1
|
Flowers J, Echols N, Correy G, Jaishankar P, Togo T, Renslo AR, van den Bedem H, Fraser JS, Wankowicz SA. Expanding Automated Multiconformer Ligand Modeling to Macrocycles and Fragments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.613996. [PMID: 39386683 PMCID: PMC11463535 DOI: 10.1101/2024.09.20.613996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Small molecule ligands exhibit a diverse range of conformations in solution. Upon binding to a target protein, this conformational diversity is generally reduced. However, ligands can retain some degree of conformational flexibility even when bound to a receptor. In the Protein Data Bank (PDB), a small number of ligands have been modeled with distinct alternative conformations that are supported by X-ray crystallography density maps. However, the vast majority of structural models are fit to a single ligand conformation, potentially ignoring the underlying conformational heterogeneity present in the sample. We previously developed qFit-ligand to sample diverse ligand conformations and to select a parsimonious ensemble consistent with the density. While this approach indicated that many ligands populate alternative conformations, limitations in our sampling procedures often resulted in non-physical conformations and could not model complex ligands like macrocycles. Here, we introduce several improvements to qFit-ligand, including the use of routines within RDKit for stochastic conformational sampling. This new sampling method greatly enriches low energy conformations of small molecules and macrocycles. We further extended qFit-ligand to identify alternative conformations in PanDDA-modified density maps from high throughput X-ray fragment screening experiments. The new version of qFit-ligand improves fit to electron density and reduces torsional strain relative to deposited single conformer models and our previous version of qFit-ligand. These advances enhance the analysis of residual conformational heterogeneity present in ligand-bound structures, which can provide important insights for the rational design of therapeutic agents.
Collapse
Affiliation(s)
- Jessica Flowers
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Nathaniel Echols
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Galen Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Priya Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Atomwise Inc, San Francisco, CA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Stephanie A. Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Current Address: Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
2
|
Wankowicz SA, Ravikumar A, Sharma S, Riley B, Raju A, Hogan DW, Flowers J, van den Bedem H, Keedy DA, Fraser JS. Automated multiconformer model building for X-ray crystallography and cryo-EM. eLife 2024; 12:RP90606. [PMID: 38904665 PMCID: PMC11192534 DOI: 10.7554/elife.90606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
In their folded state, biomolecules exchange between multiple conformational states that are crucial for their function. Traditional structural biology methods, such as X-ray crystallography and cryogenic electron microscopy (cryo-EM), produce density maps that are ensemble averages, reflecting molecules in various conformations. Yet, most models derived from these maps explicitly represent only a single conformation, overlooking the complexity of biomolecular structures. To accurately reflect the diversity of biomolecular forms, there is a pressing need to shift toward modeling structural ensembles that mirror the experimental data. However, the challenge of distinguishing signal from noise complicates manual efforts to create these models. In response, we introduce the latest enhancements to qFit, an automated computational strategy designed to incorporate protein conformational heterogeneity into models built into density maps. These algorithmic improvements in qFit are substantiated by superior Rfree and geometry metrics across a wide range of proteins. Importantly, unlike more complex multicopy ensemble models, the multiconformer models produced by qFit can be manually modified in most major model building software (e.g., Coot) and fit can be further improved by refinement using standard pipelines (e.g., Phenix, Refmac, Buster). By reducing the barrier of creating multiconformer models, qFit can foster the development of new hypotheses about the relationship between macromolecular conformational dynamics and function.
