1
|
Luo Y, Qiao Y, Gao Q, Wang J, Guo J, Ren X, Chao M, Sun Q, Jia Y, Liang E. Anomalous Thermal Expansion in Ta 2WO 8 Oxide Semiconductor over a Wide Temperature Range. Inorg Chem 2021; 60:17758-17764. [PMID: 34797971 DOI: 10.1021/acs.inorgchem.1c02377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expansion of material is one of the major impediments in the high precision instrument and engineering field. Low/zero thermal expansion compounds have drawn great attention because of their important scientific significance and enormous application value. However, the realization of low thermal expansion over a wide temperature range is still scarce. In this study, a low thermal expansion over a wide temperature range has been observed in the Ta2WO8 oxide semiconductor. It is a balance effect of the negative thermal expansion of the a axis and the positive thermal expansion of the b axis and the c axis to achieve low thermal expansion behavior. The results of the means of variable temperature X-ray diffraction and variable pressure Raman spectroscopy analysis indicated that the transverse vibration of bridging oxygen atoms is the driving force, which is corresponding to the low-frequency lattice modes with a negative Grüneisen parameter. The present study provides one wide band gap semiconductor Ta2WO8 with anomalous thermal expansion behavior.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yongqiang Qiao
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Qilong Gao
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Jiaqi Wang
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Juan Guo
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Xiao Ren
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Mingju Chao
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Qiang Sun
- International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450052, China
| | - Yu Jia
- Key Laboratory of Special Functional Materials of Ministry of Education of China, and School of Materials Science and Engineering, Henan University, Henan 475004, China.,International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450052, China
| | - Erjun Liang
- Key Laboratory of Materials Physics of Ministry of Education and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|