of tetraploid S. halepense is discussed.
Collapse
Affiliation(s)
- Yi-Tzu Kuo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Wei-Hsun Hsieh
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- *Correspondence: Andreas Houben,
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
- World Vegetable Center, Tainan, Taiwan
- Yann-Rong Lin,
| |
Collapse
|
48
|
Xia QM, Miao LK, Xie KD, Yin ZP, Wu XM, Chen CL, Grosser JW, Guo WW. Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling. PLANT CELL REPORTS 2020; 39:1609-1622. [PMID: 32897396 DOI: 10.1007/s00299-020-02587-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The physical locations of citrus centromere are revealed by combining genetic and immunological assays for the first time and nine citrus centromere-specific markers for cytogenetics are mined. Centromere localization is challenging, because highly redundant repetitive sequences in centromeric regions make sequence assembly difficult. Although several citrus genomes have been released, the centromeric regions and their characteristics remain to be elucidated. Here, we mapped citrus centromeres through half-tetrad analysis (HTA) that included the genotyping of 54 tetraploid hybrids derived from 2n megagametophytes of Nadorcott tangor with 212 single nucleotide polymorphism (SNP) markers. The sizes of centromeric regions, which estimated based on the heterozygosity restitution rate pattern along the chromosomes, ranged from 1.12 to 18.19 Mb. We also profiled the binding sequences with the centromere-specific histone variant CenH3 by chromatin immunoprecipitation sequencing (ChIP-seq). Based on the positions of the top ten CenH3-enriched contigs, the sizes of centromeric regions were estimated to range from 0.01 to 7.60 Mb and were either adjacent to or included in the centromeric regions identified by HTA. We used DNA probes from two repeats selected from the centromeric regions and seven CenH3-binding centromeric repeats to verify centromeric locations by fluorescence in situ hybridization (FISH). Centromere localization in citrus will contribute to the mining of centromeric/pericentromeric markers, thus to facilitate the rapid identification of mechanisms underlying 2n gamete formation and serve the polyploidy breeding.
Collapse
Affiliation(s)
- Qiang-Ming Xia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu-Ke Miao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Li Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
49
|
Genomic Patterns of Introgression in Interspecific Populations Created by Crossing Wheat with Its Wild Relative. G3-GENES GENOMES GENETICS 2020; 10:3651-3661. [PMID: 32737066 PMCID: PMC7534432 DOI: 10.1534/g3.120.401479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg. These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
Collapse
|
50
|
Jordan KW, He F, de Soto MF, Akhunova A, Akhunov E. Differential chromatin accessibility landscape reveals structural and functional features of the allopolyploid wheat chromosomes. Genome Biol 2020; 21:176. [PMID: 32684157 PMCID: PMC7368981 DOI: 10.1186/s13059-020-02093-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background Our understanding of how the complexity of the wheat genome influences the distribution of chromatin states along the homoeologous chromosomes is limited. Using a differential nuclease sensitivity assay, we investigate the chromatin states of the coding and repetitive regions of the allopolyploid wheat genome. Results Although open chromatin is found to be significantly enriched around genes, the majority of MNase-sensitive regions are located within transposable elements (TEs). Chromatin of the smaller D genome is more accessible than that of the larger A and B genomes. Chromatin states of different TEs vary among families and are influenced by the TEs’ chromosomal position and proximity to genes. While the chromatin accessibility of genes is influenced by proximity to TEs, and not by their position on the chromosomes, we observe a negative chromatin accessibility gradient along the telomere-centromere axis in the intergenic regions, positively correlated with the distance between genes. Both gene expression levels and homoeologous gene expression bias are correlated with chromatin accessibility in promoter regions. The differential nuclease sensitivity assay accurately predicts previously detected centromere locations. SNPs located within more accessible chromatin explain a higher proportion of genetic variance for a number of agronomic traits than SNPs located within more closed chromatin. Conclusions Chromatin states in the wheat genome are shaped by the interplay of repetitive and gene-encoding regions that are predictive of the functional and structural organization of chromosomes, providing a powerful framework for detecting genomic features involved in gene regulation and prioritizing genomic variation to explain phenotypes.
Collapse
Affiliation(s)
- Katherine W Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Monica Fernandez de Soto
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA.,Genomic Sciences Laboratory, North Carolina State University, Raleigh, NC, USA
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|