Collapse
Affiliation(s)
- Stephanie A Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Ashraya Ravikumar
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
- Ph.D. Program in Biology, The Graduate Center, City University of New YorkNew YorkUnited States
| | - Blake Riley
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | - Akshay Raju
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | - Daniel W Hogan
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Jessica Flowers
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Atomwise IncSan FranciscoUnited States
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
- Department of Chemistry and Biochemistry, City College of New YorkNew YorkUnited States
- Ph.D. Programs in Biochemistry, Biology and Chemistry, The Graduate Center, City University of New YorkNew YorkUnited States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
3
|
Wankowicz SA, Ravikumar A, Sharma S, Riley BT, Raju A, Flowers J, Hogan D, van den Bedem H, Keedy DA, Fraser JS. Uncovering Protein Ensembles: Automated Multiconformer Model Building for X-ray Crystallography and Cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546963. [PMID: 37425870 PMCID: PMC10327213 DOI: 10.1101/2023.06.28.546963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In their folded state, biomolecules exchange between multiple conformational states that are crucial for their function. Traditional structural biology methods, such as X-ray crystallography and cryogenic electron microscopy (cryo-EM), produce density maps that are ensemble averages, reflecting molecules in various conformations. Yet, most models derived from these maps explicitly represent only a single conformation, overlooking the complexity of biomolecular structures. To accurately reflect the diversity of biomolecular forms, there is a pressing need to shift towards modeling structural ensembles that mirror the experimental data. However, the challenge of distinguishing signal from noise complicates manual efforts to create these models. In response, we introduce the latest enhancements to qFit, an automated computational strategy designed to incorporate protein conformational heterogeneity into models built into density maps. These algorithmic improvements in qFit are substantiated by superior R f r e e and geometry metrics across a wide range of proteins. Importantly, unlike more complex multicopy ensemble models, the multiconformer models produced by qFit can be manually modified in most major model building software (e.g. Coot) and fit can be further improved by refinement using standard pipelines (e.g. Phenix, Refmac, Buster). By reducing the barrier of creating multiconformer models, qFit can foster the development of new hypotheses about the relationship between macromolecular conformational dynamics and function.
Collapse
Affiliation(s)
- Stephanie A. Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ashraya Ravikumar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Ph.D. Program in Biology, The Graduate Center – City University of New York, New York, NY 10016
| | - Blake T. Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Akshay Raju
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Jessica Flowers
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Hogan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Atomwise, Inc., San Francisco, CA, United States
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center – City University of New York, New York, NY 10016
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Palaniappan C, Rajendran S, Sekar K. Alternate conformations found in protein structures implies biological functions: A case study using cyclophilin A. Curr Res Struct Biol 2024; 7:100145. [PMID: 38690327 PMCID: PMC11059445 DOI: 10.1016/j.crstbi.2024.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Protein dynamics linked to numerous biomolecular functions, such as ligand binding, allosteric regulation, and catalysis, must be better understood at the atomic level. Reactive atoms of key residues drive a repertoire of biomolecular functions by flipping between alternate conformations or conformational substates, seldom found in protein structures. Probing such sparsely sampled alternate conformations would provide mechanistic insight into many biological functions. We are therefore interested in evaluating the instance of amino acids adopted alternate conformations, either in backbone or side-chain atoms or in both. Accordingly, over 70000 protein structures appear to contain alternate conformations only 'A' and 'B' for any atom, particularly the instance of amino acids that adopted alternate conformations are more for Arg, Cys, Met, and Ser than others. The resulting protein structure analysis depicts that amino acids with alternate conformations are mainly found in the helical and β-regions and are often seen in high-resolution X-ray crystal structures. Furthermore, a case study on human cyclophilin A (CypA) was performed to explain the pre-existing intrinsic dynamics of catalytically critical residues from the CypA and how such intrinsic dynamics perturbed upon Ser99Thr mutation using molecular dynamics simulations on the ns-μs timescale. Simulation results demonstrated that the Ser99Thr mutation had impaired the alternate conformations or the catalytically productive micro-environment of Phe113, mimicking the experimentally observed perturbation captured by X-ray crystallography. In brief, a deeper comprehension of alternate conformations adopted by the amino acids may shed light on the interplay between protein structure, dynamics, and function.
