Volkov O, Macías R, Rath NP, Barton L. Phosphine-boranes as bidentate ligands: formation of [8,8-eta(2)-(eta(2)-(BH(3)).dppm)-nido-8,7-RhSB(9)H(10)] and [9,9-eta(2)-(eta(2)-(BH(3)).dppm)-nido-9,7,8-RhC(2)B(8)H(11)] from [8,8-(eta(2)-dppm)-8-(eta(1)-dppm)-nido-8,7-RhSB(9)H(10)] and [9,9-(eta(2)-dppm)-9-(eta(1)-dppm)-nido-9,7,8-RhC(2)B(8)H(11)], respectively.
Inorg Chem 2002;
41:5837-43. [PMID:
12401091 DOI:
10.1021/ic0258375]
[Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two clusters [8,8-(eta(2)-dppm)-8-(eta(1)-dppm)-nido-8,7-RhSB(9)H(10)] (1) and [9,9-(eta(2)-dppm)-9-(eta(1)-dppm)-nido-9,7,8-RhC(2)B(8)H(11)] (2) (dppm = PPh(2)CH(2)PPh(2)), both of which contain pendant PPh(2) groups, react with BH(3).thf to afford the species [8,8-eta(2)-(eta(2)-(BH(3)).dppm)-nido-8,7-RhSB(9)H(10)] (3) and [9,9-eta(2)-(eta(2)-(BH(3)).dppm))-nido-9,7,8-RhC(2)B(8)H(11)] (4), respectively. These two species are very similar in that they both contain the bidentate ligand [(BH(3)).dppm], which coordinates to the Rh center via a PPh(2) group and also via a eta(2)-BH(3) group. Thus, the B atom in the BH(3) group is four-coordinate, bonded to Rh by two bridging hydrogen atoms, to a terminal H atom, and to a PPh(2) group. At room temperature, the BH(3) group is fluxional; the two bridging H atoms and the terminal H atom are equivalent on the NMR time scale. The motion is arrested at low temperature with DeltaG++ = ca. 37 and 42 kJ mol(-1), respectively, for 3 and 4. Both species are characterized completely by NMR and mass spectral measurements as well as by elemental analysis and single-crystal structure determinations.
Collapse