1
|
Roman VA, Crable BR, Wagner DN, Gryganskyi A, Zelik S, Cummings L, Hung CS, Nadeau LJ, Schratz L, Haridas S, Pangilinan J, Lipzen A, Na H, Yan M, Ng V, Grigoriev IV, Barlow D, Biffinger J, Kelley-Loughnane N, Crookes-Goodson WJ, Stamps B, Varaljay VA. Identification and recombinant expression of a cutinase from Papiliotrema laurentii that hydrolyzes natural and synthetic polyesters. Appl Environ Microbiol 2024; 90:e0169423. [PMID: 38624219 PMCID: PMC11205760 DOI: 10.1128/aem.01694-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.
Collapse
Affiliation(s)
- Victor A. Roman
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Bryan R. Crable
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Dominique N. Wagner
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Andrii Gryganskyi
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Stephen Zelik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Logan Cummings
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Chia S. Hung
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Lloyd J. Nadeau
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Lucas Schratz
- Chemistry Department, University of Dayton, Dayton, Ohio, USA
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hyunsoo Na
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | | | | | - Nancy Kelley-Loughnane
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | | | - Blake Stamps
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Vanessa A. Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
- The Ohio State University, Infectious Diseases Institute, Columbus, Ohio, USA
| |
Collapse
|
2
|
Comparative Transcriptomics of Fusarium graminearum and Magnaporthe oryzae Spore Germination Leading up To Infection. mBio 2023; 14:e0244222. [PMID: 36598191 PMCID: PMC9973345 DOI: 10.1128/mbio.02442-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For fungal plant pathogens, the germinating spore provides the first interaction with the host. Spore germlings move across the plant surface and use diverse penetration strategies for ingress into plant surfaces. Penetration strategies include pressurized melanized appressoria, which facilitate physically punching through the plant cuticle, and nonmelanized appressoria, which penetrate with the help of enzymes or cuticular damage to breach the plant surface. Two well-studied plant pathogens, Fusarium graminearum and Magnaporthe oryzae, are typical of these two modes of penetration. We applied comparative transcriptomics to Fusarium graminearum and Magnaporthe oryzae to characterize the genetic programming of the early host-pathogen interface. Four sequential stages of development following spore localization on the plant surface, from spore swelling to appressorium formation, were sampled for each species on culture medium and on barley sheaths, and transcriptomic analyses were performed. Gene expression in the prepenetration stages in both species and under both conditions was similar. In contrast, gene expression in the final stage was strongly influenced by the environment. Appressorium formation involved the greatest number of differentially expressed genes. Laser-dissection microscopy was used to perform detailed transcriptomics of initial infection points by F. graminearum. These analyses revealed new and important aspects of early fungal ingress in this species. Expression of the trichothecene genes involved in biosynthesis of deoxynivalenol by F. graminearum implies that toxisomes are not fully functional until after penetration and indicates that deoxynivalenol is not essential for penetration under our conditions. The use of comparative gene expression of divergent fungi promises to advance highly effective targets for antifungal strategies. IMPORTANCE Fusarium graminearum and Magnaporthe oryzae are two of the most important pathogens of cereal grains worldwide. Despite years of research, strong host resistance has not been identified for F. graminearum, so other methods of control are essential. The pathogen takes advantage of multiple entry points to infect the host, including breaches in the florets due to senescence of flower parts and penetration of the weakened trichome bases to breach the epidermis. In contrast, M. oryzae directly punctures leaves that it infects, and resistant cultivars have been characterized. The threat of either pathogen causing a major disease outbreak is ever present. Comparative transcriptomics demonstrated its potential to reveal novel and effective disease prevention strategies that affect the initial stages of disease. Shedding light on the basis of this diversity of infection strategies will result in development of increasingly specific control strategies.
Collapse
|
3
|
Yan P, Yu J, Fang X, Li S, Han S, Lin T, Liu Y, Yang C, He F, Zhu T, Li S. Identification of the interacting proteins of Bambusa pervariabilis × Dendrocalamopsis grandis in response to the transcription factor ApCtf1β in Arthrinium phaeospermum. FRONTIERS IN PLANT SCIENCE 2022; 13:991077. [PMID: 36186076 PMCID: PMC9520005 DOI: 10.3389/fpls.2022.991077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Arthrinium phaeospermum is the main pathogen that causes Bambusa pervariabilis × Dendrocalamopsis grandis blight. It secretes the cutinase transcription factor ApCtf1β, which has been shown to play an important role in B. pervariabilis × D. grandis virulence. However, knowledge about the interaction target genes of ApCtf1β in B. pervariabilis × D. grandis remains limited. A cDNA library for the yeast two-hybrid system was constructed from B. pervariabilis × D. grandis shoots after 168 h treatment with A. phaeospermum. The library was identified as 1.20 × 107 cfu, with an average insert >1,000 bp in size and a 100% positive rate, providing a database for the subsequent molecular study of the interaction between A. phaeospermum and B. pervariabilis × D. grandis. The yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and glutathione-S-transferase (GST) pull-down assays were used to screen for and identify two ApCtf1β interacting target proteins, BDUbc and BDSKL1, providing a reliable theoretical basis to study the molecular mechanism underlying B. pervariabilis × D. grandis resistance in response to A. phaeospermum, which would, in turn, establish a platform to develop new strategies for the sustainable and effective control of the blight diseases of forest trees.
Collapse
Affiliation(s)
- Peng Yan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jiawen Yu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xinmei Fang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fang He
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu, China
| |
Collapse
|
4
|
Arya GC, Cohen H. The Multifaceted Roles of Fungal Cutinases during Infection. J Fungi (Basel) 2022; 8:199. [PMID: 35205953 PMCID: PMC8879710 DOI: 10.3390/jof8020199] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 01/25/2023] Open
Abstract
Cuticles cover the aerial epidermis cells of terrestrial plants and thus represent the first line of defence against invading pathogens, which must overcome this hydrophobic barrier to colonise the inner cells of the host plant. The cuticle is largely built from the cutin polymer, which consists of C16 and C18 fatty acids attached to a glycerol backbone that are further modified with terminal and mid-chain hydroxyl, epoxy, and carboxy groups, all cross-linked by ester bonds. To breach the cuticle barrier, pathogenic fungal species employ cutinases-extracellular secreted enzymes with the capacity to hydrolyse the ester linkages between cutin monomers. Herein, we explore the multifaceted roles that fungal cutinases play during the major four stages of infection: (i) spore landing and adhesion to the host plant cuticle; (ii) spore germination on the host plant cuticle; (iii) spore germ tube elongation and the formation of penetrating structures; and (iv) penetration of the host plant cuticle and inner tissue colonisation. Using previous evidence from the literature and a comprehensive molecular phylogenetic tree of cutinases, we discuss the notion whether the lifestyle of a given fungal species can predict the activity nature of its cutinases.
Collapse
Affiliation(s)
- Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
5
|
Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of Arthrinium phaeospermum in Bambusa pervariabilis × Dendrocalamopsis grandis. J Fungi (Basel) 2021; 7:jof7121001. [PMID: 34946984 PMCID: PMC8705590 DOI: 10.3390/jof7121001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Arthrinium phaeospermum can cause branch wilting of Bambusa pervariabilis × Dendrocalamopsis grandis, causing great economic losses and ecological damage. A. phaeospermum was sequenced in sterile deionized water (CK), rice tissue (T1) and B. pervariabilis × D. grandis (T2) fluid by RNA-Seq, and the function of Ctf1β 1 and Ctf1β 2 was verified by gene knockout. There were 424, 471 and 396 differentially expressed genes between the T2 and CK, T2 and T1, and CK and T1 groups, respectively. Thirty DEGs had verified the change in expression by fluorescent quantitative PCR. Twenty-nine DEGs were the same as the expression level in RNA-Seq. In addition, ΔApCtf1β 1 and ΔApCtf1β 2 showed weaker virulence by gene knockout, and the complementary strains Ctf1β 1 and Ctf1β 2 showed the same virulence as the wild-type strains. Relative growth inhibition of ΔApCtf1β 1 and ΔApCtf1β was significantly decreased by 21.4% and 19.2%, respectively, by adding H2O2 compared to the estimates from the wild-type strain and decreased by 25% and 19.4%, respectively, by adding Congo red. The disease index of B. pervariabilis × D. grandis infected by two mutants was significantly lower than that of wild type. This suggested that Ctf1β genes are required for the stress response and virulence of A. phaeospermum.
