1
|
Liu J, Zhang CY, Liu Y, Wu XL, Zhang TD, Zhao FZ, Chen LL, Jin XQ, He JL, Yin DC. The dual function of impurity in protein crystallization. CrystEngComm 2022. [DOI: 10.1039/d1ce01535d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein crystallization could be promoted with a low concentration of impurities and inhibited with a high concentration of impurities, and this inhibition can be weakened by an audible sound.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Yue Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Xiang-Long Wu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Tuo-Di Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Feng-Zhu Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Liang-Liang Chen
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Xiao-Qian Jin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Jin-Liang He
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| |
Collapse
|
2
|
Wang M, Falke S, Schubert R, Lorenzen K, Cheng QD, Exner C, Brognaro H, Mudogo CN, Betzel C. Pulsed electric fields induce modulation of protein liquid-liquid phase separation. SOFT MATTER 2020; 16:8547-8553. [PMID: 32909579 DOI: 10.1039/d0sm01478h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The time-resolved dynamic assembly and the structures of protein liquid dense clusters (LDCs) were analyzed under pulsed electric fields (EFs) applying complementary polarized and depolarized dynamic light scattering (DLS/DDLS), optical microscopy, and transmission electron microscopy (TEM). We discovered that pulsed EFs substantially affected overall morphologies and spatial distributions of protein LDCs and microcrystals, and affected the phase diagrams of LDC formation, including enabling protein solutions to overcome the diffusive flux energy barrier to phase separate. Data obtained from DLS/DDLS and TEM showed that LDCs appeared as precursors of protein crystal nuclei, followed by the formation of ordered structures within LDCs applying a pulsed EF. Experimental results of circular dichroism spectroscopy provided evidence that the protein secondary structure content is changing under EFs, which may consequently modulate protein-protein interactions, and the morphology, dimensions, and internal structure of LDCs. Data and results obtained unveil options to modulate the phase diagram of crystallization, and physical morphologies of protein LDCs and microcrystals by irradiating sample suspensions with pulsed EFs.
Collapse
Affiliation(s)
- Mengying Wang
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Sven Falke
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Qing-di Cheng
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Christian Exner
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Célestin Nzanzu Mudogo
- Department of Basic Sciences, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| |
Collapse
|
3
|
Meng Z, Huang Y, Cheng S, Wang J. Investigation of Oiling‐Out Phenomenon of Small Organic Molecules in Crystallization Processes: A Review. ChemistrySelect 2020. [DOI: 10.1002/slct.202001255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zichao Meng
- School of Chemical Engineering and TechnologyTianjin University No. 92 Weijin Road Tianjin 300072 P.R. China
| | - Yan Huang
- School of Chemical Engineering and TechnologyTianjin University No. 92 Weijin Road Tianjin 300072 P.R. China
| | - Shuo Cheng
- School of Chemical Engineering and TechnologyTianjin University No. 92 Weijin Road Tianjin 300072 P.R. China
| | - Jingtao Wang
- School of Chemical Engineering and TechnologyTianjin University No. 92 Weijin Road Tianjin 300072 P.R. China
| |
Collapse
|
4
|
Junius N, Vahdatahar E, Oksanen E, Ferrer JL, Budayova-Spano M. Optimization of crystallization of biological macromolecules using dialysis combined with temperature control. J Appl Crystallogr 2020; 53:686-698. [PMID: 32684884 PMCID: PMC7312135 DOI: 10.1107/s1600576720003209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/08/2020] [Indexed: 11/10/2022] Open
Abstract
A rational way to find the appropriate conditions to grow crystal samples for bio-crystallography is to determine the crystallization phase diagram, which allows precise control of the parameters affecting the crystal growth process. First, the nucleation is induced at supersaturated conditions close to the solubility boundary between the nucleation and metastable regions. Then, crystal growth is further achieved in the metastable zone - which is the optimal location for slow and ordered crystal expansion - by modulation of specific physical parameters. Recently, a prototype of an integrated apparatus for the rational optimization of crystal growth by mapping and manipulating temperature-precipitant-concentration phase diagrams has been constructed. Here, it is demonstrated that a thorough knowledge of the phase diagram is vital in any crystallization experiment. The relevance of the selection of the starting position and the kinetic pathway undertaken in controlling most of the final properties of the synthesized crystals is shown. The rational crystallization optimization strategies developed and presented here allow tailoring of crystal size and diffraction quality, significantly reducing the time, effort and amount of expensive protein material required for structure determination.
