1
|
Fujisawa T, Shingae T, Ren J, Haraguchi S, Hanamoto T, Hoff WD, Unno M. Spectroscopic Validation of Crystallographic Structures of a Protein Active Site by Chiroptical Spectroscopy. J Phys Chem Lett 2023; 14:9304-9309. [PMID: 37816034 DOI: 10.1021/acs.jpclett.3c01954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Out-of-plane distortions of a cofactor molecule in a protein active site are functionally important, and in photoreceptors, it has been proposed that they are crucial for spectral tuning and energy storage in photocycle intermediates. However, these subtle structural features are often beyond the grasp of structural biology. This issue is strikingly exemplified by photoactive yellow protein: its 14 independently determined crystal structures exhibit considerable differences in the dihedral angles defining the chromophore geometry, even though most of these are at excellent resolution. Here we developed a strategy to verify cofactor distortions in crystal structures by using quantum chemical calculations and chiroptical spectroscopy, particularly Raman optical activity and electronic circular dichroism spectroscopies. Based on this approach, we identify seven crystal structures with the chromophore geometries inconsistent with the experimentally observed data. The strategy implemented here promises to be widely applicable to uncovering cofactor distortions at active sites and to studies of reaction intermediates.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takahito Shingae
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Jie Ren
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Shojiro Haraguchi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takeshi Hanamoto
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
2
|
Mix LT, Hara M, Fuzell J, Kumauchi M, Kaledhonkar S, Xie A, Hoff WD, Larsen DS. Not All Photoactive Yellow Proteins Are Built Alike: Surprises and Insights into Chromophore Photoisomerization, Protonation, and Thermal Reisomerization of the Photoactive Yellow Protein Isolated from Salinibacter ruber. J Am Chem Soc 2021; 143:19614-19628. [PMID: 34780163 DOI: 10.1021/jacs.1c08910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We demonstrate that the Halorhodospira halophila (Hhal) photoactive yellow protein (PYP) is not representative of the greater PYP family. The photodynamics of the PYP isolated from Salinibacter ruber (Srub) is characterized with a comprehensive range of spectroscopic techniques including ultrafast transient absorption, photostationary light titrations, Fourier transform infrared, and cryokinetics spectroscopies. We demonstrate that the dark-adapted pG state consists of two subpopulations differing in the protonation state of the chromophore and that both are photoactive, with the protonated species undergoing excited-state proton transfer. However, the primary I0 photoproduct observed in the Hhal PYP photocycle is absent in the Srub PYP photodynamics, which indicates that this intermediate, while important in Hhal photodynamics, is not a critical intermediate in initiating all PYP photocycles. The excited-state lifetime of Srub PYP is the longest of any PYP resolved to date (∼30 ps), which we ascribe to the more constrained chromophore binding pocket of Srub PYP and the absence of the critical Arg52 residue found in Hhal PYP. The final stage of the Srub PYP photocycle involves the slowest known thermal dark reversion of a PYP (∼40 min vs 350 ms in Hhal PYP). This property allowed the characterization of a pH-dependent equilibrium between the light-adapted pB state with a protonated cis chromophore and a newly resolved pG' intermediate with a deprotonated cis chromophore and pG-like protein conformation. This result demonstates that protein conformational changes and chromophore deprotonation precede chromophore reisomerization during the thermal recovery of the PYP photocycle.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jack Fuzell
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sandip Kaledhonkar
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Aihua Xie
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
3
|
Protonation Equilibrium in the Active Site of the Photoactive Yellow Protein. Molecules 2021; 26:molecules26072025. [PMID: 33918211 PMCID: PMC8037372 DOI: 10.3390/molecules26072025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
The role and existence of low-barrier hydrogen bonds (LBHBs) in enzymatic and protein activity has been largely debated. An interesting case is that of the photoactive yellow protein (PYP). In this protein, two short HBs adjacent to the chromophore, p-coumaric acid (pCA), have been identified by X-ray and neutron diffraction experiments. However, there is a lack of agreement on the chemical nature of these H-bond interactions. Additionally, no consensus has been reached on the presence of LBHBs in the active site of the protein, despite various experimental and theoretical studies having been carried out to investigate this issue. In this work, we perform a computational study that combines classical and density functional theory (DFT)-based quantum mechanical/molecular mechanical (QM/MM) simulations to shed light onto this controversy. Furthermore, we aim to deepen our understanding of the chemical nature and dynamics of the protons involved in the two short hydrogen bonds that, in the dark state of PYP, connect pCA with the two binding pocket residues (E46 and Y42). Our results support the existence of a strong LBHB between pCA and E46, with the H fully delocalized and shared between both the carboxylic oxygen of E46 and the phenolic oxygen of pCA. Additionally, our findings suggest that the pCA interaction with Y42 can be suitably described as a typical short ionic H-bond of moderate strength that is fully localized on the phenolic oxygen of Y42.
