1
|
Methods for Obtaining Better Diffractive Protein Crystals: From Sample Evaluation to Space Crystallization. CRYSTALS 2020. [DOI: 10.3390/cryst10020078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this paper, we present a summary on how to obtain protein crystals from which better diffraction images can be produced. In particular, we describe, in detail, quality evaluation of the protein sample, the crystallization conditions and methods, flash-cooling protection of the crystal, and crystallization under a microgravity environment. Our approach to protein crystallization relies on a theoretical understanding of the mechanisms of crystal growth. They are useful not only for space experiments, but also for crystallization in the laboratory.
Collapse
|
2
|
Ishak SNH, Aris SNAM, Halim KBA, Ali MSM, Leow TC, Kamarudin NHA, Masomian M, Rahman RNZRA. Molecular Dynamic Simulation of Space and Earth-Grown Crystal Structures of Thermostable T1 Lipase Geobacillus zalihae Revealed a Better Structure. Molecules 2017; 22:molecules22101574. [PMID: 28946656 PMCID: PMC6151610 DOI: 10.3390/molecules22101574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/16/2017] [Indexed: 12/04/2022] Open
Abstract
Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacilluszalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.
Collapse
Affiliation(s)
- Siti Nor Hasmah Ishak
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Sayangku Nor Ariati Mohamad Aris
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Malihe Masomian
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Boyko KM, Timofeev VI, Samygina VR, Kuranova IP, Popov VO, Koval’chuk MV. Protein crystallization under microgravity conditions. Analysis of the results of Russian experiments performed on the International Space Station in 2005−2015. CRYSTALLOGR REP+ 2016. [DOI: 10.1134/s1063774516050059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
5
|
Boyko KM, Popov VO, Kovalchuk MV. Promising approaches to crystallization of macromolecules suppressing the convective mass transport to the growing crystal. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Ng JD, Baird JK, Coates L, Garcia-Ruiz JM, Hodge TA, Huang S. Large-volume protein crystal growth for neutron macromolecular crystallography. Acta Crystallogr F Struct Biol Commun 2015; 71:358-70. [PMID: 25849493 PMCID: PMC4388167 DOI: 10.1107/s2053230x15005348] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/15/2015] [Indexed: 11/10/2022] Open
Abstract
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.
Collapse
Affiliation(s)
- Joseph D. Ng
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- iXpressGenes Inc., Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - James K. Baird
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, MS6475, Oak Ridge, TN 37831, USA
| | - Juan M. Garcia-Ruiz
- Laboratorio de Estudios Cristalográficos (IACT), CSIC–Universidad de Granada, Avenida de la Innovación s/n, Armilla (Granada), Spain
| | - Teresa A. Hodge
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Sijay Huang
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
7
|
Deller MC, Rupp B. Approaches to automated protein crystal harvesting. Acta Crystallogr F Struct Biol Commun 2014; 70:133-55. [PMID: 24637746 PMCID: PMC3936438 DOI: 10.1107/s2053230x14000387] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 11/11/2022] Open
Abstract
The harvesting of protein crystals is almost always a necessary step in the determination of a protein structure using X-ray crystallographic techniques. However, protein crystals are usually fragile and susceptible to damage during the harvesting process. For this reason, protein crystal harvesting is the single step that remains entirely dependent on skilled human intervention. Automation has been implemented in the majority of other stages of the structure-determination pipeline, including cloning, expression, purification, crystallization and data collection. The gap in automation between crystallization and data collection results in a bottleneck in throughput and presents unfortunate opportunities for crystal damage. Several automated protein crystal harvesting systems have been developed, including systems utilizing microcapillaries, microtools, microgrippers, acoustic droplet ejection and optical traps. However, these systems have yet to be commonly deployed in the majority of crystallography laboratories owing to a variety of technical and cost-related issues. Automation of protein crystal harvesting remains essential for harnessing the full benefits of fourth-generation synchrotrons, free-electron lasers and microfocus beamlines. Furthermore, automation of protein crystal harvesting offers several benefits when compared with traditional manual approaches, including the ability to harvest microcrystals, improved flash-cooling procedures and increased throughput.
