1
|
Genomic Survey of PEBP Gene Family in Rice: Identification, Phylogenetic Analysis, and Expression Profiles in Organs and under Abiotic Stresses. PLANTS 2022; 11:plants11121576. [PMID: 35736727 PMCID: PMC9228618 DOI: 10.3390/plants11121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Phosphatidylethanolamine-binding-protein (PEBP) domain-containing proteins play important roles in multiple developmental processes of plants; however, functions of few members in the PEBP gene family have been elucidated in rice and other crops. In this study, we found that twenty OsPEBPs genes identified in rice are not evenly distributed on the chromosomes. Four colinear pairs are identified, suggesting the duplication of OsPEBPs during evolution. The OsPEBPs are classified into six subgroups by phylogenetic analysis. The structure of all the OsPEBP genes and encoded proteins are similar. The 262 PEBP domain-containing proteins from crops are divided into six groups. The number of colinear pairs varies between rice and other crops. More than thirty cis-acting elements in the promoter region of OsPEBPs are discovered. Expression profiles of OsPEBP genes are differential. Most of the OsPEBPs expression can be regulated by NaCl, ABA, JA, and light, indicating that OsPEBPs may be involved in the control of the response to the environmental signals. These results lay sound foundation to further explore their functions in development of rice and crops.
Collapse
|
2
|
Nagata H, Ono A, Tonosaki K, Kawakatsu T, Sato Y, Yano K, Kishima Y, Kinoshita T. Temporal changes in transcripts of miniature inverted-repeat transposable elements during rice endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1035-1047. [PMID: 35128739 PMCID: PMC9314911 DOI: 10.1111/tpj.15698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The repression of transcription from transposable elements (TEs) by DNA methylation is necessary to maintain genome integrity and prevent harmful mutations. However, under certain circumstances, TEs may escape from the host defense system and reactivate their transcription. In Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), DNA demethylases target the sequences derived from TEs in the central cell, the progenitor cell for the endosperm in the female gametophyte. Genome-wide DNA demethylation is also observed in the endosperm after fertilization. In the present study, we used a custom microarray to survey the transcripts generated from TEs during rice endosperm development and at selected time points in the embryo as a control. The expression patterns of TE transcripts are dynamically up- and downregulated during endosperm development, especially those of miniature inverted-repeat TEs (MITEs). Some TE transcripts were directionally controlled, whereas the other DNA transposons and retrotransposons were not. We also discovered the NUCLEAR FACTOR Y binding motif, CCAAT, in the region near the 5' terminal inverted repeat of Youren, one of the transcribed MITEs in the endosperm. Our results uncover dynamic changes in TE activity during endosperm development in rice.
Collapse
Affiliation(s)
- Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| | - Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
- Faculty of AgricultureIwate University3‐18‐8 UedaMoriokaIwate020‐8550Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization3‐1‐3 Kan‐nondaiTsukubaIbaraki305‐8604Japan
| | - Yutaka Sato
- Genetic Strains Research CenterNational Institute of GeneticsMishima, Shizuoka411‐8540Japan
| | - Kentaro Yano
- Department of Life SciencesSchool of Agriculture, Meiji University1‐1‐1 Higashi‐mitaKawasaki214‐8571Japan
| | - Yuji Kishima
- Research Faculty of AgricultureHokkaido UniversityKita‐9 Nishi‐9Kita‐ku, Sapporo060‐8589Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| |
Collapse
|
3
|
Zhu QG, Xu Y, Yang Y, Guan CF, Zhang QY, Huang JW, Grierson D, Chen KS, Gong BC, Yin XR. The persimmon ( Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution. HORTICULTURE RESEARCH 2019; 6:138. [PMID: 31871686 PMCID: PMC6917749 DOI: 10.1038/s41438-019-0227-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/27/2019] [Indexed: 05/14/2023]
Abstract
Persimmon (Diospyros kaki) is an oriental perennial woody fruit tree whose popular fruit is produced and consumed worldwide. The persimmon fruit is unique because of the hyperaccumulation of proanthocyanidins during fruit development, causing the mature fruit of most cultivars to have an astringent taste. In this study, we obtained a chromosome-scale genome assembly for 'Youshi' (Diospyros oleifera, 2n = 2x = 30), the diploid species of persimmon, by integrating Illumina sequencing, single-molecule real-time sequencing, and high-throughput chromosome conformation capture techniques. The assembled D. oleifera genome consisted of 849.53 Mb, 94.14% (799.71 Mb) of which was assigned to 15 pseudochromosomes, and is the first assembled genome for any member of the Ebenaceae. Comparative genomic analysis revealed that the D. oleifera genome underwent an ancient γ whole-genome duplication event. We studied the potential genetic basis for astringency development (proanthocyanidin biosynthesis) and removal (proanthocyanidin insolublization). Proanthocyanidin biosynthesis genes were mainly distributed on chromosome 1, and the clustering of these genes is responsible for the genetic stability of astringency heredity. Genome-based RNA-seq identified deastringency genes, and promoter analysis showed that most of their promoters contained large numbers of low oxygen-responsive motifs, which is consistent with the efficient industrial application of high CO2 treatment to remove astringency. Using the D. oleifera genome as the reference, SLAF-seq indicated that 'Youshi' is one of the ancestors of the cultivated persimmon (2n = 6x = 90). Our study provides significant insights into the genetic basis of persimmon evolution and the development and removal astringency, and it will facilitate the improvement of the breeding of persimmon fruit.
