1
|
Samara YN, Brennan HM, McCarthy L, Bollard MT, Laspina D, Wlodek JM, Campos SL, Natarajan R, Gofron K, McSweeney S, Soares AS, Leroy L. Using sound pulses to solve the crystal-harvesting bottleneck. Acta Crystallogr D Struct Biol 2018; 74:986-999. [PMID: 30289409 PMCID: PMC6173054 DOI: 10.1107/s2059798318011506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/14/2018] [Indexed: 01/16/2023] Open
Abstract
Crystal harvesting has proven to be difficult to automate and remains the rate-limiting step for many structure-determination and high-throughput screening projects. This has resulted in crystals being prepared more rapidly than they can be harvested for X-ray data collection. Fourth-generation synchrotrons will support extraordinarily rapid rates of data acquisition, putting further pressure on the crystal-harvesting bottleneck. Here, a simple solution is reported in which crystals can be acoustically harvested from slightly modified MiTeGen In Situ-1 crystallization plates. This technique uses an acoustic pulse to eject each crystal out of its crystallization well, through a short air column and onto a micro-mesh (improving on previous work, which required separately grown crystals to be transferred before harvesting). Crystals can be individually harvested or can be serially combined with a chemical library such as a fragment library.
Collapse
Affiliation(s)
- Yasmin N. Samara
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil
| | - Haley M. Brennan
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Liam McCarthy
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, Stony Brook University, New York, NY 11794-5215, USA
| | - Mary T. Bollard
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, York College of Pennsylvania, York, PA 17403, USA
| | - Denise Laspina
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, Stony Brook University, New York, NY 11794-5215, USA
| | - Jakub M. Wlodek
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Computer Science, Stony Brook University, New York, NY 11794-5215, USA
| | - Stefanie L. Campos
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Clinical Nutrition, Stony Brook University, New York, NY 11794-5215, USA
| | - Ramya Natarajan
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kazimierz Gofron
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Sean McSweeney
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Alexei S. Soares
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Ludmila Leroy
- Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil
| |
Collapse
|
2
|
Salunke DM, Nair DT. Macromolecular structures: Quality assessment and biological interpretation. IUBMB Life 2017; 69:563-571. [DOI: 10.1002/iub.1640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Dinakar M. Salunke
- International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi India
| | - Deepak T. Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster; 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad Haryana India
| |
Collapse
|
3
|
Zander U, Hoffmann G, Cornaciu I, Marquette JP, Papp G, Landret C, Seroul G, Sinoir J, Röwer M, Felisaz F, Rodriguez-Puente S, Mariaule V, Murphy P, Mathieu M, Cipriani F, Márquez JA. Automated harvesting and processing of protein crystals through laser photoablation. Acta Crystallogr D Struct Biol 2016; 72:454-66. [PMID: 27050125 PMCID: PMC4822559 DOI: 10.1107/s2059798316000954] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/16/2016] [Indexed: 01/10/2023] Open
Abstract
Currently, macromolecular crystallography projects often require the use of highly automated facilities for crystallization and X-ray data collection. However, crystal harvesting and processing largely depend on manual operations. Here, a series of new methods are presented based on the use of a low X-ray-background film as a crystallization support and a photoablation laser that enable the automation of major operations required for the preparation of crystals for X-ray diffraction experiments. In this approach, the controlled removal of the mother liquor before crystal mounting simplifies the cryocooling process, in many cases eliminating the use of cryoprotectant agents, while crystal-soaking experiments are performed through diffusion, precluding the need for repeated sample-recovery and transfer operations. Moreover, the high-precision laser enables new mounting strategies that are not accessible through other methods. This approach bridges an important gap in automation and can contribute to expanding the capabilities of modern macromolecular crystallography facilities.
Collapse
Affiliation(s)
- Ulrich Zander
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Guillaume Hoffmann
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Irina Cornaciu
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Jean-Pierre Marquette
- Structure Design Informatics and Structural Biology, Sanofi, 13 Quai Jules Guesde, 94403 Vitry-sur-Seine, France
| | - Gergely Papp
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Christophe Landret
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Gaël Seroul
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Jérémy Sinoir
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Martin Röwer
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Frank Felisaz
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Sonia Rodriguez-Puente
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Vincent Mariaule
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Peter Murphy
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Magali Mathieu
- Structure Design Informatics and Structural Biology, Sanofi, 13 Quai Jules Guesde, 94403 Vitry-sur-Seine, France
| | - Florent Cipriani
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - José Antonio Márquez
- Grenoble Outstation, European Molecular Biology Laboratory; Unit of Virus Host-Cell Interactions (UMI 3265), University Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
4
|
Weichenberger CX, Afonine PV, Kantardjieff K, Rupp B. The solvent component of macromolecular crystals. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1023-38. [PMID: 25945568 PMCID: PMC4427195 DOI: 10.1107/s1399004715006045] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022]
Abstract
The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initial phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.
