1
|
Shestakova A, Fatkulin A, Surkova D, Osmolovskiy A, Popova E. First Insight into the Degradome of Aspergillus ochraceus: Novel Secreted Peptidases and Their Inhibitors. Int J Mol Sci 2024; 25:7121. [PMID: 39000228 PMCID: PMC11241649 DOI: 10.3390/ijms25137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism's proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction with the surrounding environment. Using techniques such as genome and transcriptome sequencing, alongside protein prediction methodologies, we identified putative extracellular peptidases within Aspergillus ochraceus VKM-F4104D. Following manual annotation procedures, a total of 11 aspartic, 2 cysteine, 2 glutamic, 21 serine, 1 threonine, and 21 metallopeptidases were attributed to the extracellular degradome of A. ochraceus VKM-F4104D. Among them are enzymes with promising applications in biotechnology, potential targets and agents for antifungal therapy, and microbial antagonism factors. Thus, additional functionalities of the extracellular degradome, extending beyond mere protein substrate digestion for nutritional purposes, were demonstrated.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | - Artem Fatkulin
- Laboratory of Molecular Physiology, HSE University, Moscow 101000, Russia
| | - Daria Surkova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | | | - Elizaveta Popova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| |
Collapse
|
2
|
Guo Y, Tu T, Zheng J, Bai Y, Huang H, Su X, Wang Y, Wang Y, Yao B, Luo H. Improvement of BsAPA Aspartic Protease Thermostability via Autocatalysis-Resistant Mutation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10505-10512. [PMID: 31462045 DOI: 10.1021/acs.jafc.9b03959] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An aspartic protease gene (Bsapa) was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris. The recombinant BsAPA showed maximal activity at pH 3.0 and 75 °C and remained stable at 70 °C and below, indicating the thermostable nature of BsAPA. However, heat inactivation still limits the application of BsAPA. To further improve its thermostability, an autocatalysis site (L205-F206) in BsAPA was identified and three mutants (F193W, K204P, and A371V) were generated based on the analysis of the structure neighboring the autocatalysis site. These mutants have improved thermostability, and their half-life at 75 °C increased by 0.5-, 0.2-, and 0.3-fold, respectively. A triple-site mutant (F193W/K204P/A371V) was generated, with 1.5-fold increased half-life at 80 and a 10.7 °C increased Tm, compared with those of the wild-type. These results indicate that autocatalysis of aspartic protease reduces enzyme thermostability. Furthermore, site-directed mutagenesis at regions near the autocatalysis site is an efficient approach to improve aspartic protease thermostability.
Collapse
Affiliation(s)
- Yujie Guo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , No. 18 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , No. 18 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Jie Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , No. 18 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , No. 18 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , No. 18 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , No. 18 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , No. 18 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , No. 18 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , No. 18 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , No. 18 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| |
Collapse
|
3
|
Durán M, Silveira CP, Durán N. Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini-review. IET Nanobiotechnol 2016; 9:314-23. [PMID: 26435286 DOI: 10.1049/iet-nbt.2014.0054] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the formation mechanism of biogenically metallic nanoparticles is broadly associated to enzyme mediation, major attention has been given to the role of proteins and peptides in oxido-reduction of metallic ions leading to these nanostructures. Among the wide range of biomolecules that can act not only as capping agents but also as non-enzymatic agents to form nanoparticles, disulphide bridge-containing peptides and amino acids particularly stand out. The literature proposes that they actively participate in the process of nanoparticles' synthesis, with thiols groups and disulphide bridge moieties as the reaction catalytic sites. Similarly, denaturated enzymes containing exposed S-S or S-H moieties are also able to reduce metallic ions to form nanoparticles. This mini-review is focused on the biogenic synthesis of metallic nanoparticles such as gold, silver, copper, platinum, palladium, lead and selenium, in which proteins, peptides, reductases and even oxido-reductases act as non-enzymatic catalysts of the reduction reaction, opening economically and ecologically favourable perspectives in the nanoparticles synthesis field.