Collapse
Affiliation(s)
- Qing-gang Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
| | - Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400 PR China
| | - Yong Yang
- College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Chang-fei Guan
- College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Qiu-yun Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
| | - Jing-wen Huang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
| | - Don Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kun-song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
| | - Bang-chu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400 PR China
| | - Xue-ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058 PR China
| |
Collapse
|
4
|
Swapna L, Khurana R, Kumar SV, Tyagi AK, Rao KV. Pollen-specific expression of Oryza sativa indica pollen allergen gene (OSIPA) promoter in rice and Arabidopsis transgenic systems. Mol Biotechnol 2011; 48:49-59. [PMID: 21061188 DOI: 10.1007/s12033-010-9347-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Earlier, a pollen-specific Oryza sativa indica pollen allergen gene (OSIPA), coding for expansins/pollen allergens, was isolated from rice, and its promoter--upon expression in tobacco and Arabidopsis--was found active during the late stages of pollen development. In this investigation, to analyze the effects of different putative regulatory motifs of OSIPA promoter, a series of 5' deletions were fused to β-glucuronidase gene (GUS) which were stably introduced into rice and Arabidopsis. Histochemical GUS analysis of the transgenic plants revealed that a 1631 bp promoter fragment mediates maximum GUS expression at different stages of anther/pollen development. Promoter deletions to -1272, -966, -617, and -199 bp did not change the expression profile of the pollen specificity. However, the activity of promoter was reduced as the length of promoter decreased. The region between -1567 and -199 bp was found adequate to confer pollen-specific expression in both rice and Arabidopsis systems. An approximate 4-fold increase in the GUS activity was observed in the pollen of rice when compared to that of Arabidopsis. As such, the OSIPA promoter seems promising for generation of stable male-sterile lines required for the production of hybrids in rice and other crop plants.
Collapse
Affiliation(s)
- L Swapna
- Centre for Plant Molecular Biology, Osmania University, Hyderabad 500007, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
5
|
Yang CY, Hsu FC, Li JP, Wang NN, Shih MC. The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:202-12. [PMID: 21398256 PMCID: PMC3091062 DOI: 10.1104/pp.111.172486] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/06/2011] [Indexed: 05/18/2023]
Abstract
A number of APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) genes have been shown to function in abiotic and biotic stress responses, and these genes are often induced by multiple stresses. We report here the characterization of an AP2/ERF gene in Arabidopsis (Arabidopsis thaliana) that is specifically induced during hypoxia. We show that under normoxic conditions, the expression of AtERF73/HRE1 can be induced by exogenous addition of 1-aminocyclopropane-1-carboxylic acid and that a combination of hypoxia and 1-aminocyclopropane-1-carboxylic acid results in hyperinduction of AtERF73/HRE1 expression. In addition, hypoxic induction of AtERF73/HRE1 is reduced but not completely abolished in ethylene-insensitive mutants and in the presence of inhibitors of ethylene biosynthesis and responses. These results suggest that, in addition to ethylene, an ethylene-independent signal is also required to mediate hypoxic induction of AtERF73/HRE1. To assess the role of AtERF73/HRE1, we generated three independent RNA interference (RNAi) knockdown lines of AtERF73/HRE1. Under normoxic conditions, the AtERF73/HRE1-RNAi seedlings displayed increased ethylene sensitivity and exaggerated triple responses, indicating that AtERF73/HRE1 might play a negative regulatory role in modulating ethylene responses. Gas chromatography analyses showed that the production of ethylene was similar between wild-type and RNAi lines under hypoxia. Quantitative reverse transcription-polymerase chain reaction analyses showed that hypoxia-inducible genes could be affected by AtERF73/HRE1-RNAi lines in two different ways: hypoxic induction of glycolytic and fermentative genes was reduced, whereas induction of a number of peroxidase and cytochrome P450 genes was increased. Taken together, our results show that AtERF73/HRE1 is involved in modulating ethylene responses under both normoxia and hypoxia.
