Harper A, Evans ML, Morris AJ. Computational Investigation of Copper Phosphides as Conversion Anodes for Lithium-Ion Batteries.
CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020;
32:6629-6639. [PMID:
32905380 PMCID:
PMC7469244 DOI:
10.1021/acs.chemmater.0c02054]
[Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Using first-principles structure searching with density-functional theory (DFT), we identify a novel Fm3̅m phase of Cu2P and two low-lying metastable structures, an I4̅3d-Cu3P phase and a Cm-Cu3P11 phase. The computed pair distribution function of the novel Cm-Cu3P11 phase shows its structural similarity to the experimentally identified Cm-Cu2P7 phase. The relative stability of all Cu-P phases at finite temperatures is determined by calculating the Gibbs free energy using vibrational effects from phonon modes at 0 K. From this, a finite-temperature convex hull is created, on which Fm3̅m-Cu2P is dynamically stable and the Cu3-x P (x < 1) defect phase Cmc21-Cu8P3 remains metastable (within 20 meV/atom of the convex hull) across a temperature range from 0 to 600 K. Both CuP2 and Cu3P exhibit theoretical gravimetric capacities higher than contemporary graphite anodes for Li-ion batteries; the predicted Cu2P phase has a theoretical gravimetric capacity of 508 mAh/g as a Li-ion battery electrode, greater than both Cu3P (363 mAh/g) and graphite (372 mAh/g). Cu2P is also predicted to be both nonmagnetic and metallic, which should promote efficient electron transfer in the anode. Cu2P's favorable properties as a metallic, high-capacity material suggest its use as a future conversion anode for Li-ion batteries; with a volume expansion of 99% during complete cycling, Cu2P anodes could be more durable than other conversion anodes in the Cu-P system, with volume expansions greater than 150%. The structures and figures presented in this paper, and the code used to generate them, can be interactively explored online using Binder.
Collapse