Collapse
|
6
|
Achari SR, Edwards J, Mann RC, Kaur JK, Sawbridge T, Summerell BA. Comparative transcriptomic analysis of races 1, 2, 5 and 6 of Fusarium oxysporum f.sp. pisi in a susceptible pea host identifies differential pathogenicity profiles. BMC Genomics 2021; 22:734. [PMID: 34627148 PMCID: PMC8502283 DOI: 10.1186/s12864-021-08033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The fungal pathogen Fusarium oxysporum f.sp. pisi (Fop) causes Fusarium wilt in peas. There are four races globally: 1, 2, 5 and 6 and all of these races are present in Australia. Molecular infection mechanisms have been studied in a few other F. oxysporum formae speciales; however, there has been no transcriptomic Fop-pea pathosystem study. RESULTS A transcriptomic study was carried out to understand the molecular pathogenicity differences between the races. Transcriptome analysis at 20 days post-inoculation revealed differences in the differentially expressed genes (DEGs) in the Fop races potentially involved in fungal pathogenicity variations. Most of the DEGs in all the races were engaged in transportation, metabolism, oxidation-reduction, translation, biosynthetic processes, signal transduction, proteolysis, among others. Race 5 expressed the most virulence-associated genes. Most genes encoding for plant cell wall degrading enzymes, CAZymes and effector-like proteins were expressed in race 2. Race 6 expressed the least number of genes at this time point. CONCLUSION Fop races deploy various factors and complex strategies to mitigate host defences to facilitate colonisation. This investigation provides an overview of the putative pathogenicity genes in different Fop races during the necrotrophic stage of infection. These genes need to be functionally characterised to confirm their pathogenicity/virulence roles and the race-specific genes can be further explored for molecular characterisation.
Collapse
Affiliation(s)
- Saidi R Achari
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.
| | - Jacqueline Edwards
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Ross C Mann
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
| | - Jatinder K Kaur
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
| | - Tim Sawbridge
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Brett A Summerell
- Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, NSW, Australia
| |
Collapse
|
7
|
Transcription Factor CfSte12 of Colletotrichum fructicola Is a Key Regulator of Early Apple Glomerella Leaf Spot Pathogenesis. Appl Environ Microbiol 2020; 87:AEM.02212-20. [PMID: 33067192 DOI: 10.1128/aem.02212-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola, is a rapidly emerging disease leading to defoliation, fruit spot, and storage fruit rot on apple in China. Little is known about the mechanisms of GLS pathogenesis. Early transcriptome analysis revealed that expression of the zinc finger transcription factor Ste12 gene in C. fructicola (CfSte12) was upregulated in appressoria and leaf infection. To investigate functions of CfSte12 during pathogenesis, we constructed gene deletion mutants (ΔCfSte12) by homologous recombination. Phenotypic analysis revealed that CfSte12 was involved in pathogenesis of nonwounded apple fruit and leaf, as well as wounded apple fruit. Subsequent histological studies revealed that loss of pathogenicity by ΔCfSte12 on apple leaf was expressed as defects of conidium germination, appressorium development, and appressorium-mediated penetration. Further RNA sequencing-based transcriptome comparison revealed that CfSte12 modulates the expression of genes related to appressorium function (e.g., genes for the tetraspanin PLS1, Gas1-like proteins, cutinases, and melanin biosynthesis) and candidate effectors likely involved in plant interaction. In sum, our results demonstrated that CfSte12 is a key regulator of early apple GLS pathogenesis in C. fructicola In addition, CfSte12 is also needed for sexual development of perithecia and ascospores.IMPORTANCE Glomerella leaf spot (GLS) is an emerging fungal disease of apple that causes huge economic losses in Asia, North America, and South America. The damage inflicted by GLS manifests in rapid necrosis of leaves, severe defoliation, and necrotic spot on the fruit surface. However, few studies have addressed mechanisms of GLS pathogenesis. In this study, we identified and characterized a key pathogenicity-related transcription factor, CfSte12, of Colletotrichum fructicola that contributes to GLS pathogenesis. We provide evidence that the CfSte12 protein regulates many important pathogenic processes of GLS, including conidium germination, appressorium formation, appressorium-mediated penetration, and colonization. CfSte12 also impacts development of structures needed for sexual reproduction which are vital for the GLS disease cycle. These results reveal a key pathogenicity-related transcription factor, CfSte12, in C. fructicola that causes GLS.
Collapse
|
8
|
Fu H, Chung K, Gai Y, Mao L, Li H. The basal transcription factor II H subunit Tfb5 is required for stress response and pathogenicity in the tangerine pathotype of Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2020; 21:1337-1352. [PMID: 32776683 PMCID: PMC7488464 DOI: 10.1111/mpp.12982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 05/16/2023]
Abstract
The basal transcription factor II H (TFIIH) is a multicomponent complex. In the present study, we characterized a TFIIH subunit Tfb5 by analysing loss- and gain-of-function mutants to gain a better understanding of the molecular mechanisms underlying stress resistance and pathogenicity in the citrus fungal pathogen Alternaria alternata. Tfb5 deficiency mutants (ΔAatfb5) decreased sporulation and pigmentation, and were impaired in the maintenance of colony surface hydrophobicity and cell wall integrity. ΔAatfb5 increased sensitivity to ultraviolet light, DNA-damaging agents, and oxidants. The expression of Aatfb5 was up-regulated in the wild type upon infection in citrus leaves, implicating the requirement of Aatfb5 in fungal pathogenesis. Biochemical and virulence assays revealed that ΔAatfb5 was defective in toxin production and cellwall-degrading enzymes, and failed to induce necrotic lesions on detached citrus leaves. Aatfb5 fused with green fluorescent protein (GFP) was localized in the cytoplasm and nucleus and physically interacted with another subunit, Tfb2, based on yeast two-hybrid and co-immunoprecipitation analyses. Transcriptome and Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) analyses revealed the positive and negative roles of Aatfb5 in the production of various secondary metabolites and in the regulation of many metabolic and biosynthetic processes in A. alternata. Aatfb5 may play a negative role in oxidative phosphorylation and a positive role in peroxisome biosynthesis. Two cutinase-coding genes (AaCut2 and AaCut15) required for full virulence were down-regulated in ΔAatfb5. Overall, this study expands our understanding of how A. alternata uses the basal transcription factor to deal with stress and achieve successful infection in the plant host.
Collapse
Affiliation(s)
- Huilan Fu
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Kuang‐Ren Chung
- Department of Plant PathologyCollege of Agriculture and Natural ResourcesNational Chung‐Hsing UniversityTaichungTaiwan
| | - Yunpeng Gai
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Lijuan Mao
- Analysis Center of Agrobiology and Environmental SciencesFaculty of Agriculture, Life and Environment SciencesZhejiang UniversityHangzhouChina
| | - Hongye Li
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
9
|
Ma H, Zhang B, Gai Y, Sun X, Chung KR, Li H. Cell-Wall-Degrading Enzymes Required for Virulence in the Host Selective Toxin-Producing Necrotroph Alternaria alternata of Citrus. Front Microbiol 2019; 10:2514. [PMID: 31824437 PMCID: PMC6883767 DOI: 10.3389/fmicb.2019.02514] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
The necrotrophic fungal pathogen Alternaria alternata attacks many citrus species, causing brown spot disease. Its pathogenic capability depends primarily on the production of host-selective ACT toxin. In the current study a Ste12 transcription factor was characterized to be required for conidial formation and the production of cell-wall-degrading enzymes (CWDEs) in the tangerine pathotype of A. alternata. The Ste12 deficiency strain (ΔSte12) retained wild-type growth, ACT toxin production, and sensitivity to oxidative and osmotic stress. However, pathogenicity tests assayed on detached Dancy leaves revealed a marked reduction in virulence of ΔSte12. Transcriptome and quantitative RT-PCR analyses revealed that many genes associated with Carbohydrate-Active Enzymes (CAZymes) were downregulated in ΔSte12. Two cutinase-coding genes (AaCut3 and AaCut7) regulated by Ste12 were individually and simultaneously inactivated. The AaCut3 or AaCut7 deficiency strain unchanged in cutinase activities and incited wild-type lesions on Dancy leaves. However, the strain carrying an AaCut3 AaCut7 double mutation produced and secreted significantly fewer cutinases and incited smaller necrotic lesions than wild type. Not only is the host-selective toxin (HST) produced by A. alternata required for fungal penetration and lesion formation, but so too are CWDEs required for full virulence. Overall, this study expands our understanding of how A. alternata overcomes citrus physical barriers to carry out successful penetration and colonization.