Collapse
|
6
|
Narsai R, Howell KA, Carroll A, Ivanova A, Millar AH, Whelan J. Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. PLANT PHYSIOLOGY 2009; 151:306-22. [PMID: 19571305 PMCID: PMC2736006 DOI: 10.1104/pp.109.142026] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 06/25/2009] [Indexed: 05/17/2023]
Abstract
Analysis reveals that there is limited overlap in the sets of transcripts that show significant changes in abundance during anaerobiosis in different plant species. This may be due to the fact that a combination of primary effects, changes due to the presence or absence of oxygen, and secondary effects, responses to primary changes or tissue and developmental responses, are measured together and not differentiated from each other. In order to dissect out these responses, the effect of the presence or absence of oxygen was investigated using three different experimental designs using rice (Oryza sativa) as a model system. A total of 110 metabolites and 9,596 transcripts were found to change significantly in response to oxygen availability in at least one experiment. However, only one-quarter of these showed complementary responses to oxygen in all three experiments, allowing the core response to oxygen availability to be defined. A total of 10 metabolites and 1,136 genes could be defined as aerobic responders (up-regulated in the presence of oxygen and down-regulated in its absence), and 13 metabolites and 730 genes could be defined as anaerobic responders (up-regulated in the absence of oxygen and down-regulated in its presence). Defining core sets of transcripts that were sensitive to oxygen provided insights into alterations in metabolism, specifically carbohydrate and lipid metabolism and the putative regulatory mechanisms that allow rice to grow under anaerobic conditions. Transcript abundance of a specific set of transcription factors was sensitive to oxygen availability during all of the different experiments conducted, putatively identifying primary regulators of gene expression under anaerobic conditions. Combined with the possibility of selective transcript degradation, these transcriptional processes are involved in the core response of rice to anaerobiosis.
Collapse
Affiliation(s)
- Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Tyagi AK, Mohanty A, Bajaj S, Chaudhury A, Maheshwari SC. Transgenic Rice: A Valuable Monocot System for Crop Improvement and Gene Research. Crit Rev Biotechnol 2008. [DOI: 10.1080/0738-859991229198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M. Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. PLANT & CELL PHYSIOLOGY 2006; 47:995-1003. [PMID: 16774928 DOI: 10.1093/pcp/pcj072] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Histone modifications such as methylation and acetylation in the chromatin surrounding a gene are thought to regulate transcriptional activity. In this study, to determine whether dynamic changes occur in histone modification on the loci of stress-responsive genes in plants, we chose rice submergence-inducible ADH1 and PDC1 genes. When submerged, the rice ADH1 and PDC1 genes were activated in a biphasic manner: the first and second inductions occurred after approximately 2 and 12 h of submergence, respectively. Their expression was transcriptionally induced as shown by increased binding of RNA polymerase II to the ADH1 and PDC1 loci during submergence. The Lys4 residues of the histone H3 proteins (H3-K4s) at both the 5'- and 3'-coding regions of ADH1 and PDC1 were found to change from a di-methylated state to a tri-methylated state at the first induction period. On the other hand, acetylation of H3 increased throughout ADH1 and PDC1 genes at the later induction period. The methylation and acetylation levels recovered to the initial levels during re-aeration. Treatment of seedlings with a histone deacetylase (HDAC) inhibitor, trichostatin A, increased acetylation of histones H3 and association of RNA polymerase II on the ADH1 and PDC1 loci, thereby increasing transcript levels of ADH1 and PDC1. Together, these results showed dynamic and reversible changes of histone H3-K4 methylation and H3 acetylation in stress-responsive genes in a higher plant in response to the appearance or disappearance of an environmental stress.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | | | | | | | |
Collapse
|
9
|
Peng HP, Lin TY, Wang NN, Shih MC. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. PLANT MOLECULAR BIOLOGY 2005; 58:15-25. [PMID: 16028113 DOI: 10.1007/s11103-005-3573-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 03/10/2005] [Indexed: 05/03/2023]
