1
|
Wang S, Chen Y, Liu H, He J, Bian Q, Guo J, Zhang Y, Tu Y, Chen B, Zeng Z, Xie S, Tang BZ. Mesoscale Acid-Base Complexes Display Size-Associated Photophysical Property and Photochemical Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402798. [PMID: 39004884 DOI: 10.1002/smll.202402798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The properties of single molecules and molecular aggregates can differ dramatically, leading to a long-standing interest in mesoscale aggregation processes. Herein, a series of acid-base molecular complexes is developed by using a tetraphenylethylene-backboned fluorophore, and investigated the photophysical properties and photochemical activities at different aggregation length scales. This fluorophore, with two basic diethylamine groups and two acidic tetrazole groups, exhibits sparse solubility due to multivalent interactions that cause infinite aggregation. The addition of a third acid leads to the formation of fluorophore/acid complexes with good dispersibility and colloidal stability. This assembly process can be controlled by the use of different acids and their stoichiometry, resulting in aggregates ranging in size from a few to hundreds of nanometers. A crystalline structure is obtained to illustrate the complex properties of the acid-base network. Unlike the single molecule, these complexes show a trend of size-related properties for photoluminescence efficiency and photochemical activity. As the amount of acid added increases, the size of the complexes decreases, the aggregation effect of the complexes on fluorescence emission increases, and the rates of the oxidative photocyclization and photodecomposition slow down. This work may help to understand size-controlled molecular materials at the mesoscale for functional design.
Collapse
Affiliation(s)
- Shuodong Wang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yao Chen
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Haohao Liu
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jinzhi He
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qilong Bian
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jing Guo
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Zhang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yujie Tu
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| | - Bo Chen
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Sheng Xie
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
3
|
Tominey AF, Docherty PH, Rosair GM, Quenardelle R, Kraft A. Unusually Weak Binding Interactions in Tetrazole−Amidine Complexes. Org Lett 2006; 8:1279-82. [PMID: 16562871 DOI: 10.1021/ol053072+] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Tetrazoles frequently replace carboxylic acids in pharmaceutical drugs. However, while the binding modes of tetrazolate and carboxylate anions in amidinium complexes turns out to be similar, the association constant of the former is 2-3 orders of magnitude smaller in DMSO. Crystal structures revealed that the N...H-N hydrogen bonds in amidinium tetrazolates are bent (162 degrees and 169 degrees ) and noticeably longer (N...N 2.96 A) than corresponding hydrogen bonds in both amidinium carboxylates and ammonium tetrazolates.
Collapse
Affiliation(s)
- Alan F Tominey
- Chemistry, School of Engineering & Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
| | | | | | | | | |
Collapse
|