Collapse
Affiliation(s)
- Marc C. Deller
- The Joint Center for Structural Genomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA 92084, USA
- Department of Genetic Epidemiology, Innsbruck Medical University, Schöpfstrasse 41, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Crystallographic analysis of ground and space thermostable T1 lipase crystal obtained via counter diffusion method approach. BIOMED RESEARCH INTERNATIONAL 2014; 2014:904381. [PMID: 24516857 PMCID: PMC3910077 DOI: 10.1155/2014/904381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/28/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022]
Abstract
Three-dimensional structure of thermostable lipase is much sought after nowadays as it is important for industrial application mainly found in the food, detergent, and pharmaceutical sectors. Crystallization utilizing the counter diffusion method in space was performed with the aim to obtain high resolution diffracting crystals with better internal order to improve the accuracy of the structure. Thermostable T1 lipase enzyme has been crystallized in laboratory on earth and also under microgravity condition aboard Progress spacecraft to the ISS in collaboration with JAXA (Japanese Aerospace Exploration Agency). This study is conducted with the aims of improving crystal packing and structure resolution. The diffraction data set for ground grown crystal was collected to 1.3 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.40 Å, b = 80.95 Å, and c = 99.81 Å, whereas the diffraction data set for space grown crystal was collected to 1.1 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.31 Å, b = 80.85 Å, and c = 99.81 Å. The major difference between the two crystal growth systems is the lack of convection and sedimentation in microgravity environment resulted in the growth of much higher quality crystals of T1 lipase.
Collapse
|
9
|
Carruthers Jr CW, Gerdts C, Johnson MD, Webb P. A microfluidic, high throughput protein crystal growth method for microgravity. PLoS One 2013; 8:e82298. [PMID: 24278480 PMCID: PMC3836816 DOI: 10.1371/journal.pone.0082298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022] Open
Abstract
The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG) capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS). The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions' microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-γ LBD), as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 10(3) cm.). After 70 days on the ISS, our samples were returned with 16 of 25 (64%) microgravity cards having crystals, compared to 12 of 25 (48%) of the ground controls. Encouragingly, there were more apo-hPPAR-γ LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories.
Collapse
Affiliation(s)
- Carl W. Carruthers Jr
- Houston Methodist Research Institute, Department of Genomic Medicine, Houston, Texas, United States of America
- * E-mail:
| | - Cory Gerdts
- Protein BioSolutions, Inc., Gaithersburg, Maryland, United States of America
| | | | - Paul Webb
- Houston Methodist Research Institute, Department of Genomic Medicine, Houston, Texas, United States of America
| |
Collapse
|
10
|
Giegé R. Fifty years excitement with science: recollections with and without tRNA. J Biol Chem 2013; 288:6679-87. [PMID: 23325807 DOI: 10.1074/jbc.x113.453894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
11
|
Perona JJ, Gruic-Sovulj I. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:1-41. [PMID: 23852030 DOI: 10.1007/128_2013_456] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) ensure the faithful transmission of genetic information in all living cells. The 24 known aaRS families are divided into 2 structurally distinct classes (class I and class II), each featuring a catalytic domain with a common fold that binds ATP, amino acid, and the 3'-terminus of tRNA. In a common two-step reaction, each aaRS first uses the energy stored in ATP to synthesize an activated aminoacyl adenylate intermediate. In the second step, either the 2'- or 3'-hydroxyl oxygen atom of the 3'-A76 tRNA nucleotide functions as a nucleophile in synthesis of aminoacyl-tRNA. Ten of the 24 aaRS families are unable to distinguish cognate from noncognate amino acids in the synthetic reactions alone. These enzymes possess additional editing activities for hydrolysis of misactivated amino acids and misacylated tRNAs, with clearance of the latter species accomplished in spatially separate post-transfer editing domains. A distinct class of trans-acting proteins that are homologous to class II editing domains also perform hydrolytic editing of some misacylated tRNAs. Here we review essential themes in catalysis with a view toward integrating the kinetic, stereochemical, and structural mechanisms of the enzymes. Although the aaRS have now been the subject of investigation for many decades, it will be seen that a significant number of questions regarding fundamental catalytic functioning still remain unresolved.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, 751, Portland, OR, 97207, USA,
| | | |
Collapse
|
12
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
13
|
Das D, Kozbial P, Han GW, Carlton D, Jaroszewski L, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Chen C, Chiu HJ, Chiu M, Clayton T, Deller MC, Duan L, Ellrott K, Elsliger MA, Ernst D, Farr CL, Feuerhelm J, Grzechnik A, Grant JC, Jin KK, Johnson HA, Klock HE, Knuth MW, Krishna SS, Kumar A, Marciano D, McMullan D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. The structure of KPN03535 (gi|152972051), a novel putative lipoprotein from Klebsiella pneumoniae, reveals an OB-fold. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1254-60. [PMID: 20944219 PMCID: PMC2954213 DOI: 10.1107/s1744309109018168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 05/13/2009] [Indexed: 11/10/2022]