Collapse
|
4
|
Abstract
Neutron and X-ray crystallography are complementary to each other. While X-ray scattering is directly proportional to the number of electrons of an atom, neutrons interact with the atomic nuclei themselves. Neutron crystallography therefore provides an excellent alternative in determining the positions of hydrogens in a biological molecule. In particular, since highly polarized hydrogen atoms (H+) do not have electrons, they cannot be observed by X-rays. Neutron crystallography has its own limitations, mainly due to inherent low flux of neutrons sources, and as a consequence, the need for much larger crystals and for different data collection and analysis strategies. These technical challenges can however be overcome to yield crucial structural insights about protonation states in enzyme catalysis, ligand recognition, as well as the presence of unusual hydrogen bonds in proteins.
Collapse
|
5
|
Wang J. Visualization of H atoms in the X-ray crystal structure of photoactive yellow protein: Does it contain low-barrier hydrogen bonds? Protein Sci 2019; 28:1966-1972. [PMID: 31441173 DOI: 10.1002/pro.3716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 11/07/2022]
Abstract
The hydrogen bond (HB) between 4-hydroxycinnamic acid (HC4) and glutamic acid E46 of photoactive yellow protein is exceptionally strong. In the 0.82-å resolution X-ray structure for this protein (PDB ID: 1NWZ), the OH…O distance is only 2.57 å. The position of the H atom between these two O atoms has not been determined in that structure, and in the absence of that information, it is impossible to determine whether or not this HB is a low-barrier HB (LBHB), as was proposed recently based on neutron structures of this protein (Yamaguchi et al., Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 440-444). Residual electron density maps computed using the 1NWZ data reveal that this H atom is 0.92 å from the Oε2 atom of E46 and 1.67 å from the O4 ' of HC4, and that the OH…O bond angle is 167°. These observations indicate that E46 is protonated, and HC4 is deprotonated, as was originally suggested, and that the HB in question is not an LBHB.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| |
Collapse
|
6
|
Caldararu O, Manzoni F, Oksanen E, Logan DT, Ryde U. Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Acta Crystallogr D Struct Biol 2019; 75:368-380. [PMID: 30988254 PMCID: PMC6465982 DOI: 10.1107/s205979831900175x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Neutron crystallography is a powerful method to determine the positions of H atoms in macromolecular structures. However, it is sometimes hard to judge what would constitute a chemically reasonable model, and the geometry of H atoms depends more on the surroundings (for example the formation of hydrogen bonds) than heavy atoms, so that the empirical geometry information for the H atoms used to supplement the experimental data is often less accurate. These problems may be reduced by using quantum-mechanical calculations. A method has therefore been developed to combine quantum-mechanical calculations with joint crystallographic refinement against X-ray and neutron data. A first validation of this method is provided by re-refining the structure of the galectin-3 carbohydrate-recognition domain in complex with lactose. The geometry is improved, in particular for water molecules, for which the method leads to better-resolved hydrogen-bonding interactions. The method has also been applied to the active copper site of lytic polysaccharide monooxygenase and shows that the protonation state of the amino-terminal histidine residue can be determined.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Francesco Manzoni
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Instruments Division, European Spallation Source ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Derek T. Logan
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
7
|
Spectroscopic ruler for measuring active-site distortions based on Raman optical activity of a hydrogen out-of-plane vibration. Proc Natl Acad Sci U S A 2018; 115:8671-8675. [PMID: 30104345 DOI: 10.1073/pnas.1806491115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Photoactive yellow protein (PYP), from the phototrophic bacterium Halorhodospira halophila, is a small water-soluble photoreceptor protein and contains p-coumaric acid (pCA) as a chromophore. PYP has been an attractive model for studying the physical chemistry of protein active sites. Here, we explore how Raman optical activity (ROA) can be used to extract quantitative information on distortions of the pCA chromophore at the active site in PYP. We use 13C8-pCA to assign an intense signal at 826 cm-1 in the ROA spectrum of PYP to a hydrogen out-of-plane vibration of the ethylenic moiety of the chromophore. Quantum-chemical calculations based on density functional theory demonstrate that the sign of this ROA band reports the direction of the distortion in the dihedral angle about the ethylenic C=C bond, while its amplitude is proportional to the dihedral angle. These results document the ability of ROA to quantify structural deformations of a cofactor molecule embedded in a protein moiety.