Collapse
Affiliation(s)
- Chandrasekaran Palaniappan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Santhosh Rajendran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Kanagaraj Sekar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
5
|
Ramelot TA, Tejero R, Montelione GT. Representing structures of the multiple conformational states of proteins. Curr Opin Struct Biol 2023; 83:102703. [PMID: 37776602 PMCID: PMC10841472 DOI: 10.1016/j.sbi.2023.102703] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
Biomolecules exhibit dynamic behavior that single-state models of their structures cannot fully capture. We review some recent advances for investigating multiple conformations of biomolecules, including experimental methods, molecular dynamics simulations, and machine learning. We also address the challenges associated with representing single- and multiple-state models in data archives, with a particular focus on NMR structures. Establishing standardized representations and annotations will facilitate effective communication and understanding of these complex models to the broader scientific community.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Roberto Tejero
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Gaetano T Montelione
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
6
|
Thompson MC. Combining temperature perturbations with X-ray crystallography to study dynamic macromolecules: A thorough discussion of experimental methods. Methods Enzymol 2023; 688:255-305. [PMID: 37748829 DOI: 10.1016/bs.mie.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Temperature is an important state variable that governs the behavior of microscopic systems, yet crystallographers rarely exploit temperature changes to study the structure and dynamics of biological macromolecules. In fact, approximately 90% of crystal structures in the Protein Data Bank were determined under cryogenic conditions, because sample cryocooling makes crystals robust to X-ray radiation damage and facilitates data collection. On the other hand, cryocooling can introduce artifacts into macromolecular structures, and can suppress conformational dynamics that are critical for function. Fortunately, recent advances in X-ray detector technology, X-ray sources, and computational data processing algorithms make non-cryogenic X-ray crystallography easier and more broadly applicable than ever before. Without the reliance on cryocooling, high-resolution crystallography can be combined with various temperature perturbations to gain deep insight into the conformational landscapes of macromolecules. This Chapter reviews the historical reasons for the prevalence of cryocooling in macromolecular crystallography, and discusses its potential drawbacks. Next, the Chapter summarizes technological developments and methodologies that facilitate non-cryogenic crystallography experiments. Finally, the chapter discusses the theoretical underpinnings and practical aspects of multi-temperature and temperature-jump crystallography experiments, which are powerful tools for understanding the relationship between the structure, dynamics, and function of proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, United States.
| |
Collapse
|
7
|
Du S, Wankowicz SA, Yabukarski F, Doukov T, Herschlag D, Fraser JS. Refinement of multiconformer ensemble models from multi-temperature X-ray diffraction data. Methods Enzymol 2023; 688:223-254. [PMID: 37748828 PMCID: PMC10637719 DOI: 10.1016/bs.mie.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Conformational ensembles underlie all protein functions. Thus, acquiring atomic-level ensemble models that accurately represent conformational heterogeneity is vital to deepen our understanding of how proteins work. Modeling ensemble information from X-ray diffraction data has been challenging, as traditional cryo-crystallography restricts conformational variability while minimizing radiation damage. Recent advances have enabled the collection of high quality diffraction data at ambient temperatures, revealing innate conformational heterogeneity and temperature-driven changes. Here, we used diffraction datasets for Proteinase K collected at temperatures ranging from 313 to 363 K to provide a tutorial for the refinement of multiconformer ensemble models. Integrating automated sampling and refinement tools with manual adjustments, we obtained multiconformer models that describe alternative backbone and sidechain conformations, their relative occupancies, and interconnections between conformers. Our models revealed extensive and diverse conformational changes across temperature, including increased bound peptide ligand occupancies, different Ca2+ binding site configurations and altered rotameric distributions. These insights emphasize the value and need for multiconformer model refinement to extract ensemble information from diffraction data and to understand ensemble-function relationships.