Abstract
Ethylene plays an essential role in response to hypoxic stress in plants. In most plant species, 1-aminocyclopropane-1-carboxylate synthase (ACS) is the key enzyme that regulates the production of ethylene. We examined the expression of ACS genes in Arabidopsis during hypoxia. Our data showed that the expression of 4 of the 12 Arabidopsis ACS genes, ACS2, ACS6, ACS7, and ACS9, is induced during hypoxia with three distinct patterns. The hypoxic induction of ACS9 is inhibited by aminooxy acetic acid, an inhibitor of ethylene biosynthesis. In addition, the hypoxic induction of ACS9 is also reduced in etr1-1 and ein2-1, two ethylene insensitive mutants in ethylene-signaling pathways, whereas the addition of 1-aminocyclopropane-1-carboxylic acid, a direct precursor of ethylene, does not induce ACS9 under normoxic conditions. These results indicate that ethylene is needed, but not sufficient, for the induction of ACS9 during hypoxia. This pattern of regulation is similar to that of ADH that encodes alcohol dehydrogenase, which we have reported previously. In contrast, the increased ethylene production during hypoxia has an inhibitory effect on ACS2 induction in roots, whereas ethylene has no effect on the hypoxic induction of ACS6 and ACS7. Based on these results, we propose that two signaling pathways are triggered during hypoxia. One pathway leads to the activation of ACS2, ACS6, and ACS7, whereas the other pathway leads to the activation of ADH and ACS9.
Collapse
Affiliation(s)
- Hsiao-Ping Peng
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
10
|
Wang J, Oard JH. Rice ubiquitin promoters: deletion analysis and potential usefulness in plant transformation systems. PLANT CELL REPORTS 2003; 22:129-134. [PMID: 12827439 DOI: 10.1007/s00299-003-0657-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Revised: 04/28/2003] [Accepted: 04/29/2003] [Indexed: 05/24/2023]
Abstract
Strong constitutive promoters form a cornerstone for basic and applied research using transgenic plants. GUS (beta-glucuronidase) expression levels from constructs containing RUBQ1 or RUB2 rice ubiquitin promoters were 8- to 35-fold higher in transgenic rice [Oryza sativa (L.)] plants, respectively, when compared to the 35S promoter. Deletion analysis of the 5'-upstream region of RUBQ2 revealed a putative enhancer region that produced a 2.4-fold increase in transient GUS expression. Southern blot analysis showed that three to seven copies of the GUS gene were stably inserted into R0 and R1 plants and inherited in a monogenic fashion.
Collapse
Affiliation(s)
- J Wang
- Louisiana Agricultural Experiment Station, LSU Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
11
|
Guo H, Moose SP. Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution. THE PLANT CELL 2003; 15:1143-58. [PMID: 12724540 PMCID: PMC153722 DOI: 10.1105/tpc.010181] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2002] [Accepted: 03/07/2003] [Indexed: 05/20/2023]
Abstract
Surveys for conserved noncoding sequences (CNS) among genes from monocot cereal species were conducted to assess the general properties of CNS in grass genomes and their correlation with known promoter regulatory elements. Initial comparisons of 11 orthologous maize-rice gene pairs found that previously defined regulatory motifs could be identified within short CNS but could not be distinguished reliably from random sequence matches. Among the different phylogenetic footprinting algorithms tested, the VISTA tool yielded the most informative alignments of noncoding sequence. VISTA was used to survey for CNS among all publicly available genomic sequences from maize, rice, wheat, barley, and sorghum, representing >300 gene comparisons. Comparisons of orthologous maize-rice and maize-sorghum gene pairs identified 20 bp as a minimal length criterion for a significant CNS among grass genes, with few such CNS found to be conserved across rice, maize, sorghum, and barley. The frequency and length of cereal CNS as well as nucleotide substitution rates within CNS were consistent with the known phylogenetic distances among the species compared. The implications of these findings for the evolution of cereal gene promoter sequences and the utility of using the nearly completed rice genome sequence to predict candidate regulatory elements in other cereal genes by phylogenetic footprinting are discussed.