Abstract
KPN03535 (gi|152972051) is a putative lipoprotein of unknown function that is secreted by Klebsiella pneumoniae MGH 78578. The crystal structure reveals that despite a lack of any detectable sequence similarity to known structures, it is a novel variant of the OB-fold and structurally similar to the bacterial Cpx-pathway protein NlpE, single-stranded DNA-binding (SSB) proteins and toxins. K. pneumoniae MGH 78578 forms part of the normal human skin, mouth and gut flora and is an opportunistic pathogen that is linked to about 8% of all hospital-acquired infections in the USA. This structure provides the foundation for further investigations into this divergent member of the OB-fold family.
Collapse
Affiliation(s)
- Debanu Das
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Piotr Kozbial
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, California, USA
| | - Gye Won Han
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Dennis Carlton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, California, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Polat Abdubek
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Tamara Astakhova
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Herbert L. Axelrod
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Constantina Bakolitsa
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, California, USA
| | - Connie Chen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Hsiu-Ju Chiu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Michelle Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Thomas Clayton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Marc C. Deller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lian Duan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Kyle Ellrott
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Dustin Ernst
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Carol L. Farr
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Julie Feuerhelm
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Anna Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Joanna C. Grant
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Kevin K. Jin
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Hope A. Johnson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - S. Sri Krishna
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, California, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Abhinav Kumar
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - David Marciano
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel McMullan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Mitchell D. Miller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Andrew T. Morse
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Edward Nigoghossian
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Amanda Nopakun
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Linda Okach
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Silvya Oommachen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Jessica Paulsen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Christina Puckett
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Ron Reyes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Christopher L. Rife
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Natasha Sefcovic
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, California, USA
| | - Henry J. Tien
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Christine B. Trame
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Henry van den Bedem
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Dana Weekes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, California, USA
| | - Tiffany Wooten
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Qingping Xu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Keith O. Hodgson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - John Wooley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, California, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Ian A. Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
14
|
Suzuki K, Sato Y, Maeda Y, Shimizu S, Hossain MT, Ubukata S, Sekiguchi T, Takénaka A. Crystallization and preliminary X-ray crystallographic study of a putative aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:608-12. [PMID: 17620724 PMCID: PMC2335148 DOI: 10.1107/s1744309107026905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 06/01/2007] [Indexed: 11/10/2022]
Abstract
Genome analysis suggests that the aspartyl-tRNA synthetase of the crenarchaeon Sulfolobus tokodaii strain 7 belongs to the nondiscriminating type that is believed to catalyze aspartylation of tRNA(Asp) and tRNA(Asn). This protein has been overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method from 100 mM sodium HEPES buffer pH 7.5 containing 100 mM NaCl and 1.6 M (NH4)2SO4 as the crystallizing reagent. Diffraction data were collected to 2.3 A resolution using synchrotron radiation. The crystal belongs to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 116.0, b = 139.3, c = 75.3 A. The estimated Matthews coefficient (3.10 A3 Da(-1); 60.3% solvent content) suggests the presence of two subunits in the asymmetric unit. The structure has been successfully solved by the molecular-replacement method. Full refinement of the structure may reveal it to be the original ancestor of the nondiscriminating AspRS.