Collapse
|
8
|
Mix LT, Carroll EC, Morozov D, Pan J, Gordon WR, Philip A, Fuzell J, Kumauchi M, van Stokkum I, Groenhof G, Hoff WD, Larsen DS. Excitation-Wavelength-Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila. Biochemistry 2018; 57:1733-1747. [PMID: 29465990 DOI: 10.1021/acs.biochem.7b01114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoactive yellow proteins (PYPs) make up a diverse class of blue-light-absorbing bacterial photoreceptors. Electronic excitation of the p-coumaric acid chromophore covalently bound within PYP results in triphasic quenching kinetics; however, the molecular basis of this behavior remains unresolved. Here we explore this question by examining the excitation-wavelength dependence of the photodynamics of the PYP from Halorhodospira halophila via a combined experimental and computational approach. The fluorescence quantum yield, steady-state fluorescence emission maximum, and cryotrapping spectra are demonstrated to depend on excitation wavelength. We also compare the femtosecond photodynamics in PYP at two excitation wavelengths (435 and 475 nm) with a dual-excitation-wavelength-interleaved pump-probe technique. Multicompartment global analysis of these data demonstrates that the excited-state photochemistry of PYP depends subtly, but convincingly, on excitation wavelength with similar kinetics with distinctly different spectral features, including a shifted ground-state beach and altered stimulated emission oscillator strengths and peak positions. Three models involving multiple excited states, vibrationally enhanced barrier crossing, and inhomogeneity are proposed to interpret the observed excitation-wavelength dependence of the data. Conformational heterogeneity was identified as the most probable model, which was supported with molecular mechanics simulations that identified two levels of inhomogeneity involving the orientation of the R52 residue and different hydrogen bonding networks with the p-coumaric acid chromophore. Quantum calculations were used to confirm that these inhomogeneities track to altered spectral properties consistent with the experimental results.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Elizabeth C Carroll
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Dmitry Morozov
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Jie Pan
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | | | | | - Jack Fuzell
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Ivo van Stokkum
- Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Gerrit Groenhof
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Delmar S Larsen
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
9
|
Oksanen E, Chen JCH, Fisher SZ. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules. Molecules 2017; 22:molecules22040596. [PMID: 28387738 PMCID: PMC6154725 DOI: 10.3390/molecules22040596] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/21/2022] Open
Abstract
The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.
Collapse
Affiliation(s)
- Esko Oksanen
- Science Directorate, European Spallation Source ERIC, Tunavägen 24, 22100 Lund, Sweden.
- Department of Biochemistry and Structural Biology, Lund University, Sölvegatan 39, 22362 Lund, Sweden.
| | - Julian C-H Chen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Suzanne Zoë Fisher
- Science Directorate, European Spallation Source ERIC, Tunavägen 24, 22100 Lund, Sweden.
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
10
|
Chen JCH, Unkefer CJ. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography. IUCRJ 2017; 4:72-86. [PMID: 28250943 PMCID: PMC5331467 DOI: 10.1107/s205225251601664x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.
Collapse
Affiliation(s)
- Julian C.-H. Chen
- Bioscience Division, Protein Crystallography Station, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Clifford J. Unkefer
- Bioscience Division, Protein Crystallography Station, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
11
|
O'Dell WB, Bodenheimer AM, Meilleur F. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. Arch Biochem Biophys 2016; 602:48-60. [DOI: 10.1016/j.abb.2015.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
12
|
Tamura K, Hayashi S. Role of Bulk Water Environment in Regulation of Functional Hydrogen-Bond Network in Photoactive Yellow Protein. J Phys Chem B 2015; 119:15537-49. [DOI: 10.1021/acs.jpcb.5b07555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koichi Tamura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Crystal and molecular structures of twelve salts from isopropylamine and different organic acids. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Gao X, Jin S, Jin L, Ye X, Zheng L, Li J, Jin B, Wang D. Noncovalent-bonded 1D–3D supramolecular architectures from 2-methylquinoline/quinoline with monocarboxylic acid and dicarboxylic acid. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kaledhonkar S, Hara M, Stalcup TP, Xie A, Hoff WD. Strong ionic hydrogen bonding causes a spectral isotope effect in photoactive yellow protein. Biophys J 2014; 105:2577-85. [PMID: 24314088 DOI: 10.1016/j.bpj.2013.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 10/25/2022] Open
Abstract
Standard hydrogen bonds are of great importance for protein structure and function. Ionic hydrogen bonds often are significantly stronger than standard hydrogen bonds and exhibit unique properties, but their role in proteins is not well understood. We report that hydrogen/deuterium exchange causes a redshift in the visible absorbance spectrum of photoactive yellow protein (PYP). We expand the range of interpretable isotope effects by assigning this spectral isotope effect (SIE) to a functionally important hydrogen bond at the active site of PYP. The inverted sign and extent of this SIE is explained by the ionic nature and strength of this hydrogen bond. These results show the relevance of ionic hydrogen bonding for protein active sites, and reveal that the inverted SIE is a novel, to our knowledge, tool to probe ionic hydrogen bonds. Our results support a classification of hydrogen bonds that distinguishes the properties of ionic hydrogen bonds from those of both standard and low barrier hydrogen bonds, and show how this classification helps resolve a recent debate regarding active site hydrogen bonding in PYP.