Collapse
Affiliation(s)
- Haijie Ma
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Bin Zhang
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Gai
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xuepeng Sun
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Kim W, Cavinder B, Proctor RH, O'Donnell K, Townsend JP, Trail F. Comparative Genomics and Transcriptomics During Sexual Development Gives Insight Into the Life History of the Cosmopolitan Fungus Fusarium neocosmosporiellum. Front Microbiol 2019; 10:1247. [PMID: 31231336 PMCID: PMC6568001 DOI: 10.3389/fmicb.2019.01247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fusarium neocosmosporiellum (formerly Neocosmospora vasinfecta) is a cosmopolitan fungus that has been reported from soil, herbivore dung, and as a fruit- and root-rot pathogen of numerous field crops, although it is not known to cause significant losses on any crop. Taking advantage of the fact that this species produces prolific numbers of perithecia in culture, the genome of F. neocosmosporiellum was sequenced and transcriptomic analysis across five stages of perithecium development was performed to better understand the metabolic potential for sexual development and gain insight into its life history. Perithecium morphology together with the genome and transcriptome were compared with those of the plant pathogen F. graminearum, a model for studying perithecium development. Larger ascospores of F. neocosmosporiellum and their tendency to discharge as a cluster demonstrated a duality of dispersal: the majority are passively dispersed through the formation of cirrhi, while a minority of spores are shot longer distances than those of F. graminearum. The predicted gene number in the F. neocosmosporiellum genome was similar to that in F. graminearum, but F. neocosmosporiellum had more carbohydrate metabolism-related and transmembrane transport genes. Many transporter genes were differentially expressed during perithecium development in F. neocosmosporiellum, which may account for its larger perithecia. Comparative analysis of the secondary metabolite gene clusters identified several polyketide synthase genes that were induced during later stages of perithecium development. Deletion of a polyketide synthase gene in F. neocosmosporiellum resulted in a defective perithecium phenotype, suggesting an important role of the corresponding metabolite, which has yet to be identified, in perithecium development. Results of this study have provided novel insights into the genomic underpinning of development in F. neocosmosporiellum, which may help elucidate its ability to occupy diverse ecological niches.
Collapse
Affiliation(s)
- Wonyong Kim
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Brad Cavinder
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, United States Department of Agriculture, Peoria, IL, United States
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, United States Department of Agriculture, Peoria, IL, United States
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States.,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Affiliation(s)
- Kerry O'Donnell
- Microbial Properties Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, Peoria, Illinois 61604-3999
| |
Collapse
|
12
|
Abstract
Cutinases are α/β hydrolases, and their role in nature is the degradation of cutin. Such enzymes are usually produced by phytopathogenic microorganisms in order to penetrate their hosts. The first focused studies on cutinases started around 50 years ago. Since then, numerous cutinases have been isolated and characterized, aiming at the elucidation of their structure–function relations. Our deeper understanding of cutinases determines the applications by which they could be utilized; from food processing and detergents, to ester synthesis and polymerizations. However, cutinases are mainly efficient in the degradation of polyesters, a natural function. Therefore, these enzymes have been successfully applied for the biodegradation of plastics, as well as for the delicate superficial hydrolysis of polymeric materials prior to their functionalization. Even though research on this family of enzymes essentially began five decades ago, they are still involved in many reports; novel enzymes are being discovered, and new fields of applications arise, leading to numerous related publications per year. Perhaps the future of cutinases lies in their evolved descendants, such as polyesterases, and particularly PETases. The present article reviews the biochemical and structural characteristics of cutinases and cutinase-like hydrolases, and their applications in the field of bioremediation and biocatalysis.
Collapse
|
13
|
Lu L, Rong W, Massart S, Zhang Z. Genome-Wide Identification and Expression Analysis of Cutinase Gene Family in Rhizoctonia cerealis and Functional Study of an Active Cutinase RcCUT1 in the Fungal-Wheat Interaction. Front Microbiol 2018; 9:1813. [PMID: 30131789 PMCID: PMC6091245 DOI: 10.3389/fmicb.2018.01813] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Wheat (Triticum aestivum L.) is a staple food of more than 50% of global population. Rhizoctonia cerealis is the causal agent of sharp eyespot, a devastating disease of cereal crops including wheat. Cutinases produced by fungal pathogens play important roles in host-pathogen compatible interactions, but little is known about cutinases in R. cerealis. In this study, we identified a total of six cutinase encoding genes from R. cerealis genome, designated as RcCUT1-RcCUT6, analyzed their expression patterns during the infection, and determined virulence role for RcCUT1. All the proteins, RcCUT1-RcCUT6, contain a highly conserved GYSKG motif and another conserved C-x(3)-D-x(2)-C-x(2)-[GS]-[GSD]-x(4)-[AP]-H motif in the carbohydrate esterase 5 domain. The RcCUT1, RcCUT2, RcCUT4, and RcCUT5 are predicted to be secreted proteins containing four cysteine residues. These six cutinase genes had different expression patterns during the fungal infection process to wheat, among which RcCUT1 was highly expressed across all the infection time points but RcCUT6 was not expressed at all and the others were expressed only at certain time points. Further, RcCUT1 was heterologously expressed in Escherichia coli to obtain a purified protein. The purified RcCUT1 was shown to possess the cutinase activity and be able to induce necrosis, H2O2 accumulation, and expression of defense-related genes when infiltrated into wheat and Nicotiana benthamiana leaves. In contrast, RcCUT1 protein with serine mutation at the first motif had no cutinase activity, consequently lost the ability to induce necrosis. Noticeably, application of the purified RcCUT1 with R. cerealis led to significantly higher levels of the disease in wheat leaves than application of the fungus alone. These results strongly suggest that RcCUT1 serves as a virulence factor for the fungus. This is the first investigation of the cutinase genes in R. cerealis and the findings provide an important insight into pathogenesis mechanisms of R. cerealis on wheat.
Collapse
Affiliation(s)
- Lin Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Rong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Integrated and Urban Phytopathology, Gembloux Agro-Bio Tech–University of Liège, Gembloux, Belgium
| | - Sebastien Massart
- Laboratory of Integrated and Urban Phytopathology, Gembloux Agro-Bio Tech–University of Liège, Gembloux, Belgium
| | - Zengyan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Gui YJ, Zhang WQ, Zhang DD, Zhou L, Short DPG, Wang J, Ma XF, Li TG, Kong ZQ, Wang BL, Wang D, Li NY, Subbarao KV, Chen JY, Dai XF. A Verticillium dahliae Extracellular Cutinase Modulates Plant Immune Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:260-273. [PMID: 29068240 DOI: 10.1094/mpmi-06-17-0136-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cutinases have been implicated as important enzymes during the process of fungal infection of aerial plant organs. The function of cutinases in the disease cycle of fungal pathogens that invade plants through the roots has been less studied. Here, functional analysis of 13 cutinase (carbohydrate esterase family 5 domain-containing) genes (VdCUTs) in the highly virulent vascular wilt pathogen Verticillium dahliae Vd991 was performed. Significant sequence divergence in cutinase family members was observed in the genome of V. dahliae Vd991. Functional analyses demonstrated that only VdCUT11, as purified protein, induced cell death and triggered defense responses in Nicotiana benthamiana, cotton, and tomato plants. Virus-induced gene silencing showed that VdCUT11 induces plant defense responses in Nicotiana benthamania in a BAK1 and SOBIR-dependent manner. Furthermore, coinfiltration assays revealed that the carbohydrate-binding module family 1 protein (VdCBM1) suppressed VdCUT11-induced cell death and other defense responses in N. benthamiana. Targeted deletion of VdCUT11 in V. dahliae significantly compromised virulence on cotton plants. The cutinase VdCUT11 is an important secreted enzyme and virulence factor that elicits plant defense responses in the absence of VdCBM1.
Collapse
Affiliation(s)
- Yue-Jing Gui
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Wen-Qi Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dan-Dan Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Lei Zhou
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dylan P G Short
- 2 Department of Plant Pathology, University of California, Davis, U.S.A
| | - Jie Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Xue-Feng Ma
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Ting-Gang Li
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Zhi-Qiang Kong
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Bao-Li Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Dan Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Nan-Yang Li
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | | | - Jie-Yin Chen
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| | - Xiao-Feng Dai
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; and
| |
Collapse
|
15
|
Castiblanco V, Castillo HE, Miedaner T. Candidate Genes for Aggressiveness in a Natural Fusarium culmorum Population Greatly Differ between Wheat and Rye Head Blight. J Fungi (Basel) 2018; 4:E14. [PMID: 29371506 PMCID: PMC5872317 DOI: 10.3390/jof4010014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Fusarium culmorum is one of the species causing Fusarium head blight (FHB) in cereals in Europe. We aimed to investigate the association between the nucleotide diversity of ten F. culmorum candidate genes and field ratings of aggressiveness in winter rye. A total of 100 F. culmorum isolates collected from natural infections were phenotyped for FHB at two locations and two years. Variance components for aggressiveness showed significant isolate and isolate-by-environment variance, as expected for quantitative host-pathogen interactions. Further analysis of the isolate-by-environment interaction revealed the dominant role of the isolate-by-year over isolate-by-location interaction. One single-nucleotide polymorphism (SNP) in the cutinase (CUT) gene was found to be significantly (p < 0.001) associated with aggressiveness and explained 16.05% of the genotypic variance of this trait in rye. The SNP was located 60 base pairs before the start codon, which suggests a role in transcriptional regulation. Compared to a previous study in winter wheat with the same nucleotide sequences, a larger variation of pathogen aggressiveness on rye was found and a different candidate gene was associated with pathogen aggressiveness. This is the first report on the association of field aggressiveness and a host-specific candidate gene codifying for a protein that belongs to the secretome in F. culmorum.