Collapse
Affiliation(s)
- Marcela Durán
- Laboratory on Nanostructures Synthesis and Interactions with Biosystems (NanoBioss) Institute of Chemistry, Universidade Estadual de Campinas, Bloco I, Sala 239, Caixa Postal 6154, CEP 13081-970 Campinas, SP, Brazil
| | - Camila P Silveira
- Laboratory on Nanostructures Synthesis and Interactions with Biosystems (NanoBioss) Institute of Chemistry, Universidade Estadual de Campinas, Bloco I, Sala 239, Caixa Postal 6154, CEP 13081-970 Campinas, SP, Brazil
| | - Nelson Durán
- Laboratory on Nanostructures Synthesis and Interactions with Biosystems (NanoBioss) Institute of Chemistry, Universidade Estadual de Campinas, Bloco I, Sala 239, Caixa Postal 6154, CEP 13081-970 Campinas, SP, Brazil.
| |
Collapse
|
4
|
Revuelta MV, van Kan JAL, Kay J, Ten Have A. Extensive expansion of A1 family aspartic proteinases in fungi revealed by evolutionary analyses of 107 complete eukaryotic proteomes. Genome Biol Evol 2015; 6:1480-94. [PMID: 24869856 PMCID: PMC4079213 DOI: 10.1093/gbe/evu110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The A1 family of eukaryotic aspartic proteinases (APs) forms one of the 16 AP families. Although one of the best characterized families, the recent increase in genome sequence data has revealed many fungal AP homologs with novel sequence characteristics. This study was performed to explore the fungal AP sequence space and to obtain an in-depth understanding of fungal AP evolution. Using a comprehensive phylogeny of approximately 700 AP sequences from the complete proteomes of 87 fungi and 20 nonfungal eukaryotes, 11 major clades of APs were defined of which clade I largely corresponds to the A1A subfamily of pepsin-archetype APs. Clade II largely corresponds to the A1B subfamily of nepenthesin-archetype APs. Remarkably, the nine other clades contain only fungal APs, thus indicating that fungal APs have undergone a large sequence diversification. The topology of the tree indicates that fungal APs have been subject to both “birth and death” evolution and “functional redundancy and diversification.” This is substantiated by coclustering of certain functional sequence characteristics. A meta-analysis toward the identification of Cluster Determining Positions (CDPs) was performed in order to investigate the structural and biochemical basis for diversification. Seven CDPs contribute to the secondary structure of the enzyme. Three other CDPs are found in the vicinity of the substrate binding cleft. Tree topology, the large sequence variation among fungal APs, and the apparent functional diversification suggest that an amendment to update the current A1 AP classification based on a comprehensive phylogenetic clustering might contribute to refinement of the classification in the MEROPS peptidase database.
Collapse
Affiliation(s)
- María V Revuelta
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - John Kay
- School of Biosciences, Cardiff University, United Kingdom
| | - Arjen Ten Have
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
5
|
Aoki K, Matsubara S, Umeda M, Tachibanac S, Doi M, Takenaka S. Aspartic protease from Aspergillus (Eurotium) repens strain MK82 is involved in the hydrolysis and decolourisation of dried bonito (Katsuobushi). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1349-1355. [PMID: 23044751 DOI: 10.1002/jsfa.5896] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 08/02/2012] [Accepted: 08/12/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Katsuobushi is a dried, smoked and fermented bonito used in Japanese cuisine. During the fermentation process with several Aspergillus species, the colour of Katsuobushi gradually changes from a dark reddish-brown derived from haem proteins to pale pink. The change in colour gives Katsuobushi a higher ranking and price. This study aimed to elucidate the mechanism of decolourisation of Katsuobushi. RESULTS A decolourising factor from the culture supernatant of Aspergillus (Eurotium) repens strain MK82 was purified to homogeneity. The purification was monitored by measuring the decolourising activity using equine myoglobin and bovine haemoglobin as substrates. It was found that the decolourising factor had protease activity towards myoglobin and haemoglobin. Complete inhibition of the enzyme by the inhibitor pepstatin A and the internal amino acid sequence classified the protein as an aspartic protease. The enzyme limitedly hydrolysed myoglobin between 1-Met and 2-Gly, 43-Lys and 44-Phe, and 70-Leu and 71-Thr. The purified enzyme decolourised blood of Katsuwonus pelamis (bonito) and a slice of dried bonito. CONCLUSION It is proposed that aspartic protease plays a role in the decolourisation of Katsuobushi by the hydrolysis of haem proteins that allows the released haem to aggregate in the dried bonito.