Collapse
Affiliation(s)
- Niels Junius
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Esko Oksanen
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Jean-Luc Ferrer
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
5
|
Falke S, Brognaro H, Martirosyan A, Dierks K, Betzel C. A multi-channel in situ light scattering instrument utilized for monitoring protein aggregation and liquid dense cluster formation. Heliyon 2019; 5:e03016. [PMID: 31886430 PMCID: PMC6921120 DOI: 10.1016/j.heliyon.2019.e03016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) phenomena have been observed in vitro as well as in vivo and came in focus of interdisciplinary research activities particularly aiming at understanding the physico-chemical pathways of LLPS and its functionality in recent years. Dynamic light scattering (DLS) has been proven to be a most efficient method to analyze macromolecular clustering in solutions and suspensions with diverse applications in life sciences, material science and biotechnology. For spatially and time-resolved investigations of LLPS, i.e. formation of liquid dense protein clusters (LDCs) and aggregation, a novel eight-channel in situ DLS instrument was designed, constructed and applied. The real time formation of LDCs of glucose isomerase (GI) and bovine pancreatic trypsin inhibitor (BPTI) under different physico-chemical conditions was investigated in situ. Complex shifts in the particle size distributions indicated growth of LDCs up to the μm size regime. Additionally, near-UV circular dichroism spectroscopy was performed to monitor the folding state of the proteins in the process of LDC formation.
Collapse
Affiliation(s)
- Sven Falke
- University Hamburg, Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, c/o DESY, Luruper Chaussee 149, Hamburg, 22607, Germany
| | - Hévila Brognaro
- University Hamburg, Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany
- Centre for Free-Electron-Laser Science, c/o DESY, Luruper Chaussee 149, Hamburg, 22607, Germany
| | - Arayik Martirosyan
- University Hamburg, Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany
| | - Karsten Dierks
- Xtal Concepts GmbH, Schnackenburgallee 13, 22525, Hamburg, Germany
| | - Christian Betzel
- University Hamburg, Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, c/o DESY, Luruper Chaussee 149, Hamburg, 22607, Germany
| |
Collapse
|
6
|
Multi-Step Concanavalin A Phase Separation and Early-Stage Nucleation Monitored Via Dynamic and Depolarized Light Scattering. CRYSTALS 2019. [DOI: 10.3390/cryst9120620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein phase separation and protein liquid cluster formation have been observed and analysed in protein crystallization experiments and, in recent years, have been reported more frequently, especially in studies related to membraneless organelles and protein cluster formation in cells. A detailed understanding about the phase separation process preceding liquid dense cluster formation will elucidate what has, so far, been poorly understood—despite intracellular crowding and phase separation being very common processes—and will also provide more insights into the early events of in vitro protein crystallization. In this context, the phase separation and crystallization kinetics of concanavalin A were analysed in detail, which applies simultaneous dynamic light scattering and depolarized dynamic light scattering to obtain insights into metastable intermediate states between the soluble phase and the crystalline form. A multi-step mechanism was identified for ConA phase separation, according to the resultant ACF decay, acquired after an increase in the concentration of the crowding agent until a metastable ConA gel intermediate between the soluble and final crystalline phases was observed. The obtained results also revealed that ConA is trapped in a macromolecular network due to short-range intermolecular protein interactions and is unable to transform back into a non-ergodic solution.