Collapse
Affiliation(s)
- Valheria Castiblanco
- State Plant Breeding Institute, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Hilda Elena Castillo
- State Plant Breeding Institute, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
16
|
Coleman JJ. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. MOLECULAR PLANT PATHOLOGY 2016; 17:146-58. [PMID: 26531837 PMCID: PMC6638333 DOI: 10.1111/mpp.12289] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Members of the Fusarium solani species complex (FSSC) are capable of causing disease in many agriculturally important crops. The genomes of some of these fungi include supernumerary chromosomes that are dispensable and encode host-specific virulence factors. In addition to genomics, this review summarizes the known molecular mechanisms utilized by members of the FSSC in establishing disease. TAXONOMY Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Hypocreales; Family Nectriaceae; Genus Fusarium. HOST RANGE Members of the FSSC collectively have a very broad host range, and have been subdivided previously into formae speciales. Recent phylogenetic analysis has revealed that formae speciales correspond to biologically and phylogenetically distinct species. DISEASE SYMPTOMS Typically, FSSC causes foot and/or root rot of the infected host plant, and the degree of necrosis correlates with the severity of the disease. Symptoms on above-ground portions of the plant can vary greatly depending on the specific FSSC pathogen and host plant, and the disease may manifest as wilting, stunting and chlorosis or lesions on the stem and/or leaves. CONTROL Implementation of agricultural management practices, such as crop rotation and timing of planting, can reduce the risk of crop loss caused by FSSC. If available, the use of resistant varieties is another means to control disease in the field. USEFUL WEBSITES http://genome.jgi-psf.org/Necha2/Necha2.home.html.
Collapse
Affiliation(s)
- Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
17
|
Kim KT, Jeon J, Choi J, Cheong K, Song H, Choi G, Kang S, Lee YH. Kingdom-Wide Analysis of Fungal Small Secreted Proteins (SSPs) Reveals their Potential Role in Host Association. FRONTIERS IN PLANT SCIENCE 2016; 7:186. [PMID: 26925088 PMCID: PMC4759460 DOI: 10.3389/fpls.2016.00186] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 02/03/2016] [Indexed: 05/18/2023]
Abstract
Fungal secretome consists of various functional groups of proteins, many of which participate in nutrient acquisition, self-protection, or manipulation of the environment and neighboring organisms. The least characterized component of the secretome is small secreted proteins (SSPs). Some SSPs have been reported to function as effectors, but most remain to be characterized. The composition of major secretome components, such as carbohydrate-active enzymes, proteases, lipases, and oxidoreductases, appear to reflect the lifestyle and ecological niche of individual species. We hypothesize that many SSPs participate in manipulating plants as effectors. Obligate biotrophs likely encode more and diverse effector-like SSPs to suppress host defense compared to necrotrophs, which generally use cell wall degrading enzymes and phytotoxins to kill hosts. Because different secretome prediction workflows have been used in different studies, available secretome data are difficult to integrate for comprehensive comparative studies to test this hypothesis. In this study, SSPs encoded by 136 fungal species were identified from data archived in Fungal Secretome Database (FSD) via a refined secretome workflow. Subsequently, compositions of SSPs and other secretome components were compared in light of taxa and lifestyles. Those species that are intimately associated with host cells, such as biotrophs and symbionts, usually have higher proportion of species-specific SSPs (SSSPs) than hemibiotrophs and necrotrophs, but the latter groups displayed higher proportions of secreted enzymes. Results from our study established a foundation for functional studies on SSPs and will also help understand genomic changes potentially underpinning different fungal lifestyles.
Collapse
Affiliation(s)
- Ki-Tae Kim
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Department of Agricultural Biotechnology, Seoul National UniversitySeoul, South Korea
| | - Jongbum Jeon
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
| | - Jaeyoung Choi
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
| | - Kyeongchae Cheong
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
| | - Hyeunjeong Song
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
| | - Gobong Choi
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Yong-Hwan Lee
- Fungal Bioinformatics Laboratory, Seoul National UniversitySeoul, South Korea
- Department of Agricultural Biotechnology, Seoul National UniversitySeoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National UniversitySeoul, South Korea
- Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- *Correspondence: Yong-Hwan Lee
| |
Collapse
|
18
|
Guo L, Han L, Yang L, Zeng H, Fan D, Zhu Y, Feng Y, Wang G, Peng C, Jiang X, Zhou D, Ni P, Liang C, Liu L, Wang J, Mao C, Fang X, Peng M, Huang J. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS One 2014; 9:e95543. [PMID: 24743270 PMCID: PMC3990668 DOI: 10.1371/journal.pone.0095543] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/28/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. METHODOLOGY/PRINCIPAL FINDINGS Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana 'Brazil' in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety 'Brazil'. CONCLUSIONS/SIGNIFICANCE Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance us develop effective methods for managing the banana vascular wilt disease, including improvement of disease resistance in banana.
Collapse
Affiliation(s)
- Lijia Guo
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Laying Yang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huicai Zeng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | | | | | - Guofen Wang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | | | | | | | - Changcong Liang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lei Liu
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jun Wang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chao Mao
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Junsheng Huang
- Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
19
|
Sanati Nezhad A, Geitmann A. The cellular mechanics of an invasive lifestyle. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4709-28. [PMID: 24014865 DOI: 10.1093/jxb/ert254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Invasive behaviour is the hallmark of a variety of cell types of animal, plant, and fungal origin. Here we review the purpose and mechanism of invasive growth and migration. The focus is on the physical principles governing the process, the source of invasive force, and the cellular mechanism by which the cell penetrates the substrate. The current experimental methods for measuring invasive force and the modelling approaches for studying invasive behaviour are explained, and future experimental strategies are proposed.
Collapse
Affiliation(s)
- Amir Sanati Nezhad
- McGill University and Génome Québec Innovation Centre, Biomedical Engineering Department, McGill University, Montreal, Canada
| | | |
Collapse
|
20
|
Choi J, Kim KT, Jeon J, Lee YH. Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and Oomycetes. BMC Genomics 2013; 14 Suppl 5:S7. [PMID: 24564786 PMCID: PMC3852112 DOI: 10.1186/1471-2164-14-s5-s7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Plant cell wall-degrading enzymes (PCWDEs) play significant roles throughout the fungal life including acquisition of nutrients and decomposition of plant cell walls. In addition, many of PCWDEs are also utilized by biofuel and pulp industries. In order to develop a comparative genomics platform focused in fungal PCWDEs and provide a resource for evolutionary studies, Fungal PCWDE Database (FPDB) is constructed (http://pcwde.riceblast.snu.ac.kr/). Results In order to archive fungal PCWDEs, 22 sequence profiles were constructed and searched on 328 genomes of fungi, Oomycetes, plants and animals. A total of 6,682 putative genes encoding PCWDEs were predicted, showing differential distribution by their life styles, host ranges and taxonomy. Genes known to be involved in fungal pathogenicity, including polygalacturonase (PG) and pectin lyase, were enriched in plant pathogens. Furthermore, crop pathogens had more PCWDEs than those of rot fungi, implying that the PCWDEs analysed in this study are more needed for invading plant hosts than wood-decaying processes. Evolutionary analysis of PGs in 34 selected genomes revealed that gene duplication and loss events were mainly driven by taxonomic divergence and partly contributed by those events in species-level, especially in plant pathogens. Conclusions The FPDB would provide a fungi-specialized genomics platform, a resource for evolutionary studies of PCWDE gene families and extended analysis option by implementing Favorite, which is a data exchange and analysis hub built in Comparative Fungal Genomics Platform (CFGP 2.0; http://cfgp.snu.ac.kr/).
Collapse
|
21
|
Bravo-Ruiz G, Ruiz-Roldán C, Roncero MIG. Lipolytic system of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1054-1067. [PMID: 23718123 DOI: 10.1094/mpmi-03-13-0082-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The lipolytic profile of Fusarium oxysporum f. sp lycopersici was studied by in silico search and biochemical enzyme activity analyses. Twenty-five structural secreted lipases were predicted based on the conserved pentapeptide Gly-X-Ser-X-Gly-, characteristic of fungal lipases, and secretion signal sequences. Moreover, a predicted lipase regulatory gene was identified in addition to the previously characterized ctf1. The transcription profile of thirteen lipase genes during tomato plant colonization revealed that lip1, lip3, and lip22 were highly induced between 21 and 96 h after inoculation. Deletion mutants in five lipase genes (lip1, lip2, lip3, lip5, and lip22) and in the regulatory genes ctf1 and ctf2 as well as a Δctf1Δctf2 double mutant were generated. Quantitative reverse transcription-polymerase chain reaction expression analyses of structural lipase genes in the Δctf1, Δctf2, and Δctf1Δctf2 mutants indicated the existence of a complex lipase regulation network in F. oxysporum. The reduction of total lipase activity, as well as the severely reduced virulence of the Δctf1, Δctf2, and Δctf1Δctf2 mutants, provides evidence for an important role of the lipolytic system of this fungus in pathogenicity.