Collapse
|
16
|
Zhu J, Vreede J, Hospes M, Arents J, Kennis JTM, van Stokkum IHM, Hellingwerf KJ, Groot ML. Short Hydrogen Bonds and Negative Charge in Photoactive Yellow Protein Promote Fast Isomerization but not High Quantum Yield. J Phys Chem B 2014; 119:2372-83. [DOI: 10.1021/jp506785q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jingyi Zhu
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | - John T. M. Kennis
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | - Marie Louise Groot
- Department
of Physics and Astronomy, Faculty of Sciences, LaserLab, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
17
|
Crystal and molecular structure of eight organic acid–base adducts from 2-methylquinoline and different acids. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Nadal-Ferret M, Gelabert R, Moreno M, Lluch JM. Are there really low-barrier hydrogen bonds in proteins? The case of photoactive yellow protein. J Am Chem Soc 2014; 136:3542-52. [PMID: 24548066 DOI: 10.1021/ja4116617] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For a long time, low-barrier hydrogen bonds (LBHBs) have been proposed to exist in many enzymes and to play an important role in their catalytic function, but the proof of their existence has been elusive. The transient formation of an LBHB in a protein system has been detected for the first time using neutron diffraction techniques on a photoactive yellow protein (PYP) crystal in a study published in 2009 (Yamaguchi, S.; et al. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 440-444). However, very recent theoretical studies based on electronic structure calculations and NMR resonance experiments on PYP in solution (Saito, K.; et al. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 167-172) strongly indicate that there is not such an LBHB. By means of electronic structure calculations combined with the solution of the nuclear Schrödinger equation, we analyze here under which conditions an LBHB can exist in PYP, thus leading to a more reasonable and conciliating understanding of the above-mentioned studies.
Collapse
Affiliation(s)
- Marc Nadal-Ferret
- Departament de Química and ‡Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , 08193 Bellaterra (Barcelona), Spain
| | | | | | | |
Collapse
|
19
|
Jin S, Wang D, Huang Y, Fang H, Wang T, Fu P, Ding L. Hydrogen bonded supramolecular framework in organic acid–base adducts: Crystal structures of five cocrystals/salts assembled from 2-methylquinoline with monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Oktaviani NA, Pool TJ, Kamikubo H, Slager J, Scheek RM, Kataoka M, Mulder FAA. Comprehensive determination of protein tyrosine pKa values for photoactive yellow protein using indirect 13C NMR spectroscopy. Biophys J 2012; 102:579-86. [PMID: 22325281 DOI: 10.1016/j.bpj.2011.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/23/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022] Open
Abstract
Upon blue-light irradiation, the bacterium Halorhodospira halophila is able to modulate the activity of its flagellar motor and thereby evade potentially harmful UV radiation. The 14 kDa soluble cytosolic photoactive yellow protein (PYP) is believed to be the primary mediator of this photophobic response, and yields a UV/Vis absorption spectrum that closely matches the bacterium's motility spectrum. In the electronic ground state, the para-coumaric acid (pCA) chromophore of PYP is negatively charged and forms two short hydrogen bonds to the side chains of Glu-46 and Tyr-42. The resulting acid triad is central to the marked pH dependence of the optical-absorption relaxation kinetics of PYP. Here, we describe an NMR approach to sequence-specifically follow all tyrosine side-chain protonation states in PYP from pH 3.41 to 11.24. The indirect observation of the nonprotonated (13)C(γ) resonances in sensitive and well-resolved two-dimensional (13)C-(1)H spectra proved to be pivotal in this effort, as observation of other ring-system resonances was hampered by spectral congestion and line-broadening due to ring flips. We observe three classes of tyrosine residues in PYP that exhibit very different pK(a) values depending on whether the phenolic side chain is solvent-exposed, buried, or hydrogen-bonded. In particular, our data show that Tyr-42 remains fully protonated in the pH range of 3.41-11.24, and that pH-induced changes observed in the photocycle kinetics of PYP cannot be caused by changes in the charge state of Tyr-42. It is therefore very unlikely that the pCA chromophore undergoes changes in its electrostatic interactions in the electronic ground state.