Collapse
Affiliation(s)
- Kaoru Suzuki
- College of Science and Engineering, Iwaki-Meisei University, Chuou-dai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Yoshiteru Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | - Yohei Maeda
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | - Satoru Shimizu
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | - Md Tofazzal Hossain
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | - Souichirou Ubukata
- College of Science and Engineering, Iwaki-Meisei University, Chuou-dai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Takeshi Sekiguchi
- College of Science and Engineering, Iwaki-Meisei University, Chuou-dai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Akio Takénaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
15
|
Iwasaki W, Sekine SI, Kuroishi C, Kuramitsu S, Shirouzu M, Yokoyama S. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase. J Mol Biol 2006; 360:329-42. [PMID: 16753178 DOI: 10.1016/j.jmb.2006.04.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/24/2006] [Accepted: 04/26/2006] [Indexed: 11/30/2022]
Abstract
Asparaginyl-tRNA synthetase (AsnRS) is a member of the class-II aminoacyl-tRNA synthetases, and is responsible for catalyzing the specific aminoacylation of tRNA(Asn) with asparagine. Here, the crystal structure of AsnRS from Pyrococcus horikoshii, complexed with asparaginyl-adenylate (Asn-AMP), was determined at 1.45 A resolution, and those of free AsnRS and AsnRS complexed with an Asn-AMP analog (Asn-SA) were solved at 1.98 and 1.80 A resolutions, respectively. All of the crystal structures have many solvent molecules, which form a network of hydrogen-bonding interactions that surrounds the entire AsnRS molecule. In the AsnRS/Asn-AMP complex (or the AsnRS/Asn-SA), one side of the bound Asn-AMP (or Asn-SA) is completely covered by the solvent molecules, which complement the binding site. In particular, two of these water molecules were found to interact directly with the asparagine amide and carbonyl groups, respectively, and to contribute to the formation of a pocket highly complementary to the asparagine side-chain. Thus, these two water molecules appear to play a key role in the strict recognition of asparagine and the discrimination against aspartic acid by the AsnRS. This water-assisted asparagine recognition by the AsnRS strikingly contrasts with the fact that the aspartic acid recognition by the closely related aspartyl-tRNA synthetase is achieved exclusively through extensive interactions with protein amino acid residues. Furthermore, based on a docking model of AsnRS and tRNA, a single arginine residue (Arg83) in the AsnRS was postulated to be involved in the recognition of the third position of the tRNA(Asn) anticodon (U36). We performed a mutational analysis of this particular arginine residue, and confirmed its significance in the tRNA recognition.