Collapse
|
22
|
Brunner PC, Torriani SFF, Croll D, Stukenbrock EH, McDonald BA. Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen. Mol Biol Evol 2013; 30:1337-47. [PMID: 23515261 PMCID: PMC3649673 DOI: 10.1093/molbev/mst041] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zymoseptoria tritici is an important fungal pathogen on wheat that originated in the Fertile Crescent. Its closely related sister species Z. pseudotritici and Z. ardabiliae infect wild grasses in the same region. This recently emerged host–pathogen system provides a rare opportunity to investigate the evolutionary processes shaping the genome of an emerging pathogen. Here, we investigate genetic signatures in plant cell wall degrading enzymes (PCWDEs) that are likely affected by or driving coevolution in plant-pathogen systems. We hypothesize four main evolutionary scenarios and combine comparative genomics, transcriptomics, and selection analyses to assign the majority of PCWDEs in Z. tritici to one of these scenarios. We found widespread differential transcription among different members of the same gene family, challenging the idea of functional redundancy and suggesting instead that specialized enzymatic activity occurs during different stages of the pathogen life cycle. We also find that natural selection has significantly affected at least 19 of the 48 identified PCWDEs. The majority of genes showed signatures of purifying selection, typical for the scenario of conserved substrate optimization. However, six genes showed diversifying selection that could be attributed to either host adaptation or host evasion. This study provides a powerful framework to better understand the roles played by different members of multigene families and to determine which genes are the most appropriate targets for wet laboratory experimentation, for example, to elucidate enzymatic function during relevant phases of a pathogen’s life cycle.
Collapse
Affiliation(s)
- Patrick C Brunner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
23
|
Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse CN, Kosti I, LaButti K, Lindquist EA, Lucas S, Salamov AA, Bradshaw RE, Ciuffetti L, Hamelin RC, Kema GHJ, Lawrence C, Scott JA, Spatafora JW, Turgeon BG, de Wit PJGM, Zhong S, Goodwin SB, Grigoriev IV. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog 2012; 8:e1003037. [PMID: 23236275 PMCID: PMC3516569 DOI: 10.1371/journal.ppat.1003037] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/30/2012] [Indexed: 12/21/2022] Open
Abstract
The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress. Dothideomycetes is the largest and most ecologically diverse class of fungi that includes many plant pathogens with high economic impact. Currently 18 genome sequences of Dothideomycetes are available, 14 of which are newly described in this paper and in several companion papers, allowing unprecedented resolution in comparative analyses. These 18 organisms have diverse lifestyles and strategies of plant pathogenesis. Three feed on dead organic matter only, six are necrotrophs (killing the host plant cells), one is a biotroph (forming an association with and thus feeding on the living cells of the host plant cells) and 8 are hemibiotrophs (having an initial biotrophic stage, and killing the host plant at a later stage). These various lifestyles are also reflected in the gene sets present in each group. For example, sets of genes involved in carbohydrate degradation and secondary metabolism are expanded in necrotrophs. Many genes involved in pathogenesis are located near repetitive sequences, which are believed to speed up their evolution. Blocks of genes with conserved gene order were identified. In addition to this we deduce that the mechanism for mesosynteny, a type of genome evolution particular to Dothideomycetes, is by intra-chromosomal inversions.
Collapse
Affiliation(s)
- Robin A. Ohm
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
- * E-mail: (RAO); (IVG)
| | - Nicolas Feau
- Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, Marseille, France
| | | | | | - Kerrie W. Barry
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Bradford J. Condon
- Department of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Alex C. Copeland
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Braham Dhillon
- Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian Glaser
- Bioinformatics Knowledge Unit, Technion - IIT, Haifa, Israel
| | - Cedar N. Hesse
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Idit Kosti
- Department of Biology, Technion - IIT, Haifa, Israel
| | - Kurt LaButti
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Erika A. Lindquist
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Susan Lucas
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Asaf A. Salamov
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Rosie E. Bradshaw
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Lynda Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Richard C. Hamelin
- Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Natural Resources Canada, Ste-Foy, Quebec, Canada
| | | | - Christopher Lawrence
- Virginia Bioinformatics Institute & Department of Biological Sciences, Blacksburg, Virginia, United States of America
| | - James A. Scott
- Division of Occupational & Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - B. Gillian Turgeon
- Department of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | | | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Stephen B. Goodwin
- United States Department of Agriculture, Agricultural Research Service, Purdue University, West Lafayette, Indiana, United States of America
| | - Igor V. Grigoriev
- United States Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, United States of America
- * E-mail: (RAO); (IVG)
| |
Collapse
|
24
|
A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 2011; 7:e1002148. [PMID: 21829351 PMCID: PMC3145797 DOI: 10.1371/journal.ppat.1002148] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/18/2011] [Indexed: 11/19/2022] Open
Abstract
Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including H(2)O(2) and O(2) (-), are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI) or catalase. H(2)O(2) was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending innate defenses.
Collapse
|
25
|
Feng J, Wang F, Hughes GR, Kaminskyj S, Wei Y. An important role for secreted esterase in disease establishment of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici. Can J Microbiol 2011; 57:211-6. [PMID: 21358762 DOI: 10.1139/w10-120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of esterase secreted by conidia of wheat powdery mildew fungus, Blumeria graminis f. sp. tritici, was assayed using indoxyl acetate hydrolysis, which generates indigo blue crystals. Mature, ungerminated, and germinating conidia secrete esterase(s) on artificial media and on plant leaf surfaces. The activity of these esterases was inhibited by diisopropyl fluorophosphate, which is selective for serine esterases. When conidia were inoculated on wheat leaves pretreated with diisopropyl fluorophosphate, both appressorial germ tube differentiation and symptom development were significantly impaired, indicating an important role of secreted serine esterases in wheat powdery mildew disease establishment.
Collapse
Affiliation(s)
- Jie Feng
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
26
|
Ospina-Giraldo MD, McWalters J, Seyer L. Structural and functional profile of the carbohydrate esterase gene complement in Phytophthora infestans. Curr Genet 2010; 56:495-506. [PMID: 20725833 DOI: 10.1007/s00294-010-0317-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/05/2010] [Accepted: 08/07/2010] [Indexed: 01/09/2023]
Abstract
The plant cell cuticle is the first obstacle for penetration of the host by plant pathogens. To breach this barrier, most pathogenic fungi employ a complex assortment of cell wall-degrading enzymes including carbohydrate esterases, glycoside hydrolases, and polysaccharide lyases. We characterized the full complement of carbohydrate esterase-coding genes in three Phytophthora species and analyzed the expression of cutinase in vitro and in planta; we also determined the cutinase allele distribution in multiple isolates of P. infestans. Our investigations revealed that there are 49, 21, and 37 esterase homologs in the P. infestans, P. ramorum, and P. sojae genomes, respectively, with a considerable number predicted to be extracellular. Four cutinase gene copies were found in both the P. infestans and P. ramorum genomes, while 16 copies were found in P. sojae. Transcriptional analyses of cutinase in P. infestans revealed that its expression level during infection is significantly upregulated at all time points compared to that of the same gene in mycelium grown in vitro. Expression achieves maximum values at 15 hpi, declining at subsequent time points. These results may suggest, therefore, that cutinase most likely plays a role in P. infestans pathogenicity.
Collapse
|
27
|
Lee MH, Chiu CM, Roubtsova T, Chou CM, Bostock RM. Overexpression of a redox-regulated cutinase gene, MfCUT1, increases virulence of the brown rot pathogen Monilinia fructicola on Prunus spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:176-86. [PMID: 20064061 DOI: 10.1094/mpmi-23-2-0176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A 4.5-kb genomic DNA containing a Monilinia fructicola cutinase gene, MfCUT1, and its flanking regions were isolated and characterized. Sequence analysis revealed that the genomic MfCUT1 carries a 63-bp intron and a promoter region with several transcription factor binding sites that may confer redox regulation of MfCUT1 expression. Redox regulation is indicated by the effect of antioxidants, shown previously to inhibit MfCUT1 gene expression in cutin-induced cultures, and in the present study, where H(2)O(2) enhanced MfCUT1 gene expression. A beta-glucuronidase (GUS) reporter gene (gusA) was fused to MfCUT1 under the control of the MfCUT1 promoter, and this construct was then used to generate an MfCUT1-GUS strain by Agrobacterium spp.-mediated transformation. The appearance of GUS activity in response to cutin and suppression of GUS activity by glucose in cutinase-inducing medium verified that the MfCUT1-GUS fusion protein was expressed correctly under the control of the MfCUT1 promoter. MfCUT1-GUS expression was detected following inoculation of peach and apple fruit, peach flower petals, and onion epidermis, and during brown rot symptom development on nectarine fruit at a relatively late stage of infection (24 h postinoculation). However, semiquantitative reverse-transcriptase polymerase chain reaction provided sensitive detection of MfCUT1 expression within 5 h of inoculation in both almond and peach petals. MfCUT1-GUS transformants expressed MfCUT1 transcripts at twice the level as the wild type and caused more severe symptoms on Prunus flower petals, consistent with MfCUT1 contributing to the virulence of M. fructicola.