Collapse
Affiliation(s)
- Kenji Aoki
- Division of Nutritional Science, Graduate School of Nutritional Science, Sagami Women's University, 2-1-1 Bunkyo, Sagamihara, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Herga S, Brutus A, Vitale RM, Miche H, Perrier J, Puigserver A, Scaloni A, Giardina T. Site-directed mutagenesis and molecular modelling studies show the role of Asp82 and cysteines in rat acylase 1, a member of the M20 family. Biochem Biophys Res Commun 2005; 330:540-6. [PMID: 15796916 DOI: 10.1016/j.bbrc.2005.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Indexed: 11/19/2022]
Abstract
Acylase 1 from rat kidney catalyzes the hydrolysis of acyl-amino acids. Sequence alignment has shown that this enzyme belongs to the metalloprotein family M20. Site-directed mutagenesis experiments led to the identification of one functionally important amino acid residue located near one of the zinc coordinating residues, which play a critical role in the enzymatic activity. The D82N- and D82E-substituted forms showed no significant activity and very low activity, respectively, along with a loss of zinc coordination. Molecular modelling investigations indicated a putative role of D82 in ensuring a proper protonation of catalytic histidine. In addition, none of the five cysteine residues present in the rat kidney acylase 1 sequence seemed involved in the catalytic process: the loss of activity induced by the C294A substitution was probably due to a conformational change in the 3D structure.
Collapse
Affiliation(s)
- Sameh Herga
- Institut Méditerranéen de Recherche en Nutrition, Laboratoire de Biochimie et Biologie de la Nutrition, UMR Université Paul Cézanne Aix Marseille III-INRA 1111, service 342, Faculté des Sciences et Techniques Saint-Jérôme, 13397 Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Patel S, Vuillard L, Cleasby A, Murray CW, Yon J. Apo and inhibitor complex structures of BACE (beta-secretase). J Mol Biol 2004; 343:407-16. [PMID: 15451669 DOI: 10.1016/j.jmb.2004.08.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/05/2004] [Accepted: 08/09/2004] [Indexed: 12/01/2022]
Abstract
Human BACE, also known as beta-secretase, shows promise as a potential therapeutic target for Alzheimer's disease. We determined the apo structure of BACE to 1.75 A, and a structure of a hydroxyethylamine inhibitor complex derived by soaking. These show significant active-site movements compared to previously described BACE structures. Additionally, the structures reveal two pockets that could be targeted by structure-based drug design.
Collapse
Affiliation(s)
- Sahil Patel
- Astex Technology, 436 Cambridge Science Park, Milton Road, CB4 0QA, UK
| | | | | | | | | |
Collapse
|
8
|
Fujimoto Z, Fujii Y, Kaneko S, Kobayashi H, Mizuno H. Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin. J Mol Biol 2004; 341:1227-35. [PMID: 15321718 DOI: 10.1016/j.jmb.2004.06.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 06/04/2004] [Accepted: 06/15/2004] [Indexed: 11/21/2022]
Abstract
The crystal structure of Irpex lacteus aspartic proteinase (ILAP) in complex with pepstatin (a six amino acid residue peptide-like inhibitor) was determined at 1.3A resolution. ILAP is a pepsin-like enzyme, widely distributed in nature, with high milk-clotting activity relative to proteolytic activity. The overall structure was in good topological agreement with pepsin and other aspartic proteases. The structure and interaction pattern around the catalytic site were conserved, in agreement with the other aspartic proteinase/inhibitor complex structures reported previously. The high-resolution data also supported the transition state model, as proposed previously for the catalytic mechanism of aspartic proteinase. Unlike the other aspartic proteinases, ILAP was found to require hydrophobic residues either in the P(1) or P(1') site, and also in the P(4) and/or P(3) site(s) for secondary interactions. The inhibitor complex structure also revealed the substrate binding mechanism of ILAP at the P(3) and P(4) site of the substrate, where the inserted loop built up the unique hydrophobic pocket at the P(4) site.
Collapse
Affiliation(s)
- Zui Fujimoto
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | |
Collapse
|