Collapse
|
7
|
Zimbitas G, Jawor-Baczynska A, Vesga MJ, Javid N, Moore BD, Parkinson J, Sefcik J. Investigation of molecular and mesoscale clusters in undersaturated glycine aqueous solutions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Ribeiro S, Ebbinghaus S, Marcos JC. Protein folding and quinary interactions: creating cellular organisation through functional disorder. FEBS Lett 2018; 592:3040-3053. [DOI: 10.1002/1873-3468.13211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 07/29/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Sara Ribeiro
- Centre of Chemistry University of Minho Braga Portugal
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry Technical University Braunschweig Germany
| | | |
Collapse
|
9
|
Da Vela S, Exner C, Schäufele RS, Möller J, Fu Z, Zhang F, Schreiber F. Arrested and temporarily arrested states in a protein-polymer mixture studied by USAXS and VSANS. SOFT MATTER 2017; 13:8756-8765. [PMID: 29130090 DOI: 10.1039/c7sm01434a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the transition of the phase separation kinetics from a complete to an arrested liquid-liquid phase separation (LLPS) in mixtures of bovine γ-globulin with polyethylene glycol (PEG). The solutions feature LLPS with upper critical solution temperature phase behavior. At higher PEG concentrations or low temperatures, non-equilibrium, gel-like states are found. The kinetics is followed during off-critical quenches by ultra-small angle X-ray scattering (USAXS) and very-small angle neutron scattering (VSANS). For shallow quenches a kinetics consistent with classical spinodal decomposition is found, with the characteristic length (ξ) growing with time as ξ ∼ t1/3. For deep quenches, ξ grows only very slowly with a growth exponent smaller than 0.05 during the observation time, indicating an arrested phase separation. For intermediate quench depths, a novel growth kinetics featuring a three-stage coarsening is observed, with an initial classical coarsening, a subsequent slowdown of the growth, and a later resumption of coarsening approaching again ξ ∼ t1/3. Samples featuring the three-stage coarsening undergo a temporarily arrested state. We hypothesize that, while intermittent coarsening and collapse might contribute to the temporary nature of the arrested state, migration-coalescence of the minority liquid phase through the majority glassy phase may be the main mechanism underlying this kinetics, which is also consistent with earlier simulation results.
Collapse
Affiliation(s)
- Stefano Da Vela
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Lomakin A, Latypov RF, Laubach JP, Hideshima T, Richardson PG, Munshi NC, Anderson KC, Benedek GB. Phase transitions in human IgG solutions. J Chem Phys 2014; 139:121904. [PMID: 24089716 DOI: 10.1063/1.4811345] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein condensations, such as crystallization, liquid-liquid phase separation, aggregation, and gelation, have been observed in concentrated antibody solutions under various solution conditions. While most IgG antibodies are quite soluble, a few outliers can undergo condensation under physiological conditions. Condensation of IgGs can cause serious consequences in some human diseases and in biopharmaceutical formulations. The phase transitions underlying protein condensations in concentrated IgG solutions is also of fundamental interest for the understanding of the phase behavior of non-spherical protein molecules. Due to the high solubility of generic IgGs, the phase behavior of IgG solutions has not yet been well studied. In this work, we present an experimental approach to study IgG solutions in which the phase transitions are hidden below the freezing point of the solution. Using this method, we have investigated liquid-liquid phase separation of six human myeloma IgGs and two recombinant pharmaceutical human IgGs. We have also studied the relation between crystallization and liquid-liquid phase separation of two human cryoglobulin IgGs. Our experimental results reveal several important features of the generic phase behavior of IgG solutions: (1) the shape of the coexistence curve is similar for all IgGs but quite different from that of quasi-spherical proteins; (2) all IgGs have critical points located at roughly the same protein concentration at ~100 mg/ml while their critical temperatures vary significantly; and (3) the liquid-liquid phase separation in IgG solutions is metastable with respect to crystallization. These features of phase behavior of IgG solutions reflect the fact that all IgGs have nearly identical molecular geometry but quite diverse net inter-protein interaction energies. This work provides a foundation for further experimental and theoretical studies of the phase behavior of generic IgGs as well as outliers with large propensity to condense. The investigation of the phase diagram of IgG solutions is of great importance for the understanding of immunoglobulin deposition diseases as well as for the understanding of the colloidal stability of IgG pharmaceutical formulations.