Collapse
Affiliation(s)
- Hena Guo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 61801, USA
| | | |
Collapse
|
12
|
Piquemal J, Chamayou S, Nadaud I, Beckert M, Barrière Y, Mila I, Lapierre C, Rigau J, Puigdomenech P, Jauneau A, Digonnet C, Boudet AM, Goffner D, Pichon M. Down-regulation of caffeic acid o-methyltransferase in maize revisited using a transgenic approach. PLANT PHYSIOLOGY 2002; 130:1675-85. [PMID: 12481050 PMCID: PMC166682 DOI: 10.1104/pp.012237] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 08/22/2002] [Accepted: 10/02/2002] [Indexed: 05/18/2023]
Abstract
Transgenic maize (Zea mays) plants were generated with a construct harboring a maize caffeic acid O-methyltransferase (COMT) cDNA in the antisense (AS) orientation under the control of the maize Adh1 (alcohol dehydrogenase) promoter. Adh1-driven beta-glucuronidase expression was localized in vascular tissues and lignifying sclerenchyma, indicating its suitability in transgenic experiments aimed at modifying lignin content and composition. One line of AS plants, COMT-AS, displayed a significant reduction in COMT activity (15%-30% residual activity) and barely detectable amounts of COMT protein as determined by western-blot analysis. In this line, transgenes were shown to be stably integrated in the genome and transmitted to the progeny. Biochemical analysis of COMT-AS showed: (a) a strong decrease in Klason lignin content at the flowering stage, (b) a decrease in syringyl units, (c) a lower p-coumaric acid content, and (d) the occurrence of unusual 5-OH guaiacyl units. These results are reminiscent of some characteristics already observed for the maize bm3 (brown-midrib3) mutant, as well as for COMT down-regulated dicots. However, as compared with bm3, COMT down-regulation in the COMT-AS line is less severe in that it is restricted to sclerenchyma cells. To our knowledge, this is the first time that an AS strategy has been applied to modify lignin biosynthesis in a grass species.
Collapse
Affiliation(s)
- Joel Piquemal
- Signaux et Messages Cellulaires chez les Végétaux, Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Université Paul Sabatier, Pôle de Biotechnologie Végétale, Castanet Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Erkkilä MJ, Ahokas H. Special barley beta-amylase allele in a Finnish landrace line HA52 with high grain enzyme activity. Hereditas 2001; 134:91-5. [PMID: 11525070 DOI: 10.1111/j.1601-5223.2001.00091.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- M J Erkkilä
- Plant Production Research, Agricultural Research Centre, Myllytie 10, FIN-31600 Jokioinen, Finland.
| | | |
Collapse
|
14
|
Peng HP, Chan CS, Shih MC, Yang SF. Signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. PLANT PHYSIOLOGY 2001; 126:742-9. [PMID: 11402202 PMCID: PMC111164 DOI: 10.1104/pp.126.2.742] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Revised: 12/15/2000] [Accepted: 01/09/2001] [Indexed: 05/19/2023]
Abstract
Expression of the alcohol dehydrogenase gene (ADH) of Arabidopsis is induced during hypoxia. Because many plants increase their ethylene production in response to hypoxic stress, we examined in this report whether ethylene is involved in the hypoxic induction of ADH in Arabidopsis. We found that the hypoxic induction of ADH can be partially inhibited by aminooxy acetic acid, an inhibitor of ethylene biosynthesis. This partial inhibition can be reversed by the addition of 1-aminocyclopropane-1-carboxylic acid, a direct precursor of ethylene. In addition, the hypoxic induction of the ADH gene is also reduced in etr1-1 and ein2-1, two ethylene insensitive mutants in ethylene-signaling pathways, whereas the addition of exogenous ethylene or an increase in cellular ethylene alone does not induce ADH under normoxic conditions. Kinetic analyses of ADH mRNA accumulation indicated that an ethylene signal is required for the induction of ADH during later stages of hypoxia. Therefore, we conclude that ethylene is needed, but not sufficient for, the induction of ADH in Arabidopsis during hypoxia.