Collapse
Affiliation(s)
- Nur Alia Oktaviani
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Jin S, Lu X, Wang D, Chen W. Crystal and molecular structure of four 1:1 adducts from 2-methylquinoline and different acidic components. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Boggio-Pasqua M, Burmeister CF, Robb MA, Groenhof G. Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations. Phys Chem Chem Phys 2012; 14:7912-28. [DOI: 10.1039/c2cp23628a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Kruszynski R. A structural and theoretical study of the intermolecular interactions in 8-hydroxyquinolinium-7-carboxylate monohydrate. Acta Crystallogr C 2011; 67:o230-4. [DOI: 10.1107/s0108270111021585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/04/2011] [Indexed: 11/10/2022] Open
|
24
|
Kovalevsky AY, Hanson BL, Seaver S, Fisher SZ, Mustyakimov M, Langan P. Preliminary joint X-ray and neutron protein crystallographic studies of endoxylanase II from the fungus Trichoderma longibrachiatum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:283-6. [PMID: 21301107 PMCID: PMC3034629 DOI: 10.1107/s174430911005075x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/14/2010] [Indexed: 11/11/2022]
Abstract
Room-temperature X-ray and neutron diffraction data were measured from a family 11 endoxylanase holoenzyme (XynII) originating from the filamentous fungus Trichoderma longibrachiatum to 1.55 Å resolution using a home source and to 1.80 Å resolution using the Protein Crystallography Station at LANSCE. Crystals of XynII, which is an important enzyme for biofuel production, were grown at pH 8.5 in order to examine the effect of basic conditions on the protonation-state distribution in the active site and throughout the protein molecule and to provide insights for rational engineering of catalytically improved XynII for industrial applications.
Collapse
Affiliation(s)
- Andrey Y Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Kovalevsky A, Fisher Z, Johnson H, Mustyakimov M, Waltman MJ, Langan P. Macromolecular neutron crystallography at the Protein Crystallography Station (PCS). ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1206-12. [PMID: 21041938 PMCID: PMC2967422 DOI: 10.1107/s0907444910027198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/08/2010] [Indexed: 11/10/2022]
Abstract
The Protein Crystallography Station (PCS) at Los Alamos Neutron Science Center is a high-performance beamline that forms the core of a capability for neutron macromolecular structure and function determination. Neutron diffraction is a powerful technique for locating H atoms and can therefore provide unique information about how biological macromolecules function and interact with each other and smaller molecules. Users of the PCS have access to neutron beam time, deuteration facilities, the expression of proteins and the synthesis of substrates with stable isotopes and also support for data reduction and structure analysis. The beamline exploits the pulsed nature of spallation neutrons and a large electronic detector in order to collect wavelength-resolved Laue patterns using all available neutrons in the white beam. The PCS user facility is described and highlights from the user program are presented.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Afonine PV, Mustyakimov M, Grosse-Kunstleve RW, Moriarty NW, Langan P, Adams PD. Joint X-ray and neutron refinement with phenix.refine. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1153-63. [PMID: 21041930 PMCID: PMC2967420 DOI: 10.1107/s0907444910026582] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/05/2010] [Indexed: 11/10/2022]
Abstract
Approximately 85% of the structures deposited in the Protein Data Bank have been solved using X-ray crystallography, making it the leading method for three-dimensional structure determination of macromolecules. One of the limitations of the method is that the typical data quality (resolution) does not allow the direct determination of H-atom positions. Most hydrogen positions can be inferred from the positions of other atoms and therefore can be readily included into the structure model as a priori knowledge. However, this may not be the case in biologically active sites of macromolecules, where the presence and position of hydrogen is crucial to the enzymatic mechanism. This makes the application of neutron crystallography in biology particularly important, as H atoms can be clearly located in experimental neutron scattering density maps. Without exception, when a neutron structure is determined the corresponding X-ray structure is also known, making it possible to derive the complete structure using both data sets. Here, the implementation of crystallographic structure-refinement procedures that include both X-ray and neutron data (separate or jointly) in the PHENIX system is described.