Collapse
Affiliation(s)
- Wataru Iwasaki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Vergara A, Lorber B, Sauter C, Giegé R, Zagari A. Lessons from crystals grown in the Advanced Protein Crystallisation Facility for conventional crystallisation applied to structural biology. Biophys Chem 2005; 118:102-12. [PMID: 16150532 DOI: 10.1016/j.bpc.2005.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/23/2005] [Accepted: 06/23/2005] [Indexed: 11/24/2022]
Abstract
The crystallographic quality of protein crystals that were grown in microgravity has been compared to that of crystals that were grown in parallel on earth gravity under otherwise identical conditions. A goal of this comparison was to assess if a more accurate 3D-structure can be derived from crystallographic analysis of the former crystals. Therefore, the properties of crystals prepared with the Advanced Protein Crystallisation Facility (APCF) on earth and in orbit during the last decade were evaluated. A statistical analysis reveals that about half of the crystals produced under microgravity had a superior X-ray diffraction limit with respect of terrestrial controls. Eleven protein structures could be determined at previously unachieved resolutions using crystals obtained in the APCF. Microgravity induced features of the most relevant structures are reported. A second goal of this study was to identify the cause of the crystal quality enhancement useful for structure determination. No correlations between the effect of microgravity and other system-dependent parameters, such as isoelectric point or crystal solvent content, were found except the reduced convection during the crystallisation process. Thus, crystal growth under diffusive regime appears to be the key parameter explaining the beneficial effect of microgravity on crystal quality. The mimicry of these effects on earth in gels or in capillary tubes is discussed and the practical consequences for structural biology highlighted.
Collapse
Affiliation(s)
- Alessandro Vergara
- Dipartimento di Chimica, Università di Napoli Federico II, Monte S. Angelo, 80126, Napoli, Italia
| | | | | | | | | |
Collapse
|
17
|
Hosfield D, Palan J, Hilgers M, Scheibe D, McRee DE, Stevens RC. A fully integrated protein crystallization platform for small-molecule drug discovery. J Struct Biol 2003; 142:207-17. [PMID: 12718932 DOI: 10.1016/s1047-8477(03)00051-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-based drug discovery in the pharmaceutical industry benefits from cost-efficient methodologies that quickly assess the feasibility of specific, often refractory, protein targets to form well-diffracting crystals. By tightly coupling construct and purification diversity with nanovolume crystallization, the Structural Biology Group at Syrrx has developed such a platform to support its small-molecule drug-discovery program. During the past 18 months of operation at Syrrx, the Structural Biology Group has executed several million crystallization and imaging trials on over 400 unique drug-discovery targets. Here, key components of the platform, as well as an analysis of some experimental results that allowed for platform optimization, will be described.
Collapse
Affiliation(s)
- David Hosfield
- Syrrx, Inc., 10410 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
18
|
Charron C, Roy H, Blaise M, Giegé R, Kern D. Non-discriminating and discriminating aspartyl-tRNA synthetases differ in the anticodon-binding domain. EMBO J 2003; 22:1632-43. [PMID: 12660169 PMCID: PMC152893 DOI: 10.1093/emboj/cdg148] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In most organisms, tRNA aminoacylation is ensured by 20 aminoacyl-tRNA synthetases (aaRSs). In eubacteria, however, synthetases can be duplicated as in Thermus thermophilus, which contains two distinct AspRSs. While AspRS-1 is specific, AspRS-2 is non-discriminating and aspartylates tRNA(Asp) and tRNA(Asn). The structure at 2.3 A resolution of AspRS-2, the first of a non-discriminating synthetase, was solved. It differs from that of AspRS-1 but has resemblance to that of discriminating and archaeal AspRS from Pyrococcus kodakaraensis. The protein presents non-conventional features in its OB-fold anticodon-binding domain, namely the absence of a helix inserted between two beta-strands of this fold and a peculiar L1 loop differing from the large loops known to interact with tRNA(Asp) identity determinant C36 in conventional AspRSs. In AspRS-2, this loop is small and structurally homologous to that in AsnRSs, including conservation of a proline. In discriminating Pyrococcus AspRS, the L1 loop, although small, lacks this proline and is not superimposable with that of AspRS-2 or AsnRS. Its particular status is demonstrated by a loop-exchange experiment that renders the Pyrococcus AspRS non-discriminating.