Collapse
Affiliation(s)
- Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA, United States; Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Stephanie A Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA, United States; Bristol-Myers Squibb, San Diego, CA, United States
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA, United States; Department of Chemical Engineering, Stanford University, Stanford, CA, United States; Stanford ChEM-H, Stanford University, Stanford, CA, United States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Quantitative Biosciences Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
8
|
Shen Y, Bax A. Synergism between x-ray crystallography and NMR residual dipolar couplings in characterizing protein dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:040901. [PMID: 37448874 PMCID: PMC10338066 DOI: 10.1063/4.0000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The important role of structural dynamics in protein function is widely recognized. Thermal or B-factors and their anisotropy, seen in x-ray analysis of protein structures, report on the presence of atomic coordinate heterogeneity that can be attributed to motion. However, their quantitative evaluation in terms of protein dynamics by x-ray ensemble refinement remains challenging. NMR spectroscopy provides quantitative information on the amplitudes and time scales of motional processes. Unfortunately, with a few exceptions, the NMR data do not provide direct insights into the atomic details of dynamic trajectories. Residual dipolar couplings, measured by solution NMR, are very precise parameters reporting on the time-averaged bond-vector orientations and may offer the opportunity to derive correctly weighted dynamic ensembles of structures for cases where multiple high-resolution x-ray structures are available. Applications to the SARS-CoV-2 main protease, Mpro, and ubiquitin highlight this complementarity of NMR and crystallography for quantitative assessment of internal motions.
Collapse
Affiliation(s)
- Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Shen Y, Robertson AJ, Bax A. Validation of X-ray Crystal Structure Ensemble Representations of SARS-CoV-2 Main Protease by Solution NMR Residual Dipolar Couplings. J Mol Biol 2023; 435:168067. [PMID: 37330294 PMCID: PMC10270724 DOI: 10.1016/j.jmb.2023.168067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Considerable debate has focused on whether sampling of molecular dynamics trajectories restrained by crystallographic data can be used to develop realistic ensemble models for proteins in their natural, solution state. For the SARS-CoV-2 main protease, Mpro, we evaluated agreement between solution residual dipolar couplings (RDCs) and various recently reported multi-conformer and dynamic-ensemble crystallographic models. Although Phenix-derived ensemble models showed only small improvements in crystallographic Rfree, substantially improved RDC agreement over fits to a conventionally refined 1.2-Å X-ray structure was observed, in particular for residues with above average disorder in the ensemble. For a set of six lower resolution (1.55-2.19 Å) Mpro X-ray ensembles, obtained at temperatures ranging from 100 to 310 K, no significant improvement over conventional two-conformer representations was found. At the residue level, large differences in motions were observed among these ensembles, suggesting high uncertainties in the X-ray derived dynamics. Indeed, combining the six ensembles from the temperature series with the two 1.2-Å X-ray ensembles into a single 381-member "super ensemble" averaged these uncertainties and substantially improved agreement with RDCs. However, all ensembles showed excursions that were too large for the most dynamic fraction of residues. Our results suggest that further improvements to X-ray ensemble refinement are feasible, and that RDCs provide a sensitive benchmark in such endeavors. Remarkably, a weighted ensemble of 350 PDB Mpro X-ray structures provided slightly better cross-validated agreement with RDCs than any individual ensemble refinement, implying that differences in lattice confinement also limit the fit of RDCs to X-ray coordinates.
Collapse
Affiliation(s)
- Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angus J Robertson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. https://twitter.com/angusjrobertson
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Du S, Wankowicz SA, Yabukarski F, Doukov T, Herschlag D, Fraser JS. Refinement of Multiconformer Ensemble Models from Multi-temperature X-ray Diffraction Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539620. [PMID: 37205593 PMCID: PMC10187334 DOI: 10.1101/2023.05.05.539620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Conformational ensembles underlie all protein functions. Thus, acquiring atomic-level ensemble models that accurately represent conformational heterogeneity is vital to deepen our understanding of how proteins work. Modeling ensemble information from X-ray diffraction data has been challenging, as traditional cryo-crystallography restricts conformational variability while minimizing radiation damage. Recent advances have enabled the collection of high quality diffraction data at ambient temperatures, revealing innate conformational heterogeneity and temperature-driven changes. Here, we used diffraction datasets for Proteinase K collected at temperatures ranging from 313 to 363K to provide a tutorial for the refinement of multiconformer ensemble models. Integrating automated sampling and refinement tools with manual adjustments, we obtained multiconformer models that describe alternative backbone and sidechain conformations, their relative occupancies, and interconnections between conformers. Our models revealed extensive and diverse conformational changes across temperature, including increased bound peptide ligand occupancies, different Ca2+ binding site configurations and altered rotameric distributions. These insights emphasize the value and need for multiconformer model refinement to extract ensemble information from diffraction data and to understand ensemble-function relationships.