Collapse
Affiliation(s)
- Miin-Huey Lee
- Department of Plant Pathology, University of California, One Shields Ave., Davis 95616, USA
| | | | | | | | | |
Collapse
|
28
|
Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, Nishimura M, Hara-Nishimura I. Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:123-31. [PMID: 19996150 DOI: 10.1093/pcp/pcp173] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cutinase is an esterase that degrades the polyester cutin, a major component of the plant cuticle. Although cutinase activity has been detected in pollen, the genes encoding this enzyme have not been identified. Here, we report the identification and characterization of Arabidopsis CDEF1 (cuticle destructing factor 1), a novel candidate gene encoding cutinase. CDEF1 encodes a member of the GDSL lipase/esterase family of proteins, although fungal and bacterial cutinases belong to the alpha/beta hydrolase superfamily which is different from the GDSL lipase/esterase family. According to the AtGenExpress microarray data, CDEF1 is predominantly expressed in pollen. The ectopic expression of CDEF1 driven by the 35S promoter caused fusion of organs, including leaves, stems and flowers, and increased surface permeability. Ultrastructural analysis revealed that the cuticle of the transgenic plants was often disrupted and became discontinuous. Subcellular analysis with green fluorescent protein (GFP)-tagged CDEF1 showed that the protein is secreted to the extracellular space in leaves. The recombinant CDEF1 protein has esterase activity. These results are consistent with cutinase being secreted from cells and directly degrading the polyester in the cuticle. CDEF1 promoter activity was detected in mature pollen and pollen tubes, suggesting that CDEF1 is involved in the penetration of the stigma by pollen tubes. Additionally, we found CDEF1 expression at the zone of lateral root emergence, which suggests that CDEF1 degrades cell wall components to facilitate the emergence of the lateral roots. Our findings suggest that CDEF1 is a candidate gene for the unidentified plant cutinase.
Collapse
Affiliation(s)
- Kentaro Takahashi
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Schneider DJ, Collmer A. Studying plant-pathogen interactions in the genomics era: beyond molecular Koch's postulates to systems biology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:457-479. [PMID: 20687834 DOI: 10.1146/annurev-phyto-073009-114411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Molecular factors enabling microbial pathogens to cause plant diseases have been sought with increasing efficacy over three research eras that successively introduced the tools of disease physiology, single-gene molecular genetics, and genomics. From this work emerged a unified model of the interactions of biotrophic and hemibiotrophic pathogens, which posits that successful pathogens typically defeat two levels of plant defense by translocating cytoplasmic effectors that suppress the first defense (surface arrayed against microbial signatures) while evading the second defense (internally arrayed against effectors). As is predicted from this model and confirmed by sequence pattern-driven discovery of large repertoires of cytoplasmic effectors in the genomes of many pathogens, the coevolution of (hemi)biotrophic pathogens and their hosts has generated pathosystems featuring extreme complexity and apparent robustness. These findings highlight the need for a fourth research era of systems biology in which virulence factors are studied as pathosystem components, and pathosystems are studied for their emergent properties.
Collapse
Affiliation(s)
- David J Schneider
- U.S. Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA.
| | | |
Collapse
|
30
|
Wang X, Tang C, Zhang G, Li Y, Wang C, Liu B, Qu Z, Zhao J, Han Q, Huang L, Chen X, Kang Z. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genomics 2009; 10:289. [PMID: 19566949 PMCID: PMC2717123 DOI: 10.1186/1471-2164-10-289] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 06/30/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. RESULTS Of the total 54,912 transcript derived fragments (TDFs) obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2%) displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40%) had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%), signal transduction (5.4%), disease/defence (5.9%) and metabolism (5% of the sequenced TDFs). BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5%) genes revealed by the cDNA-AFLP technique. CONCLUSION The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the stripe rust pathogen were identified and their expression patterns were determined. The present study should be helpful in elucidating the molecular basis of the infection process, and identifying genes that can be targeted for inhibiting the growth and reproduction of the pathogen. Moreover, this study can also be used to elucidate the defence responses of the genes that were of plant origin.
Collapse
Affiliation(s)
- Xiaojie Wang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chunlei Tang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Gang Zhang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yingchun Li
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chenfang Wang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Bo Liu
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhipeng Qu
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jie Zhao
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qingmei Han
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lili Huang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xianming Chen
- USDA-ARS and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Zhensheng Kang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
31
|
Cloning and characterization of the Thcut1 gene encoding a cutinase of Trichoderma harzianum T34. Curr Genet 2008; 54:301-12. [DOI: 10.1007/s00294-008-0218-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/03/2008] [Accepted: 10/13/2008] [Indexed: 11/26/2022]
|
32
|
Rocha ALM, Di Pietro A, Ruiz-Roldán C, Roncero MIG. Ctf1, a transcriptional activator of cutinase and lipase genes in Fusarium oxysporum is dispensable for virulence. MOLECULAR PLANT PATHOLOGY 2008; 9:293-304. [PMID: 18705871 PMCID: PMC6640520 DOI: 10.1111/j.1364-3703.2007.00463.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cutinolytic enzymes are secreted by fungal pathogens attacking the aerial parts of the plant, to facilitate penetration of the outermost cuticular barrier of the host. The role of cutinases in soil-borne root pathogens has not been studied thus far. Here we report the characterization of the zinc finger transcription factor Ctf1 from the vascular wilt fungus Fusarium oxysporum, a functional orthologue of CTF1alpha that controls expression of cutinase genes and virulence in the pea stem pathogen Fusarium solani f. sp. pisi. Mutants carrying a Deltactf1 loss-of-function allele grown on inducing substrates failed to activate extracellular cutinolytic activity and expression of the cut1 and lip1 genes, encoding a putative cutinase and lipase, respectively, whereas strains harbouring a ctf1(C) allele in which the ctf1 coding region was fused to the strong constitutive Aspergillus nidulans gpdA promoter showed increased induction of cutinase activity and gene expression. These results suggest that F. oxysporum Ctf1 mediates expression of genes involved in fatty acid hydrolysis. However, expression of lip1 during root infection was not dependent on Ctf1, and virulence of the ctf1 mutants on tomato plants and fruits was indistinguishable from that of the wild-type. Thus, in contrast to the stem pathogen F. solani, Ctf1 is not essential for virulence in the root pathogen F. oxysporum.
Collapse
Affiliation(s)
- Ana Lilia Martínez Rocha
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, Edif C5, E-14071 Córdoba, Spain
| | | | | | | |
Collapse
|
33
|
Skamnioti P, Gurr SJ. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. THE PLANT CELL 2007; 19:2674-89. [PMID: 17704215 PMCID: PMC2002628 DOI: 10.1105/tpc.107.051219] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rice blast fungus Magnaporthe grisea infects its host by forming a specialized infection structure, the appressorium, on the plant leaf. The enormous turgor pressure generated within the appressorium drives the emerging penetration peg forcefully through the plant cuticle. Hitherto, the involvement of cutinase(s) in this process has remained unproven. We identified a specific M. grisea cutinase, CUT2, whose expression is dramatically upregulated during appressorium maturation and penetration. The cut2 mutant has reduced extracellular cutin-degrading and Ser esterase activity, when grown on cutin as the sole carbon source, compared with the wild-type strain. The cut2 mutant strain is severely less pathogenic than the wild type or complemented cut2/CUT2 strain on rice (Oryza sativa) and barley (Hordeum vulgare). It displays reduced conidiation and anomalous germling morphology, forming multiple elongated germ tubes and aberrant appressoria on inductive surfaces. We show that Cut2 mediates the formation of the penetration peg but does not play a role in spore or appressorium adhesion, or in appressorial turgor generation. Morphological and pathogenicity defects in the cut2 mutant are fully restored with exogenous application of synthetic cutin monomers, cAMP, 3-isobutyl-1-methylxanthine, and diacylglycerol (DAG). We propose that Cut2 is an upstream activator of cAMP/protein kinase A and DAG/protein kinase C signaling pathways that direct appressorium formation and infectious growth in M. grisea. Cut2 is therefore required for surface sensing leading to correct germling differentiation, penetration, and full virulence in this model fungus.