Collapse
Affiliation(s)
- Christian X. Weichenberger
- Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC), Viale Druso 1, Bozen/Bolzano, I-39100 Südtirol/Alto Adige, Italy
| | - Pavel V. Afonine
- Physical Biosciences Division, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Mail Stop 64R0121, Berkeley, CA 94720, USA
| | - Katherine Kantardjieff
- College of Science and Mathematics, California State University, San Marcos, CA 92078, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA 92084, USA
- Department of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Cuttitta CM, Ericson DL, Scalia A, Roessler CG, Teplitsky E, Joshi K, Campos O, Agarwal R, Allaire M, Orville AM, Sweet RM, Soares AS. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:94-103. [PMID: 25615864 PMCID: PMC4304690 DOI: 10.1107/s1399004714013728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/12/2014] [Indexed: 12/03/2022]
Abstract
Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s(-1)) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.
Collapse
Affiliation(s)
- Christina M. Cuttitta
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Center for Developmental Neuroscience and Department of Biology, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA
| | - Daniel L. Ericson
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biomedical Engineering, University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260, USA
| | - Alexander Scalia
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 11973-5000, USA
| | - Christian G. Roessler
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Ella Teplitsky
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Karan Joshi
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Electronics and Electrical Communication Engineering, PEC University of Technology, Chandigarh, India
| | - Olven Campos
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biological Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33414, USA
| | - Rakhi Agarwal
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Marc Allaire
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Allen M. Orville
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Robert M. Sweet
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Alexei S. Soares
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| |
Collapse
|
6
|
Yin X, Scalia A, Leroy L, Cuttitta CM, Polizzo GM, Ericson DL, Roessler CG, Campos O, Ma MY, Agarwal R, Jackimowicz R, Allaire M, Orville AM, Sweet RM, Soares AS. Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1177-89. [PMID: 24816088 PMCID: PMC4014116 DOI: 10.1107/s1399004713034603] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/24/2013] [Indexed: 11/17/2022]
Abstract
Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.
Collapse
Affiliation(s)
- Xingyu Yin
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, NY 11794-5215, USA
- Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Alexander Scalia
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, NY 13902, USA
| | - Ludmila Leroy
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- CAPES Foundation, Ministry of Education of Brazil, 70040-020 Brasilia-DF, Brazil
- Universidade Federal de Minas Gerais, 6627 Av. Antonio Carlos, 31270-901 Belo Horizonte-MG, Brazil
| | - Christina M. Cuttitta
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Center for Developmental Neuroscience and Department of Biology, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA
| | - Gina M. Polizzo
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- St Joseph’s College, 155 West Roe Boulevard, East Patchogue, NY 11772, USA
| | - Daniel L. Ericson
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biomedical Engineering, University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260, USA
| | - Christian G. Roessler
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Olven Campos
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biological Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33414, USA
| | - Millie Y. Ma
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Comsewogue High School, 565 Bicycle Path, Port Jefferson Station, NY 11776, USA
| | - Rakhi Agarwal
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Rick Jackimowicz
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Marc Allaire
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Allen M. Orville
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Robert M. Sweet
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Alexei S. Soares
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| |
Collapse
|
7
|
Deller MC, Rupp B. Approaches to automated protein crystal harvesting. Acta Crystallogr F Struct Biol Commun 2014; 70:133-55. [PMID: 24637746 PMCID: PMC3936438 DOI: 10.1107/s2053230x14000387] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 11/11/2022] Open
Abstract
The harvesting of protein crystals is almost always a necessary step in the determination of a protein structure using X-ray crystallographic techniques. However, protein crystals are usually fragile and susceptible to damage during the harvesting process. For this reason, protein crystal harvesting is the single step that remains entirely dependent on skilled human intervention. Automation has been implemented in the majority of other stages of the structure-determination pipeline, including cloning, expression, purification, crystallization and data collection. The gap in automation between crystallization and data collection results in a bottleneck in throughput and presents unfortunate opportunities for crystal damage. Several automated protein crystal harvesting systems have been developed, including systems utilizing microcapillaries, microtools, microgrippers, acoustic droplet ejection and optical traps. However, these systems have yet to be commonly deployed in the majority of crystallography laboratories owing to a variety of technical and cost-related issues. Automation of protein crystal harvesting remains essential for harnessing the full benefits of fourth-generation synchrotrons, free-electron lasers and microfocus beamlines. Furthermore, automation of protein crystal harvesting offers several benefits when compared with traditional manual approaches, including the ability to harvest microcrystals, improved flash-cooling procedures and increased throughput.