Collapse
Affiliation(s)
- Pavel V Afonine
- Lawrence Berkeley National Laboratory, Physical Biosciences Division, MS 64R0121, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Joshi CP, Otto H, Hoersch D, Meyer TE, Cusanovich MA, Heyn MP. Strong hydrogen bond between glutamic acid 46 and chromophore leads to the intermediate spectral form and excited state proton transfer in the Y42F mutant of the photoreceptor photoactive yellow protein. Biochemistry 2009; 48:9980-93. [PMID: 19764818 DOI: 10.1021/bi9012897] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the Y42F mutant of photoactive yellow protein (PYP) the photoreceptor is in an equilibrium between two dark states, the yellow and intermediate spectral forms, absorbing at 457 and 390 nm, respectively. The nature of this equilibrium and the light-induced protonation and structural changes in the two spectral forms were characterized by transient absorption, fluorescence, FTIR, and pH indicator dye experiments. In the yellow form, the oxygen of the deprotonated p-hydroxycinnamoyl chromophore is linked by a strong low-barrier hydrogen bond to the protonated carboxyl group of Glu46 and by a weaker one to Thr50. Using FTIR, we find that the band due to the carbonyl of the protonated side chain of Glu46 is shifted from 1736 cm(-1) in wild type to 1724 cm(-1) in the yellow form of Y42F, implying a stronger hydrogen bond with the deprotonated chromophore in Y42F. The FTIR data suggest moreover that in the intermediate spectral form the chromophore is protonated and Glu46 deprotonated. Flash spectroscopy (50 ns-10 s) shows that the photocycles of the two forms are essentially the same except for a transition around 5 mus that has opposite signs in the two forms and is due to the chemical relaxation between the two dark states. The two cycles are coupled, likely by excited state proton transfer. The Y42F cycle differs from wild type by the occurrence of a new intermediate with protonated chromophore between the usual I(1) and I(2) intermediates which we call I(1)H (370 nm). Transient fluorescence measurements indicate that in I(1)H the chromophore retains the orientation it had in I(1). Transient proton uptake occurs with a time constant of 230 mus and a stoichiometry of 1. No proton uptake was associated however with the formation of the I(1)H intermediate and the relaxation of the yellow/intermediate equilibrium. These protonation changes of the chromophore thus occur intramolecularly. The chromophore-Glu46 hydrogen bond in Y42F is shorter than in wild type, since the adjacent chromophore-Y42 hydrogen bond is replaced by a longer one with Thr50. This facilitates proton transfer from Glu46 to the chromophore in the dark by lowering the barrier, leading to the protonation equilibrium and causing the rapid light-induced proton transfer which couples the cycles.
Collapse
Affiliation(s)
- Chandra P Joshi
- Biophysics Group, Department of Physics, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Hydrogen bond dynamics in the active site of photoactive yellow protein. Proc Natl Acad Sci U S A 2009; 106:9232-7. [PMID: 19470452 DOI: 10.1073/pnas.0900168106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogen bonds play major roles in biological structure and function. Nonetheless, hydrogen-bonded protons are not typically observed by X-ray crystallography, and most structural studies provide limited insight into the conformational plasticity of individual hydrogen bonds or the dynamical coupling present within hydrogen bond networks. We report the NMR detection of the hydrogen-bonded protons donated by Tyr-42 and Glu-46 to the chromophore oxygen in the active site of the bacterial photoreceptor, photoactive yellow protein (PYP). We have used the NMR resonances for these hydrogen bonds to probe their conformational properties and ability to rearrange in response to nearby electronic perturbation. The detection of geometric isotope effects transmitted between the Tyr-42 and Glu-46 hydrogen bonds provides strong evidence for robust coupling of their equilibrium conformations. Incorporation of a modified chromophore containing an electron-withdrawing cyano group to delocalize negative charge from the chromophore oxygen, analogous to the electronic rearrangement detected upon photon absorption, results in a lengthening of the Tyr-42 and Glu-46 hydrogen bonds and an attenuated hydrogen bond coupling. The results herein elucidate fundamental properties of hydrogen bonds within the complex environment of a protein interior. Furthermore, the robust conformational coupling and plasticity of hydrogen bonds observed in the PYP active site may facilitate the larger-scale dynamical coupling and signal transduction inherent to the biological function that PYP has evolved to carry out and may provide a model for other coupled dynamic systems.