Collapse
Affiliation(s)
- H P Peng
- Department of Biological Sciences, 204 Chemistry Building, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
15
|
Tyagi AK, Mohanty A. Rice transformation for crop improvement and functional genomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 158:1-18. [PMID: 10996240 DOI: 10.1016/s0168-9452(00)00325-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although several japonica and some indica varieties of rice have already been transformed, there is significant scope for improvement in the technology for transformation of economically important indica varieties. Successful transformation of rice employing Agrobacterium and recent advances in direct gene transfer by biolistics, evidenced by transfer of multiple genes, have removed some of the serious impediments in the area of gene engineering. The transfer of genes for nutritionally important biosynthetic pathway has provided many opportunities for performing metabolic engineering. Other useful genes for resistance against pests, diseases and abiotic stresses have also been transferred to rice. But the limited knowledge about important target genes requires rapid progress in the field of functional genomics. Transgenic rice system can be applied to isolate new genes, promoters, and enhancers and their functions could be unravelled. The combination of novel regulatory systems for targeted expression and useful new genes should pave the way for improvement of rice and other cereals.
Collapse
Affiliation(s)
- AK Tyagi
- Centre for Plant Molecular Biology and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
| | | |
Collapse
|
16
|
Wang J, Jiang J, Oard JH. Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 156:201-211. [PMID: 10936527 DOI: 10.1016/s0168-9452(00)00255-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have isolated two rice polyubiquitin genes designated as RUBQ1 and RUBQ2 by screening a Bacterial Artificial Chromosome (BAC) genomic library with a 32P-labeled ubiquitin cDNA probe. DNA sequence data revealed that both genes contained an open reading frame encoding a hexameric precursor ubiquitin and an intron immediate upstream of the initiation codon. The deduced amino acid sequences of both genes were identical to each other and to other plant ubiquitin sequences. Several putative regulatory elements such as enhancer core and heat shock consensus sequences were found in the 5'-upstream regions of both genes. Northern blot analyses using the 3'-untranslated region as gene specific probes showed that both genes were actively expressed in all rice plant tissues tested. Differential expression was observed in roots where RUBQ2 appeared to be predominantly expressed. Chimeric genes containing the 5'-upstream region including the intron of RUBQ1 or RUBQ2 and the beta-glucuronidase (GUS) coding region were constructed and transferred into rice suspension cells via particle bombardment. GUS activity from constructs containing RUBQ1 and RUBQ2 promoters in rice suspension cells was ten to 15-fold greater than those using the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter, and two to threefold greater than constructs with the maize polyubiquitin Ubi1 promoter. The results demonstrate the potential usefulness of the two rice polyubiquitin promoters in rice or other monocot transformation systems.
Collapse
Affiliation(s)
- J Wang
- Department of Agronomy, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, 70803, Baton Rouge, LA, USA
| | | | | |
Collapse
|
17
|
Terada R, Nakajima M, Isshiki M, Okagaki RJ, Wessler SR, Shimamoto K. Antisense waxy genes with highly active promoters effectively suppress waxy gene expression in transgenic rice. PLANT & CELL PHYSIOLOGY 2000; 41:881-888. [PMID: 10965945 DOI: 10.1093/pcp/pcd008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To regulate Waxy (Wx) gene expression by introducing antisense genes, we connected the 2.3 kb Wx cDNA having 450 bp of the Wx first intron in reverse orientation to rice Wx and maize alcohol dehydrogenase1 (Adh1) promoters and used these constructs to transform rice plants. Of 10 independent transgenic lines analysed, four lines showed various degrees of reduction in amylose and WAXY (WX) protein levels in the endosperm. In two transgenic lines, complete absence of amylose was observed which made the seeds opaque white like glutinous rice (amylose-deficient waxy (wx) mutant). In one of the transgenic lines, A1 line, the presence of the antisense Wx gene cosegregated with reduction of amylose content in the endosperm. In the same line, a reduction in the level of endogenous Wx mRNA was observed in immature endosperm. Interestingly, this reduction was observed only with mature spliced transcripts but not with unspliced transcripts. Reduced amylose synthesis was also observed in pollen grains of four transgenic lines. These results suggest that integrated antisense Wx gene caused a reduction in amylose synthesis in endosperms and pollen grains of transgenic rice carrying the antisense Wx cDNA. These results indicate that manipulation of starch and other carbohydrates in rice grain is possible using antisense genes.