Collapse
Affiliation(s)
- Marc C. Deller
- The Joint Center for Structural Genomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA 92084, USA
- Department of Genetic Epidemiology, Innsbruck Medical University, Schöpfstrasse 41, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Márquez JA, Cipriani F. CrystalDirect™: a novel approach for automated crystal harvesting based on photoablation of thin films. Methods Mol Biol 2014; 1091:197-203. [PMID: 24203334 DOI: 10.1007/978-1-62703-691-7_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The last years have seen a major development in automation for protein production, crystallization, and X-ray diffraction data collection, which has contributed to accelerate the pace of structure solution and to facilitate the study of ever more challenging targets through macromolecular crystallography. This has led to a considerable increase in the numbers of crystals produced and analyzed. However the process of recovering crystals from crystallization supports and mounting them in X-ray data collection pins remains a manual and delicate operation. Here we present a novel approach enabling full automation of the crystal mounting process and describe the operation of the first-automated CrystalDirect harvesting unit. Implications for crystallography applications and for the future operational integration of automated crystallization and data collection resources are discussed.
Collapse
Affiliation(s)
- José A Márquez
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | | |
Collapse
|
9
|
Pieters RS, Tung HW, Sargent DF, Nelson BJ. Non-contact Manipulation for Automated Protein Crystal Harvesting using a Rolling Microrobot. ACTA ACUST UNITED AC 2014. [DOI: 10.3182/20140824-6-za-1003.00398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Giegé R. A historical perspective on protein crystallization from 1840 to the present day. FEBS J 2013; 280:6456-97. [DOI: 10.1111/febs.12580] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire; Université de Strasourg et CNRS; France
| |
Collapse
|
11
|
Brockhauser S, Svensson O, Bowler MW, Nanao M, Gordon E, Leal RMF, Popov A, Gerring M, McCarthy AA, Gotz A. The use of workflows in the design and implementation of complex experiments in macromolecular crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:975-84. [PMID: 22868763 PMCID: PMC3413211 DOI: 10.1107/s090744491201863x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 04/25/2012] [Indexed: 11/10/2022]
Abstract
The automation of beam delivery, sample handling and data analysis, together with increasing photon flux, diminishing focal spot size and the appearance of fast-readout detectors on synchrotron beamlines, have changed the way that many macromolecular crystallography experiments are planned and executed. Screening for the best diffracting crystal, or even the best diffracting part of a selected crystal, has been enabled by the development of microfocus beams, precise goniometers and fast-readout detectors that all require rapid feedback from the initial processing of images in order to be effective. All of these advances require the coupling of data feedback to the experimental control system and depend on immediate online data-analysis results during the experiment. To facilitate this, a Data Analysis WorkBench (DAWB) for the flexible creation of complex automated protocols has been developed. Here, example workflows designed and implemented using DAWB are presented for enhanced multi-step crystal characterizations, experiments involving crystal reorientation with kappa goniometers, crystal-burning experiments for empirically determining the radiation sensitivity of a crystal system and the application of mesh scans to find the best location of a crystal to obtain the highest diffraction quality. Beamline users interact with the prepared workflows through a specific brick within the beamline-control GUI MXCuBE.
Collapse
Affiliation(s)
- Sandor Brockhauser
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pellegrini E, Piano D, Bowler MW. Direct cryocooling of naked crystals: are cryoprotection agents always necessary? ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:902-6. [PMID: 21931222 DOI: 10.1107/s0907444911031210] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/02/2011] [Indexed: 11/10/2022]
Abstract
Over the last 20 years cryocrystallography has revolutionized the field of macromolecular crystallography, greatly reducing radiation damage and allowing the collection of complete data sets at synchrotron sources. However, in order to cool crystals to 100 K cryoprotective agents must usually be added to prevent the formation of crystalline ice, which disrupts the macromolecular crystal lattice and often results in a degradation of diffraction quality. This process can involve the extensive testing of solution compositions and soaking protocols to find suitable conditions that maintain diffraction quality. In this study, it is demonstrated that when some crystals of macromolecules are mounted in the complete absence of surrounding liquid no crystalline ice is formed and the diffraction resolution, merging R factors and mosaic spread values are comparable to those of crystals cryocooled in the presence of a cryoprotectant. This potentially removes one of the most onerous manual steps in the structure-solution pipeline and could alleviate some of the foreseen difficulties in the automation of crystal mounting.