Collapse
|
29
|
Adams PD, Mustyakimov M, Afonine PV, Langan P. Generalized X-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:567-73. [PMID: 19465771 PMCID: PMC2685734 DOI: 10.1107/s0907444909011548] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/28/2009] [Indexed: 11/10/2022]
Abstract
X-ray and neutron crystallographic techniques provide complementary information on the structure and function of biological macromolecules. X-ray and neutron (XN) crystallographic data have been combined in a joint structure-refinement procedure that has been developed using recent advances in modern computational methodologies, including cross-validated maximum-likelihood target functions with gradient-based optimization and simulated annealing. The XN approach for complete (including hydrogen) macromolecular structure analysis provides more accurate and complete structures, as demonstrated for diisopropyl fluorophosphatase, photoactive yellow protein and human aldose reductase. Furthermore, this method has several practical advantages, including the easier determination of the orientation of water molecules, hydroxyl groups and some amino-acid side chains.
Collapse
Affiliation(s)
- Paul D Adams
- Lawrence Berkeley National Laboratory, CA 94720, USA
| | | | | | | |
Collapse
|
30
|
Fisher SZ, Kovalevsky AY, Domsic JF, Mustyakimov M, Silverman DN, McKenna R, Langan P. Preliminary joint neutron and X-ray crystallographic study of human carbonic anhydrase II. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:495-8. [PMID: 19407386 PMCID: PMC2675594 DOI: 10.1107/s1744309109013086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 04/06/2009] [Indexed: 11/10/2022]
Abstract
Carbonic anhydrases catalyze the interconversion of CO(2) to HCO(3)(-), with a subsequent proton-transfer (PT) step. PT proceeds via a proposed hydrogen-bonded water network in the active-site cavity that is stabilized by several hydrophilic residues. A joint X-ray and neutron crystallographic study has been initiated to determine the specific water network and the protonation states of the hydrophilic residues that coordinate it in human carbonic anhydrase II. Time-of-flight neutron crystallographic data have been collected from a large ( approximately 1.2 mm(3)) hydrogen/deuterium-exchanged crystal to 2.4 A resolution and X-ray crystallographic data have been collected from a similar but smaller crystal to 1.5 A resolution. Obtaining good-quality neutron data will contribute to the understanding of the catalytic mechanisms that utilize water networks for PT in protein environments.
Collapse
Affiliation(s)
- S Z Fisher
- Bioscience Division, Los Alamos National Laboratory, NM 87545, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Rzeźnicka II, Wurpel GW, Bonn M, van der Horst MA, Hellingwerf KJ, Matsunaga S, Yamada T, Kawai M. Observation of photoactive yellow protein anchored to a modified Au(1 1 1) surface by scanning tunneling microscopy. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.02.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Hoersch D, Otto H, Cusanovich MA, Heyn MP. Time-resolved spectroscopy of dye-labeled photoactive yellow protein suggests a pathway of light-induced structural changes in the N-terminal cap. Phys Chem Chem Phys 2009; 11:5437-44. [PMID: 19551213 DOI: 10.1039/b821345c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoreceptor PYP responds to light activation with global conformational changes. These changes are mainly located in the N-terminal cap of the protein, which is approximately 20 A away from the chromophore binding pocket and separated from it by the central beta-sheet. The question of the propagation of the structural change across the central beta-sheet is of general interest for the superfamily of PAS domain proteins, for which PYP is the structural prototype. Here we measured the kinetics of the structural changes in the N-terminal cap by transient absorption spectroscopy on the ns to second timescale. For this purpose the cysteine mutants A5C and N13C were prepared and labeled with thiol reactive 5-iodoacetamidofluorescein (IAF). A5 is located close to the N-terminus, while N13 is part of helix alpha1 near the functionally important salt bridge E12-K110 between the N-terminal cap and the central anti-parallel beta-sheet. The absorption spectrum of the dye is sensitive to its environment, and serves as a sensor for conformational changes near the labeling site. In both labeled mutants light activation results in a transient red-shift of the fluorescein absorption spectrum. To correlate the conformational changes with the photocycle intermediates of the protein, we compared the kinetics of the transient absorption signal of the dye with that of the p-hydroxycinnamoyl chromophore. While the structural change near A5 is synchronized with the rise of the I(2) intermediate, which is formed in approximately 200 mus, the change near N13 is delayed and rises with the next intermediate I(2)', which forms in approximately 2 ms. This indicates that different parts of the N-terminal cap respond to light activation with different kinetics. For the signaling pathway of photoactive yellow protein we propose a model in which the structural signal propagates from the chromophore binding pocket across the central beta-sheet via the N-terminal region to helix alpha1, resulting in a large change in the protein conformation.