Collapse
Affiliation(s)
- R Terada
- Plantech Research Institute, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Nagaya S, Nakai Y, Kato K, Sekine M, Yoshida K, Shinmyo A. Isolation of growth-phase-specific promoters from cultured tobacco cells. J Biosci Bioeng 2000; 89:231-5. [PMID: 16232734 DOI: 10.1016/s1389-1723(00)88824-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
Abstract
Strong promoters are required under several culture conditions for effective transgene expression in tobacco BY2 cells. We have isolated the promoter fragments of 4 genes exhibiting high homology to those of Arabidopsis thaliana 108C1T7 (unknown function) and F1-ATPase-delta, alcohol dehydrogenase and pectin esterase genes from a genomic DNA library of BY2 cells. Two of the four genes were strongly expressed during every phase of growth of BY2 cells, and the other two were expressed only during the stationary phase. Each of the promoter fragments was ligated to the GUS reporter gene and introduced into the chromosome of BY2 cells by Agrobacterium-mediated transformation. Growth-phase-dependent expression of the GUS gene was reproduced under the control of all 4 promoters observed with the original genes. Significantly higher expression was observed under the control of Nt108p during every phase of cell growth and under the control of NtADHp and NtPESp during the stationary phase than that under the control of the CaMV35S promoter.
Collapse
Affiliation(s)
- S Nagaya
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Klöti A, Henrich C, Bieri S, He X, Chen G, Burkhardt PK, Wünn J, Lucca P, Hohn T, Potrykus I, Fütterer J. Upstream and downstream sequence elements determine the specificity of the rice tungro bacilliform virus promoter and influence RNA production after transcription initiation. PLANT MOLECULAR BIOLOGY 1999; 40:249-266. [PMID: 10412904 DOI: 10.1023/a:1006119517262] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The contribution of sequences upstream and downstream of the transcription start site to the strength and specificity of the promoter of rice tungro bacilliform virus was analysed in transgenic rice plants. The promoter is strongly stimulated by downstream sequences which include an intron and is active in all vascular and epidermal cells. Expression in the vascular tissue requires a promoter element located between -100 and -164 to which protein(s) from rice nuclear extracts bind. Elimination of this region leads to specificity for the epidermis. Due to the presence of a polyadenylation signal in the intron, short-stop RNA is produced from the promoter in addition to full-length primary transcript and its spliced derivatives. The ratio between short-stop RNA and full-length or spliced RNA is determined by upstream promoter sequences, suggesting the assembly of RNA polymerase complexes with different processivity on this promoter.
Collapse
Affiliation(s)
- A Klöti
- Institute of Plant Sciences, ETH Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Conley TR, Peng HP, Shih MC. Mutations affecting induction of glycolytic and fermentative genes during germination and environmental stresses in Arabidopsis. PLANT PHYSIOLOGY 1999; 119:599-608. [PMID: 9952456 PMCID: PMC32137 DOI: 10.1104/pp.119.2.599] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Accepted: 10/28/1998] [Indexed: 05/18/2023]
Abstract
Expression of the alcohol dehydrogenase gene (ADH) of Arabidopsis is known to be induced by environmental stresses and regulated developmentally. We used a negative-selection approach to isolate mutants that were defective in regulating the expression of the ADH gene during seed germination; we then characterized three recessive mutants, aar1-1, aar1-2, and aar2-1, which belong to two complementation groups. In addition to their defects during seed germination, mutations in the AAR1 and AAR2 genes also affected anoxic and hypoxic induction of ADH and other glycolytic genes in mature plants. The aar1 and aar2 mutants were also defective in responding to cold and osmotic stress. The two allelic mutants aar1-1and aar1-2 exhibited different phenotypes under cold and osmotic stresses. Based on our results we propose that these mutants are defective in a late step of the signaling pathways that lead to increased expression of the ADH gene and glycolytic genes.
Collapse
Affiliation(s)
- T R Conley
- Department of Biological Sciences, 204 Chemistry Building, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
21
|
Buchel AS, Molenkamp R, Bol JF, Linthorst HJ. The PR-1a promoter contains a number of elements that bind GT-1-like nuclear factors with different affinity. PLANT MOLECULAR BIOLOGY 1996; 30:493-504. [PMID: 8605301 DOI: 10.1007/bf00049327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The 900 bp promoter region of the tobacco PR-1a gene was divided into eight fragments using PCR. The fragments were tested for their ability to bind to nuclear factors isolated from tobacco leaf. Band shift assays demonstrated that all but one of the fragments specifically interacted with nuclear proteins. From competition experiments it was determined that the same nuclear factors bind various promoter fragments with different affinity. Moreover, efficient competition with a synthetic tetramer of box II of the rbcS promoter indicated that GT-1-like nuclear factors are involved in these interactions. Furthermore, in comparison to extracts from untreated plants, nuclear protein preparations from tobacco mosaic virus-infected tobacco showed a reduced GT-1 binding activity. These results will be discussed in relation to induced PR-1a gene expression.