Collapse
Affiliation(s)
- Christophe Charron
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | |
Collapse
|
19
|
Terzyan SS, Bourne CR, Ramsland PA, Bourne PC, Edmundson AB. Comparison of the three-dimensional structures of a human Bence-Jones dimer crystallized on Earth and aboard US Space Shuttle Mission STS-95. J Mol Recognit 2003; 16:83-90. [PMID: 12720277 DOI: 10.1002/jmr.610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Crystals of a human (Sea) Bence-Jones dimer were produced in a capillary by vapor diffusion under microgravity conditions in the 9 day US Space Shuttle Mission STS-95. In comparison to ground-based experiments, nucleation was facile and spontaneous in space. Appearance of a very large (8 x 1.6 x 1.0 mm) crystal in a short time period is a strong endorsement for the use of microgravity to produce crystals sufficiently large for neutron diffraction studies. The Sea dimer crystallized in the orthorhombic space group P2(1)2(1)2(1), with a = 48.9 A, b = 85.2 A, and c = 114.0 A. The crystals grown in microgravity exhibited significantly lower mosaicities than those of ground-based crystals and the X-ray diffraction data had a lower overall B factor. Three-dimensional structures determined by X-ray analysis at two temperatures (100 and 293 K) were indistinguishable from those obtained from ground-based crystals. However, both the crystallographic R factor and the free R factor were slightly lower in the models derived from crystals produced in microgravity. The major difference between the two crystal growth systems is a lack of convection and sedimentation in a microgravity environment. This environment resulted in the growth of much larger, higher-quality crystals of the Sea Bence-Jones protein. Structurally, heretofore unrecognized grooves on the external surfaces of the Sea and other immunoglobulin-derived fragments are regular features and may offer supplementary binding regions for super antigens and other elongated ligands in the bloodstream and perivascular tissues.
Collapse
Affiliation(s)
- Simon S Terzyan
- Crystallography Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
The usefulness of X-ray data derived from space-grown protein crystals for calculating a more accurate structure is reviewed here for three model proteins. These include the plant sweetening protein, thaumatin, from Thaumatococcus daniellii; the aspartyl-tRNA synthetase from Thermus thermophilus; and pea lectin from Pisum sativum. In all three cases, X-ray diffraction data collected from protein crystals obtained under reduced gravity lead to better defined initial electron density maps, facilitating model building and improved crystallographic statistics. With thaumatin, the phasing power of the anomalous scattering atom, sulfur, is used to determine protein crystal quality in terms of its usefulness for ab initio structure determination. Thaumatin crystals grown under microgravity provided improved phasing statistics compared to those of Earth-grown crystals. Consequently, generating a de novo protein model of higher quality was facilitated using X-ray diffraction data from space-grown crystals. This lends evidence to the possibility that a microgravity environment can favor protein crystal growth and, subsequently, be more useful for structure determination.
Collapse
Affiliation(s)
- Joseph D Ng
- Laboratory for Structural Biology and the Department of Biological Sciences, University of Alabama in Huntsville, 35899, USA.
| |
Collapse
|
21
|
Lorber B. The crystallization of biological macromolecules under microgravity: a way to more accurate three-dimensional structures? BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1599:1-8. [PMID: 12479400 DOI: 10.1016/s1570-9639(02)00403-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The crystallization of proteins and other biological particles (including nucleic acids, nucleo-protein complexes and large assemblies such as nucleosomes, ribosomal subunits or viruses) in a microgravity environment can produce crystals having lesser defects than crystals prepared under normal gravity on earth. Such microgravity-grown crystals can diffract X-rays to a higher resolution and have a lower mosaic spread. The inferred electron density maps can be richer in details owing to which more accurate three-dimensional structure models can be built. Major results reported in this field of research are reviewed. Novel ones obtained with the Advanced Protein Crystallization Facility are presented. For structural biology, practical applications and implications associated with crystallization and crystallography onboard the International Space Station are discussed.
Collapse
Affiliation(s)
- Bernard Lorber
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogénèse' UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, F-67084 Strasbourg, France.
| |
Collapse
|