Collapse
Affiliation(s)
- Daniel Hoersch
- Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
33
|
Abstract
Low-barrier hydrogen bonds (LBHBs) have been proposed to play roles in protein functions, including enzymatic catalysis and proton transfer. Transient formation of LBHBs is expected to stabilize specific reaction intermediates. However, based on experimental results and theoretical considerations, arguments against the importance of LBHB in proteins have been raised. The discrepancy is caused by the absence of direct identification of the hydrogen atom position. Here, we show by high-resolution neutron crystallography of photoactive yellow protein (PYP) that a LBHB exists in a protein, even in the ground state. We identified approximately 87% (819/942) of the hydrogen positions in PYP and demonstrated that the hydrogen bond between the chromophore and E46 is a LBHB. This LBHB stabilizes an isolated electric charge buried in the hydrophobic environment of the protein interior. We propose that in the excited state the fast relaxation of the LBHB into a normal hydrogen bond is the trigger for photo-signal propagation to the protein moiety. These results give insights into the novel roles of LBHBs and the mechanism of the formation of LBHBs.
Collapse
|
34
|
Intermolecular interactions in 2,4-dinitrophenylhydrazine hydrochloride hydrate: X-ray structural and quantum mechanical study. OPEN CHEM 2008. [DOI: 10.2478/s11532-008-0067-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract2,4-dinitrophenylhydrazine hydrochloride hydrate (I) was determined by X-ray crystallography, and the intermolecular interaction energies were calculated in terms of Natural Bond Orbital analysis. The asymmetric unit of (I) consists of a dinitrophenylhydrazinium cation, a chloride anion and a water molecule. The interatomic distances and angles in (I) show no unusual values. In the structure there are intermolecular N—H⊎⊎⊎O, N—H⊎⊎⊎Cl, O—H⊎⊎⊎Cl, C—H⊎⊎⊎O hydrogen bonds with bonding energy ranging form 16.03 to 0.76 kcal mol−1. These hydrogen bonds create the following N1 motifs: 6D, S(5), S(6), C(6), C(9). N1D motifs become infinite at the third level and are 2C 32(6), C 32(7).
Collapse
|
35
|
Blakeley MP, Langan P, Niimura N, Podjarny A. Neutron crystallography: opportunities, challenges, and limitations. Curr Opin Struct Biol 2008; 18:593-600. [PMID: 18656544 DOI: 10.1016/j.sbi.2008.06.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
Neutron crystallography has had an important, but relatively small role in structural biology over the years. In this review of recently determined neutron structures, a theme emerges of a field currently expanding beyond its traditional boundaries, to address larger and more complex problems, with smaller samples and shorter data collection times, and employing more sophisticated structure determination and refinement methods. The origin of this transformation can be found in a number of advances including first, the development of neutron image-plates and quasi-Laue methods at nuclear reactor neutron sources and the development of time-of-flight Laue methods and electronic detectors at spallation neutron sources; second, new facilities and methods for sample perdeuteration and crystallization; third, new approaches and computational tools for structure determination.
Collapse
|
36
|
Langan P, Fisher Z, Kovalevsky A, Mustyakimov M, Sutcliffe Valone A, Unkefer C, Waltman MJ, Coates L, Adams PD, Afonine PV, Bennett B, Dealwis C, Schoenborn BP. Protein structures by spallation neutron crystallography. JOURNAL OF SYNCHROTRON RADIATION 2008; 15:215-218. [PMID: 18421142 PMCID: PMC2394804 DOI: 10.1107/s0909049508000824] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 01/11/2008] [Indexed: 05/26/2023]
Abstract
The Protein Crystallography Station at Los Alamos Neutron Science Center is a high-performance beamline that forms the core of a capability for neutron macromolecular structure and function determination. This capability also includes the Macromolecular Neutron Crystallography (MNC) consortium between Los Alamos (LANL) and Lawrence Berkeley National Laboratories for developing computational tools for neutron protein crystallography, a biological deuteration laboratory, the National Stable Isotope Production Facility, and an MNC drug design consortium between LANL and Case Western Reserve University.
Collapse
Affiliation(s)
- Paul Langan
- Bioscience Division, Los Alamos National Laboratory, NM 87545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|