Collapse
Affiliation(s)
- Pari Skamnioti
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | |
Collapse
|
34
|
Chassot C, Nawrath C, Métraux JP. Cuticular defects lead to full immunity to a major plant pathogen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:972-80. [PMID: 17257167 DOI: 10.1111/j.1365-313x.2006.03017.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In addition to its role as a barrier, the cuticle is also a source of signals perceived by invading fungi. Cuticular breakdown products have been shown previously to be potent inducers of cutinase or developmental processes in fungal pathogens. Here the question was addressed as to whether plants themselves can perceive modifications of the cuticle. This was studied using Arabidopsis thaliana plants with altered cuticular structure. The expression of a cell wall-targeted fungal cutinase in A. thaliana was found to provide total immunity to Botrytis cinerea. The response observed in such cutinase-expressing plants is independent of signal transduction pathways involving salicylic acid, ethylene or jasmonic acid. It is accompanied by the release of a fungitoxic activity and increased expression of members of the lipid transfer protein, peroxidase and protein inhibitor gene families that provide resistance when overexpressed in wild-type plants. The same experiments were made in the bodyguard (bdg) mutant of A. thaliana. This mutant exhibits cuticular defects and remained free of symptoms after inoculation with B. cinerea. The expression of resistance was accompanied by the release of a fungitoxic activity and increased expression of the same genes as observed in cutinase-expressing plants. Structural defects of the cuticle can thus be converted into an effective multi-factorial defence, and reveal a hitherto hidden aspect of the innate immune response of plants.
Collapse
Affiliation(s)
- Céline Chassot
- Département de Biologie, Université de Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | | | | |
Collapse
|
35
|
Brodhagen M, Keller NP. Signalling pathways connecting mycotoxin production and sporulation. MOLECULAR PLANT PATHOLOGY 2006; 7:285-301. [PMID: 20507448 DOI: 10.1111/j.1364-3703.2006.00338.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
SUMMARY Mycotoxin contamination of food and feed presents a serious food safety issue on a global scale, causing tremendous yield and economic losses. These toxins, produced largely by members of the genera Aspergillus and Fusarium, represent a subset of the impressive array of secondary metabolites produced by filamentous fungi. Some secondary metabolites are associated temporally and functionally with sporulation. In Aspergillus and Fusarium, sporulation and mycotoxin production are both regulated by G protein signalling pathways. G protein signalling pathways commonly regulate fungal development, stress response and expression of virulence traits. In addition, fungal development is influenced by external factors. Among these are lipids, and in particular, oxylipin signals, which may be derived from either the fungus or infected seeds. Regardless of origin, oxylipins have the potential to elicit profound changes in both sporulation and mycotoxin production in the fungus. Signal transduction via G protein signalling pathways represents one mechanism by which oxylipin signals might elicit these changes. Therefore, in this review we integrate discussion of oxylipin signals and of G protein signalling cascades as regulators of fungal development.
Collapse
Affiliation(s)
- Marion Brodhagen
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI 53706-1598, USA
| | | |
Collapse
|
36
|
Degani O, Salman H, Gepstein S, Dosoretz CG. Synthesis and characterization of a new cutinase substrate, 4-nitrophenyl (16-methyl sulfone ester) hexadecanoate. J Biotechnol 2006; 121:346-50. [PMID: 16183160 DOI: 10.1016/j.jbiotec.2005.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 07/25/2005] [Accepted: 08/04/2005] [Indexed: 11/20/2022]
Abstract
Phytopathogenic fungi penetrate plants by breaking down the cuticular barrier with cutinase. Cutinases are extracellular hydrolytic enzymes that degrade cutin, a polyester composed of hydroxy and epoxy fatty acids. Until now, cutinase has been recognized by its ability to release labeled cutin monomers or by a non-specific esterase assay based on the hydrolysis of p-nitrophenyl esters of short fatty acids. In this work, an insoluble p-nitrophenyl derivative was synthesized and purified, and its structure was determined to be 4-nitrophenyl (16-methyl sulfone ester) hexadecanoate (pNMSEH) by nuclear magnetic resonance (H+ NMR) analysis. pNMSEH was tested as a new cutinase substrate with Pseudomonas mandocino cutinase and porcine liver esterase. While a linear release over time of p-nitrophenol (pNP) was recorded in the presence of cutinase, no response was obtained with the esterase. The calculated kinetic parameters of pNMSEH hydrolysis by cutinase revealed a high specificity (Km=1.8mM), albeit a low catalytic rate (Vmax=10.5 micromol min(-l)l(-1)). This new synthetic substrate may be helpful for detecting and assaying cutinase activity in mixed solutions, such as crude fungal extracellular extracts.
Collapse
Affiliation(s)
- Ofir Degani
- Department of Plant Physiology, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
37
|
Voigt CA, Schäfer W, Salomon S. A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:364-75. [PMID: 15842622 DOI: 10.1111/j.1365-313x.2005.02377.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fusarium graminearum is the causal agent of the Fusarium head blight (FHB) and a destructive pathogen of cereals accounting for high grain yield losses especially on wheat and maize. Like other fungal pathogens, F. graminearum secretes various extracellular enzymes, which are hypothesized to be involved in host infection. Extracellular lipolytic activity of F. graminearum was strongly induced in culture by wheat germ oil; this allowed us to isolate, clone, and characterize a gene (FGL1) encoding a secreted lipase. Expression analysis indicated that FGL1 is induced by lipid-containing substrates and repressed by glucose. In planta, FGL1 transcription was detected 1 day post-infection of wheat spikes. The function of the FGL1 gene product was verified by specifically demonstrating lipase activity after expression in a heterologous host. Ebelactone B, a known lipase inhibitor, repressed the lipolytic activity of the enzyme. Disease severity was strongly reduced when wild-type conidia were supplemented with ebelactone B. Transformation-mediated disruption of FGL1 led to reduced extracellular lipolytic activity in culture and to reduced virulence to both wheat and maize.
Collapse
Affiliation(s)
- Christian A Voigt
- Department of Molecular Phytopathology and Genetics, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | | | | |
Collapse
|
38
|
Yang Z, Rogers LM, Song Y, Guo W, Kolattukudy PE. Homoserine and asparagine are host signals that trigger in planta expression of a pathogenesis gene in Nectria haematococca. Proc Natl Acad Sci U S A 2005; 102:4197-202. [PMID: 15753300 PMCID: PMC554811 DOI: 10.1073/pnas.0500312102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Indexed: 11/18/2022] Open
Abstract
Some pathogenesis-related genes are expressed in fungi only when the pathogen is in the host, but the host signals that trigger these gene expressions have not been identified. Virulent Nectria haematococca infects pea plants and requires either pelA, which is induced by pectin, or pelD, which is induced only in planta. However, the host signal(s) that trigger pelD expression was unknown. Here we report the isolation of the host signals and identify homoserine and asparagine, two free amino acids found in uniquely high levels in pea seedlings, as the pelD-inducing signals. N. haematococca has evolved a mechanism to sense the host tissue environment by using the high levels of two free amino acids in this plant, thereby triggering the expression of pelD to assist the pathogenic process.
Collapse
Affiliation(s)
- Zhennai Yang
- Biomolecular Science Center and Department of Molecular Biology and Microbiology, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | | | |
Collapse
|
39
|
Bakkeren G, Gold S. The path in fungal plant pathogenicity: many opportunities to outwit the intruders? GENETIC ENGINEERING 2004; 26:175-223. [PMID: 15387298 DOI: 10.1007/978-0-306-48573-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The number of genes implicated in the infection and disease processes of phytopathogenic fungi is increasing rapidly. Forward genetic approaches have identified mutated genes that affect pathogenicity, host range, virulence and general fitness. Likewise, candidate gene approaches have been used to identify genes of interest based on homology and recently through 'comparative genomic approaches' through analysis of large EST databases and whole genome sequences. It is becoming clear that many genes of the fungal genome will be involved in the pathogen-host interaction in its broadest sense, affecting pathogenicity and the disease process in planta. By utilizing the information obtained through these studies, plants may be bred or engineered for effective disease resistance. That is, by trying to disable pathogens by hitting them where it counts.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture & Agri-Food Canada,Pacific Agri-Food Research Centre, Summerland, BC, Canada V0H 1Z0
| | | |
Collapse
|
40
|
Li D, Ashby AM, Johnstone K. Molecular evidence that the extracellular cutinase Pbc1 is required for pathogenicity of Pyrenopeziza brassicae on oilseed rape. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:545-552. [PMID: 12795380 DOI: 10.1094/mpmi.2003.16.6.545] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent evidence has suggested that cutinase is required for cuticular penetration and, therefore, is essential for pathogenicity of Pyrenopeziza brassicae, the causal organism of light leaf spot disease of oilseed rape and other brassicas. In order to acquire molecular evidence for the role of cutinase in pathogenesis, the single-copy P. brassicae cutinase gene Pbc1 was disrupted by a transformation-mediated approach. Southern hybridization analysis revealed that in one mutant, NH10-1224, the disruption was due to a tandem insertion of two copies of the disruption vector into the 5' coding region of Pbc1. In contrast to the wild type, no expression of Pbc1 was detected during in planta growth or in cutin-induced mycelium of NH10-1224 and no cutinase activity was detected in culture supernatants from NH10-1224 using p-nitrophenyl butyrate as substrate. Scanning electron microscopy of Brassica napus cotyledons infected with wild-type P. brassicae confirmed that entry into the host is by direct penetration of the cuticle. In contrast, the cutinase-deficient mutant NH10-1224 failed to penetrate the cuticular layer and was unable to develop disease symptoms. This evidence is consistent with the hypothesis that Pbc1 is required for P. brassicae to penetrate the plant cuticle. Demonstration that complementation of NH10-1224 with the Pbc1 wild-type gene restores both cutinase activity and pathogenicity will be required to definitively establish that cutinase is required for successful pathogenesis of brassicas by P. brassicae.