Collapse
Affiliation(s)
- Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephanie A. Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
- Bristol-Myers Squibb, San Diego, California 92121, United States
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Quantitative Biosciences Institute, University of California, San Francisco, California 94143, United States
| |
Collapse
|
11
|
Stachowski TR, Fischer M. FLEXR: automated multi-conformer model building using electron-density map sampling. Acta Crystallogr D Struct Biol 2023; 79:354-367. [PMID: 37071395 PMCID: PMC10167668 DOI: 10.1107/s2059798323002498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/13/2023] [Indexed: 04/19/2023] Open
Abstract
Protein conformational dynamics that may inform biology often lie dormant in high-resolution electron-density maps. While an estimated ∼18% of side chains in high-resolution models contain alternative conformations, these are underrepresented in current PDB models due to difficulties in manually detecting, building and inspecting alternative conformers. To overcome this challenge, we developed an automated multi-conformer modeling program, FLEXR. Using Ringer-based electron-density sampling, FLEXR builds explicit multi-conformer models for refinement. Thereby, it bridges the gap of detecting hidden alternate states in electron-density maps and including them in structural models for refinement, inspection and deposition. Using a series of high-quality crystal structures (0.8-1.85 Å resolution), we show that the multi-conformer models produced by FLEXR uncover new insights that are missing in models built either manually or using current tools. Specifically, FLEXR models revealed hidden side chains and backbone conformations in ligand-binding sites that may redefine protein-ligand binding mechanisms. Ultimately, the tool facilitates crystallographers with opportunities to include explicit multi-conformer states in their high-resolution crystallographic models. One key advantage is that such models may better reflect interesting higher energy features in electron-density maps that are rarely consulted by the community at large, which can then be productively used for ligand discovery downstream. FLEXR is open source and publicly available on GitHub at https://github.com/TheFischerLab/FLEXR.
Collapse
Affiliation(s)
- Timothy R. Stachowski
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
12
|
Doukov T, Herschlag D, Yabukarski F. Obtaining anomalous and ensemble information from protein crystals from 220 K up to physiological temperatures. Acta Crystallogr D Struct Biol 2023; 79:212-223. [PMID: 36876431 PMCID: PMC9986799 DOI: 10.1107/s205979832300089x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
X-ray crystallography has been invaluable in delivering structural information about proteins. Previously, an approach has been developed that allows high-quality X-ray diffraction data to be obtained from protein crystals at and above room temperature. Here, this previous work is built on and extended by showing that high-quality anomalous signal can be obtained from single protein crystals using diffraction data collected at 220 K up to physiological temperatures. The anomalous signal can be used to directly determine the structure of a protein, i.e. to phase the data, as is routinely performed under cryoconditions. This ability is demonstrated by obtaining diffraction data from model lysozyme, thaumatin and proteinase K crystals, the anomalous signal from which allowed their structures to be solved experimentally at 7.1 keV X-ray energy and at room temperature with relatively low data redundancy. It is also demonstrated that the anomalous signal from diffraction data obtained at 310 K (37°C) can be used to solve the structure of proteinase K and to identify ordered ions. The method provides useful anomalous signal at temperatures down to 220 K, resulting in an extended crystal lifetime and increased data redundancy. Finally, we show that useful anomalous signal can be obtained at room temperature using X-rays of 12 keV energy as typically used for routine data collection, allowing this type of experiment to be carried out at widely accessible synchrotron beamline energies and enabling the simultaneous extraction of high-resolution data and anomalous signal. With the recent emphasis on obtaining conformational ensemble information for proteins, the high resolution of the data allows such ensembles to be built, while the anomalous signal allows the structure to be experimentally solved, ions to be identified, and water molecules and ions to be differentiated. Because bound metal-, phosphorus- and sulfur-containing ions all have anomalous signal, obtaining anomalous signal across temperatures and up to physiological temperatures will provide a more complete description of protein conformational ensembles, function and energetics.