Collapse
Affiliation(s)
- Ying Wang
- Materials Processing Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang F, Roosen-Runge F, Sauter A, Wolf M, Jacobs RMJ, Schreiber F. Reentrant condensation, liquid–liquid phase separation and crystallization in protein solutions induced by multivalent metal ions. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-5002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
We briefly summarize the recent progress in tuning protein interactions as well as phase behavior in protein solutions using multivalent metal ions. We focus on the influence of control parameters and the mechanism of reentrant condensation, the metastable liquid–liquid phase separation and classical vs. non-classical pathways of protein crystallization.
Collapse
|
12
|
Jawor-Baczynska A, Moore BD, Lee HS, McCormick AV, Sefcik J. Population and size distribution of solute-rich mesospecies within mesostructured aqueous amino acid solutions. Faraday Discuss 2013; 167:425-40. [DOI: 10.1039/c3fd00066d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Zhang F, Roosen-Runge F, Sauter A, Roth R, Skoda MWA, Jacobs RMJ, Sztucki M, Schreiber F. The role of cluster formation and metastable liquid—liquid phase separation in protein crystallization. Faraday Discuss 2012. [DOI: 10.1039/c2fd20021j] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Dumetz AC, Chockla AM, Kaler EW, Lenhoff AM. Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates. Biophys J 2008; 94:570-83. [PMID: 18160663 PMCID: PMC2157236 DOI: 10.1529/biophysj.107.116152] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 08/09/2007] [Indexed: 12/21/2022] Open
Abstract
The aggregates and gels commonly observed during protein crystallization have generally been considered disordered phases without further characterization. Here their physical nature is addressed by investigating protein salting-out in ammonium sulfate and sodium chloride for six proteins (ovalbumin, ribonuclease A, soybean trypsin inhibitor, lysozyme, and beta-lactoglobulin A and B) at 4 degrees C, 23 degrees C, and 37 degrees C. When interpreted within the framework of a theoretical phase diagram obtained for colloidal particles displaying short-range attractive interactions, the results show that the formation of aggregates can be interpreted theoretically in terms of a gas-liquid phase separation for aggregates that are amorphous or gel-like. A notable additional feature is the existence of a second aggregation line observed for both ovalbumin and ribonuclease A in ammonium sulfate, interpreted theoretically as the spinodal. Further investigation of ovalbumin and lysozyme reveals that the formation of aggregates can be interpreted, in light of theoretical results from mode-coupling theory, as a kinetically trapped state or a gel phase that occurs through the intermediate of a gas-liquid phase separation. Despite the limitations of simple theoretical models of short-range attractive interactions, such as their inability to reproduce the effect of temperature, they provide a framework useful to describe the main features of protein phase behavior.
Collapse
Affiliation(s)
- André C Dumetz
- Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
15
|
Vivarès D, Bonneté F. Liquid−Liquid Phase Separations in Urate Oxidase/PEG Mixtures: Characterization and Implications for Protein Crystallization. J Phys Chem B 2004; 108:6498-507. [DOI: 10.1021/jp037502u] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D. Vivarès
- CRMCN-CNRS, Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France, and LMCP-UMR7590, Case 115, 4 place Jussieu, F-75252 Paris Cedex 05, France
| | - F. Bonneté
- CRMCN-CNRS, Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France, and LMCP-UMR7590, Case 115, 4 place Jussieu, F-75252 Paris Cedex 05, France
| |
Collapse
|