Collapse
Affiliation(s)
- Donghui Li
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
41
|
Ayliffe MA, Roberts JK, Mitchell HJ, Zhang R, Lawrence GJ, Ellis JG, Pryor TJ. A plant gene up-regulated at rust infection sites. PLANT PHYSIOLOGY 2002; 129:169-80. [PMID: 12011348 PMCID: PMC155881 DOI: 10.1104/pp.010940] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2001] [Revised: 12/02/2001] [Accepted: 02/05/2002] [Indexed: 05/19/2023]
Abstract
Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a beta-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%-82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a delta1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection.
Collapse
Affiliation(s)
- Michael A Ayliffe
- Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, Box 1600, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Christiane Nawrath
- Department of Biology, Unit of Plant Biology, University of Fribourg, Pérolles, Switzerland; phone:0041-(0)26-300 88 38; fax: 0041-(0)26-300 97 40;
| |
Collapse
|
43
|
Wang GY, Michailides TJ, Hammock BD, Lee YM, Bostock RM. Molecular cloning, characterization, and expression of a redox-responsive cutinase from Monilinia fructicola (Wint.) Honey. Fungal Genet Biol 2002; 35:261-76. [PMID: 11929215 DOI: 10.1006/fgbi.2001.1320] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cDNA clones encoding a cutinase expressed in cutin-induced cultures of the plant pathogen Monilinia fructicola were isolated using a protein-based strategy. The largest cDNA (Mfcut1) was found to contain an open reading frame of 603 bp that predicted a 20.2-kDa protein of 201 amino acids with a 20-amino-acid secretory signal peptide and a pI of 8.4. The predicted protein contained cutinase/lipase consensus sequences with active site serines and potential protein kinase phosphorylation sites. Comparison of the deduced amino sequence from Mfcut1 with other fungal cutinase sequences revealed new features, which include conserved cysteines, C-terminal aromatic residues, and a novel histidine substitution in the D-H active site motif. The presence in the growth medium of antioxidants, such as caffeic acid, suppressed mRNA accumulation and enzyme activity of a cutinase from M. fructicola. MFCUT1 was expressed at high levels as a His-tagged fusion protein in Pichia pastoris and purified to apparent homogeneity in a single step by Ni(2+)-nitrilotriacetic acid affinity chromatography. Analysis of variant MFCUT1 mutants in which the novel serine and histidine residues were replaced by site-directed mutagenesis indicated that these residues had an important effect on enzyme activity.
Collapse
Affiliation(s)
- Guang Yi Wang
- Department of Plant Pathology, Department of Entomology and Cancer Research Center, Molecular Structure Facility, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Polyesters occur in higher plants as the structural component of the cuticle that covers the aerial parts of plants. This insoluble polymer, called cutin, attached to the epidermal cell walls is composed of interesterified hydroxy and hydroxy epoxy fatty acids. The most common chief monomers are 10,16-dihydroxy C16 acid, 18-hydroxy-9,10 epoxy C18 acid, and 9,10,18-trihydroxy C18 acid. These monomers are produced in the epidermal cells by omega hydroxylation, in-chain hydroxylation, epoxidation catalyzed by P450-type mixed function oxidase, and epoxide hydration. The monomer acyl groups are transferred to hydroxyl groups in the growing polymer at the extracellular location. The other type of polyester found in the plants is suberin, a polymeric material deposited in the cell walls of a layer or two of cells when a plant needs to erect a barrier as a result of physical or biological stress from the environment, or during development. Suberin is composed of aromatic domains derived from cinnamic acid, and aliphatic polyester domains derived from C16 and C18 cellular fatty acids and their elongation products. The polyesters can be hydrolyzed by pancreatic lipase and cutinase, a polyesterase produced by bacteria and fungi. Catalysis by cutinase involves the active serine catalytic triad. The major function of the polyester in plants is as a protective barrier against physical, chemical, and biological factors in the environment, including pathogens. Transcriptional regulation of cutinase gene in fungal pathogens is being elucidated at a molecular level. The polyesters present in agricultural waste may be used to produce high value polymers, and genetic engineering might be used to produce large quantities of such polymers in plants.
Collapse
Affiliation(s)
- P E Kolattukudy
- Ohio State University, 206 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA.
| |
Collapse
|
45
|
Hawthorne BT, Rees-George J, Crowhurst RN. Induction of cutinolytic esterase activity during saprophytic growth of cucurbit pathogens, Fusarium solani f. sp. cucurbitae races one and two (Nectria haematococca MPI and MPV, respectively). FEMS Microbiol Lett 2001; 194:135-41. [PMID: 11164297 DOI: 10.1111/j.1574-6968.2001.tb09458.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cutins from fruit of Cucurbita maxima and Cucurbita moschata cultivars, apple and a C(16) alcohol (hexadecanol) were used to induce cutinolytic esterase activity during saprophytic growth of strains of the two cucurbit pathogens, Fusarium solani f. sp. cucurbitae, race 1 (Nectria haematococca mating population (MPI) and F. solani f. sp. cucurbitae, race 2 (MPV). Four strains of MPV and 11 strains of MPI were were included in the study. Although we were primarily interested in the two cucurbit pathogens (MPI and MPV), six strains of the pea pathogen F. solani f. sp. pisi (MPVI) were included to provide a comparison since most of the knowledge on cutinase activity in N. haematococca has come from a study of that group. Cutinolytic esterase was induced in all strains from both MPV and MPVI but was not detected in any of the 11 strains from MPI regardless of the induction conditions. The amount of cutinolytic esterase activity induced in the MPV strains differed according to the strain and both the source and the amount of cutin used in the induction medium. Information on the influence of cutin source and pH on the induction of cutinolytic esterase activity during saprophytic growth of strains from MPV demonstrates that the gene is regulated differently from that in MPVI.
Collapse
Affiliation(s)
- B T Hawthorne
- Molecular Genetics Group, Horticulture and Food Research Institute of New Zealand Ltd., Private Bag 92169, Auckland, New Zealand.
| | | | | |
Collapse
|
46
|
Rogers LM, Kim YK, Guo W, González-Candelas L, Li D, Kolattukudy PE. Requirement for either a host- or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Proc Natl Acad Sci U S A 2000; 97:9813-8. [PMID: 10931947 PMCID: PMC16947 DOI: 10.1073/pnas.160271497] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2000] [Accepted: 06/13/2000] [Indexed: 11/18/2022] Open
Abstract
Fungal pathogens usually have multiple genes that encode extracellular hydrolytic enzymes that may degrade the physical barriers in their hosts during the invasion process. Nectria hematococca, a plant pathogen, has two inducible pectate lyase (PL) genes (pel) encoding PL that can help degrade the carbohydrate barrier in the host. pelA is induced by pectin, whereas pelD is induced only in planta. We show that the disruption of either the pelA or pelD genes alone causes no detectable decrease in virulence. Disruption of both pelA and pelD drastically reduces virulence. Complementation of the double disruptant with pelD gene, or supplementation of the infection droplets of the double disruptant with either purified enzyme, PLA, or PLD, caused a recovery in virulence. These results show that PL is a virulence factor. Thus, we demonstrate that disruption of all functionally redundant genes is required to demonstrate the role of host barrier-degrading enzymes in pathogenesis and that dismissal of the role of such enzymes based on the effects of single-gene disruption may be premature.
Collapse
Affiliation(s)
- L M Rogers
- Ohio State University, Columbus 43210, USA
| | | | | | | | | | | |
Collapse
|
47
|
Davies K, De Lorono I, Foster S, Li D, Johnstone K, Ashby A. Evidence for a role of cutinase in pathogenicity of Pyrenopeziza brassicae on brassicas. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2000; 57:63-75. [PMID: 0 DOI: 10.1006/pmpp.2000.0282] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
48
|
Abstract
Successful penetration of living plant tissue by fungal pathogens is preceded by an exchange of signals between both organisms. Recent mutational approaches revealed the importance of cAMP-dependent signalling pathways for fungal development and virulence on their hosts.
Collapse
Affiliation(s)
- W Knogge
- Department of Biochemistry, Max-Planck-Institut fuer Zuechtungsforschung, D-50829 Koeln, Germany.
| |
Collapse
|
49
|
Affiliation(s)
- E Blée
- Institut de Biologie Moléculaire des Plantes-CNRS-UPR 406, Strasbourg, France
| |
Collapse
|
50
|
Affiliation(s)
- W Knogge
- Department of Biochemistry, Max-Planck-Institut für Züchtungsforschung, Cologne, Germany
| |
Collapse
|