Collapse
Affiliation(s)
- Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel Herschlag
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Filip Yabukarski
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Bristol-Myers Squibb, San Diego, CA 92121, USA
| |
Collapse
|
13
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
14
|
Yabukarski F, Doukov T, Pinney MM, Biel JT, Fraser JS, Herschlag D. Ensemble-function relationships to dissect mechanisms of enzyme catalysis. SCIENCE ADVANCES 2022; 8:eabn7738. [PMID: 36240280 PMCID: PMC9565801 DOI: 10.1126/sciadv.abn7738] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/30/2022] [Indexed: 05/27/2023]
Abstract
Decades of structure-function studies have established our current extensive understanding of enzymes. However, traditional structural models are snapshots of broader conformational ensembles of interchanging states. We demonstrate the need for conformational ensembles to understand function, using the enzyme ketosteroid isomerase (KSI) as an example. Comparison of prior KSI cryogenic x-ray structures suggested deleterious mutational effects from a misaligned oxyanion hole catalytic residue. However, ensemble information from room-temperature x-ray crystallography, combined with functional studies, excluded this model. Ensemble-function analyses can deconvolute effects from altering the probability of occupying a state (P-effects) and changing the reactivity of each state (k-effects); our ensemble-function analyses revealed functional effects arising from weakened oxyanion hole hydrogen bonding and substrate repositioning within the active site. Ensemble-function studies will have an integral role in understanding enzymes and in meeting the future goals of a predictive understanding of enzyme catalysis and engineering new enzymes.
Collapse
Affiliation(s)
- Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Margaux M. Pinney
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Justin T. Biel
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Yabukarski F, Doukov T, Mokhtari DA, Du S, Herschlag D. Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277 K) and cryo-cooled protein crystals. Acta Crystallogr D Struct Biol 2022; 78:945-963. [PMID: 35916220 PMCID: PMC9344472 DOI: 10.1107/s2059798322005939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cryo-cooling has been nearly universally adopted to mitigate X-ray damage and facilitate crystal handling in protein X-ray crystallography. However, cryo X-ray crystallographic data provide an incomplete window into the ensemble of conformations that is at the heart of protein function and energetics. Room-temperature (RT) X-ray crystallography provides accurate ensemble information, and recent developments allow conformational heterogeneity (the experimental manifestation of ensembles) to be extracted from single-crystal data. Nevertheless, high sensitivity to X-ray damage at RT raises concerns about data reliability. To systematically address this critical issue, increasingly X-ray-damaged high-resolution data sets (1.02-1.52 Å resolution) were obtained from single proteinase K, thaumatin and lysozyme crystals at RT (277 K). In each case a modest increase in conformational heterogeneity with X-ray damage was observed. Merging data with different extents of damage (as is typically carried out) had negligible effects on conformational heterogeneity until the overall diffraction intensity decayed to ∼70% of its initial value. These effects were compared with X-ray damage effects in cryo-cooled crystals by carrying out an analogous analysis of increasingly damaged proteinase K cryo data sets (0.9-1.16 Å resolution). X-ray damage-associated heterogeneity changes were found that were not observed at RT. This property renders it difficult to distinguish real from artefactual conformations and to determine the conformational response to changes in temperature. The ability to acquire reliable heterogeneity information from single crystals at RT, together with recent advances in RT data collection at accessible synchrotron beamlines, provides a strong motivation for the widespread adoption of RT X-ray crystallography to obtain conformational ensemble information.