Collapse
Affiliation(s)
- Erika Pellegrini
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38043 Grenoble, France
| | | | | |
Collapse
|
13
|
Viola R, Walsh J, Melka A, Womack W, Murphy S, Riboldi-Tunnicliffe A, Rupp B. First experiences with semi-autonomous robotic harvesting of protein crystals. ACTA ACUST UNITED AC 2011; 12:77-82. [PMID: 21431335 DOI: 10.1007/s10969-011-9103-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/07/2011] [Indexed: 11/29/2022]
Abstract
The demonstration unit of the Universal Micromanipulation Robot (UMR) capable of semi-autonomous protein crystal harvesting has been tested and evaluated by independent users. We report the status and capabilities of the present unit scheduled for deployment in a high-throughput protein crystallization center. We discuss operational aspects as well as novel features such as micro-crystal handling and drip-cryoprotection, and we extrapolate towards the design of a fully autonomous, integrated system capable of reliable crystal harvesting. The positive to enthusiastic feedback from the participants in an evaluation workshop indicates that genuine demand exists and the effort and resources to develop autonomous protein crystal harvesting robotics are justified.
Collapse
Affiliation(s)
- Robert Viola
- Square One Systems Design, Jackson, WY 83002, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Luft JR, Snell EH, Detitta GT. Lessons from high-throughput protein crystallization screening: 10 years of practical experience. Expert Opin Drug Discov 2011; 6:465-80. [PMID: 22646073 DOI: 10.1517/17460441.2011.566857] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION X-ray crystallography provides the majority of our structural biological knowledge at a molecular level and, in terms of pharmaceutical design, is a valuable tool to accelerate discovery. It is the premier technique in the field, but its usefulness is significantly limited by the need to grow well-diffracting crystals. It is for this reason that high-throughput crystallization has become a key technology that has matured over the past 10 years through the field of structural genomics. Areas covered : The authors describe their experiences in high-throughput crystallization screening in the context of structural genomics and the general biomedical community. They focus on the lessons learnt from the operation of a high-throughput crystallization-screening laboratory, which to date has screened over 12,500 biological macromolecules. They also describe the approaches taken to maximize the success while minimizing the effort. Through this, the authors hope that the reader will gain an insight into the efficient design of a laboratory and protocols to accomplish high-throughput crystallization on a single-, multiuser laboratory or industrial scale. Expert opinion : High-throughput crystallization screening is readily available but, despite the power of the crystallographic technique, getting crystals is still not a solved problem. High-throughput approaches can help when used skillfully; however, they still require human input in the detailed analysis and interpretation of results to be more successful.
Collapse
Affiliation(s)
- Joseph R Luft
- Hauptman-Woodward Medical Research Institute , 700 Ellicott St., Buffalo, NY 14203 , USA +1 716 898 8623 ; +1 716 898 8660 ;
| | | | | |
Collapse
|
15
|
To automate or not to automate: this is the question. ACTA ACUST UNITED AC 2010; 11:211-21. [PMID: 20526815 PMCID: PMC2921494 DOI: 10.1007/s10969-010-9092-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/14/2010] [Indexed: 11/26/2022]
Abstract
New protocols and instrumentation significantly boost the outcome of structural biology, which has resulted in significant growth in the number of deposited Protein Data Bank structures. However, even an enormous increase of the productivity of a single step of the structure determination process may not significantly shorten the time between clone and deposition or publication. For example, in a medium size laboratory equipped with the LabDB and HKL-3000 systems, we show that automation of some (and integration of all) steps of the X-ray structure determination pathway is critical for laboratory productivity. Moreover, we show that the lag period after which the impact of a technology change is observed is longer than expected.