Collapse
Affiliation(s)
- A S Buchel
- Institute of Molecular Plant Sciences, Gorlaeus Laboratories, Leiden University, Netherlands
| | | | | | | |
Collapse
|
22
|
Reynolds SJ, Smith SM. Regulation of expression of the cucumber isocitrate lyase gene in cotyledons upon seed germination and by sucrose. PLANT MOLECULAR BIOLOGY 1995; 29:885-96. [PMID: 8555453 DOI: 10.1007/bf00014963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A 6.5 kb cucumber genomic DNA fragment containing the icl gene was introduced into Nicotiana plumbaginifolia and shown to direct isocitrate lyase (ICL) mRNA synthesis in transgenic seedlings upon germination, in a temporally regulated manner. Two putative icl promoter fragments, of 2900 and 572 bp, were subsequently linked to the GUS reporter gene and introduced into N. plumbaginifolia. Both constructs directed GUS expression after transgenic seed germination, and although the 572 bp fragment gave only 1% of the activity of the 2900 bp fragment, it directed expression in the same cotyledon-specific and temporally regulated pattern. Seedlings were transferred to darkness after 18 days growth in the light, to induce a starvation response. The 2900 bp construct was activated by starvation and repressed by exogenous sucrose, whereas the 572 bp construct was not starvation-responsive. To localize the region of the 2900 bp promoter fragment which is responsible for regulation by sucrose, further deletions were made, linked to GUS, and assayed in a cucumber protoplast transient assay system. Constructs with promoters of 2900, 2142 and 1663 bp were activated by starvation and repressed by sucrose, but promoters of 1142 and 572 bp showed no such response. We conclude that the icl gene promoter contains at least two distinct cis-acting elements, one required for the response to sucrose and the other which participates in expression upon seed germination.
Collapse
Affiliation(s)
- S J Reynolds
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | |
Collapse
|
23
|
Bucher M, Brander KA, Sbicego S, Mandel T, Kuhlemeier C. Aerobic fermentation in tobacco pollen. PLANT MOLECULAR BIOLOGY 1995; 28:739-50. [PMID: 7647304 DOI: 10.1007/bf00021197] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We characterized the genes coding for the two dedicated enzymes of ethanolic fermentation, alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC), and show that they are functional in pollen. Two PDC-encoding genes were isolated, which displayed reciprocal regulation: PDC1 was anaerobically induced in leaves, whereas PDC2 mRNA was absent in leaves, but constitutively present in pollen. A flux through the ethanolic fermentation pathway could be measured in pollen under all tested environmental and developmental conditions. Surprisingly, the major factor influencing the rate of ethanol production was not oxygen availability, but the composition of the incubation medium. Under optimal conditions for pollen tube growth, approximately two-thirds of the carbon consumed was fermented, and ethanol accumulated into the surrounding medium to a concentration exceeding 100 mM.
Collapse
Affiliation(s)
- M Bucher
- Institute of Plant Physiology, University of Berne, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Eyal Y, Curie C, McCormick S. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. THE PLANT CELL 1995; 7:373-84. [PMID: 7734969 PMCID: PMC160789 DOI: 10.1105/tpc.7.3.373] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Functional analyses previously identified minimal promoter regions required for maintaining high-level expression of the late anther tomato LAT52 and LAT59 genes in tomato pollen. Here, we now define elements that direct pollen specificity. We used a transient assay system consisting of two cell types that differentially express the LAT genes and both "loss-of-function" and "gain-of-function" approaches. Linker substitution mutants analyzed in the transient assay and in transgenic plants identified 30-bp proximal promoter regions of LAT52 and LAT59 that are essential for their expression in pollen and that confer pollen specificity when fused to the heterologous cauliflower mosaic virus 35S core promoter. In vivo competition experiments demonstrated that a common trans-acting factor interacts with the pollen specificity region of both LAT gene promoters and suggested that a common mechanism regulates their coordinate expression. Adjacent upstream elements, the 52/56 box in LAT52 and the 56/59 box in LAT59, are involved in modulating the level of expression in pollen. The 52/56 box may be a target for the binding of a member of the GT-1 transcription factor family.
Collapse
Affiliation(s)
- Y Eyal
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany
| | | | | |
Collapse
|