Collapse
|
16
|
Kitago Y, Watanabe N, Tanaka I. Semi-automated protein crystal mounting device for the sulfur single-wavelength anomalous diffraction method. J Appl Crystallogr 2010. [DOI: 10.1107/s0021889809054272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Use of longer-wavelength X-rays has advantages for the detection of small anomalous signals from light atoms, such as sulfur, in protein molecules. However, the accuracy of the measured diffraction data decreases at longer wavelengths because of the greater X-ray absorption. The capillary-top mounting method (formerly the loopless mounting method) makes it possible to eliminate frozen solution around the protein crystal and reduces systematic errors in the evaluation of small anomalous differences. However, use of this method requires custom-made tools and a large amount of skill. Here, the development of a device that can freeze the protein crystal semi-automatically using the capillary-top mounting method is described. This device can pick up the protein crystal from the crystallization drop using a micro-manipulator, and further procedures, such as withdrawal of the solution around the crystal by suction and subsequent flash freezing of the protein crystal, are carried out automatically. This device makes it easy for structural biologists to use the capillary-top mounting method for sulfur single-wavelength anomalous diffraction phasing using longer-wavelength X-rays.
Collapse
|
17
|
Walter TS, Mancini EJ, Kadlec J, Graham SC, Assenberg R, Ren J, Sainsbury S, Owens RJ, Stuart DI, Grimes JM, Harlos K. Semi-automated microseeding of nanolitre crystallization experiments. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:14-8. [PMID: 18097093 PMCID: PMC2373990 DOI: 10.1107/s1744309107057260] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 11/09/2007] [Indexed: 11/10/2022]
Abstract
A simple semi-automated microseeding procedure for nanolitre crystallization experiments is described. Firstly, a microseed stock solution is made from microcrystals using a Teflon bead. A dilution series of this microseed stock is then prepared and dispensed as 100 nl droplets into 96-well crystallization plates, facilitating the incorporation of seeding into high-throughput crystallization pipelines. This basic microseeding procedure has been modified to include additive-screening and cross-seeding methods. Five examples in which these techniques have been used successfully are described.
Collapse
Affiliation(s)
- Thomas S. Walter
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - Erika J. Mancini
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - Jan Kadlec
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - Stephen C. Graham
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - René Assenberg
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - Jingshan Ren
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - Sarah Sainsbury
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - Raymond J. Owens
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - David I. Stuart
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - Jonathan M. Grimes
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - Karl Harlos
- Oxford Protein Production Facility (OPPF) and Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| |
Collapse
|
18
|
Development of an alternative approach to protein crystallization. ACTA ACUST UNITED AC 2007; 8:193-8. [PMID: 18038192 DOI: 10.1007/s10969-007-9034-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
Abstract
We are developing an alternate strategy for the crystallization of macromolecules that does not, like current methods, depend on the optimization of traditional variables such as pH and precipitant concentration, but is based on the hypothesis that many conventional small molecules might establish stabilizing, intermolecular, non covalent crosslinks in crystals, and thereby promote lattice formation. To test the hypothesis, we carried out preliminary experiments encompassing 18,240 crystallization trials using 81 different proteins, and 200 chemical compounds. Statistical analysis of the results demonstrated the validity of the idea. In addition, we conducted X-ray diffraction analyses of some of the crystals grown in the experiments. These clearly showed incorporation of conventional molecules into the protein crystal lattices, and further validated the underlying hypothesis. We are currently extending the investigations to include a broader and more diverse set of proteins, an expanded search of conventional and biologically active small molecules, and a wider range of precipitants. The strategy proposed here is essentially orthogonal to current approaches and has an objective of doubling the success rate of today.
Collapse
|
19
|
Viola R, Carman P, Walsh J, Frankel D, Rupp B. Automated robotic harvesting of protein crystals-addressing a critical bottleneck or instrumentation overkill? ACTA ACUST UNITED AC 2007; 8:145-52. [PMID: 17965947 DOI: 10.1007/s10969-007-9031-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 10/09/2007] [Indexed: 11/30/2022]
Abstract
One of the critical steps in high throughput crystallography that so far has evaded automation is the actual harvesting of the delicate crystals from the mother liquor in which they are growing. The late-stage operation of harvesting is presently a most risky and loss-intensive procedure, compounded by its tight integration with the critical steps of cryo-protection and cryo-quenching. Recent advances in micromanipulation robotics and micro-fabrication have made it possible to seriously consider automation of protein crystal harvesting. Based on the experience gained during the development of an operator-assisted (and now operator-assisting) universal micromanipulation robot (UMR) prototype, we discuss the challenges ahead for the design of a fully autonomous, integrated system capable of the reliable harvesting of protein microcrystals. Experience from participation in NIH structural genomics projects and feedback from bottleneck workshops indicates that genuine demand exists in the high throughput community as well as in pharmaceutical production pipelines, justifying the effort and resources to develop autonomous harvesting robotics.
Collapse
Affiliation(s)
- Robert Viola
- Square One Systems Design, Jackson Hole, WY 83002, USA
| | | | | | | | | |
Collapse
|