Collapse
Affiliation(s)
- Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel A. Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Wankowicz SA, de Oliveira SH, Hogan DW, van den Bedem H, Fraser JS. Ligand binding remodels protein side-chain conformational heterogeneity. eLife 2022; 11:e74114. [PMID: 35312477 PMCID: PMC9084896 DOI: 10.7554/elife.74114] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
While protein conformational heterogeneity plays an important role in many aspects of biological function, including ligand binding, its impact has been difficult to quantify. Macromolecular X-ray diffraction is commonly interpreted with a static structure, but it can provide information on both the anharmonic and harmonic contributions to conformational heterogeneity. Here, through multiconformer modeling of time- and space-averaged electron density, we measure conformational heterogeneity of 743 stringently matched pairs of crystallographic datasets that reflect unbound/apo and ligand-bound/holo states. When comparing the conformational heterogeneity of side chains, we observe that when binding site residues become more rigid upon ligand binding, distant residues tend to become more flexible, especially in non-solvent-exposed regions. Among ligand properties, we observe increased protein flexibility as the number of hydrogen bonds decreases and relative hydrophobicity increases. Across a series of 13 inhibitor-bound structures of CDK2, we find that conformational heterogeneity is correlated with inhibitor features and identify how conformational changes propagate differences in conformational heterogeneity away from the binding site. Collectively, our findings agree with models emerging from nuclear magnetic resonance studies suggesting that residual side-chain entropy can modulate affinity and point to the need to integrate both static conformational changes and conformational heterogeneity in models of ligand binding.
Collapse
Affiliation(s)
- Stephanie A Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Biophysics Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | | | - Daniel W Hogan
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Atomwise Inc.San FranciscoUnited States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
17
|
Wilson MA. Mapping Enzyme Landscapes by Time-Resolved Crystallography with Synchrotron and X-Ray Free Electron Laser Light. Annu Rev Biophys 2021; 51:79-98. [PMID: 34932909 PMCID: PMC9132212 DOI: 10.1146/annurev-biophys-100421-110959] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Directly observing enzyme catalysis in real time at the molecular level has been a long-standing goal of structural enzymology. Time-resolved serial crystallography methods at synchrotron and X-ray free electron laser (XFEL) sources have enabled researchers to follow enzyme catalysis and other nonequilibrium events at ambient conditions with unprecedented time resolution. X-ray crystallography provides detailed information about conformational heterogeneity and protein dynamics, which is enhanced when time-resolved approaches are used. This review outlines the ways in which information about the underlying energy landscape of a protein can be extracted from X-ray crystallographic data, with an emphasis on new developments in XFEL and synchrotron time-resolved crystallography. The emerging view of enzyme catalysis afforded by these techniques can be interpreted as enzymes moving on a time-dependent energy landscape. Some consequences of this view are discussed, including the proposal that irreversible enzymes or enzymes that use covalent catalytic mechanisms may commonly exhibit catalysis-activated motions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA;
| |
Collapse
|
18
|
Bradford SYC, El Khoury L, Ge Y, Osato M, Mobley DL, Fischer M. Temperature artifacts in protein structures bias ligand-binding predictions. Chem Sci 2021; 12:11275-11293. [PMID: 34667539 PMCID: PMC8447925 DOI: 10.1039/d1sc02751d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
X-ray crystallography is the gold standard to resolve conformational ensembles that are significant for protein function, ligand discovery, and computational methods development. However, relevant conformational states may be missed at common cryogenic (cryo) data-collection temperatures but can be populated at room temperature. To assess the impact of temperature on making structural and computational discoveries, we systematically investigated protein conformational changes in response to temperature and ligand binding in a structural and computational workhorse, the T4 lysozyme L99A cavity. Despite decades of work on this protein, shifting to RT reveals new global and local structural changes. These include uncovering an apo helix conformation that is hidden at cryo but relevant for ligand binding, and altered side chain and ligand conformations. To evaluate the impact of temperature-induced protein and ligand changes on the utility of structural information in computation, we evaluated how temperature can mislead computational methods that employ cryo structures for validation. We find that when comparing simulated structures just to experimental cryo structures, hidden successes and failures often go unnoticed. When using structural information in ligand binding predictions, both coarse docking and rigorous binding free energy calculations are influenced by temperature effects. The trend that cryo artifacts limit the utility of structures for computation holds across five distinct protein classes. Our results suggest caution when consulting cryogenic structural data alone, as temperature artifacts can conceal errors and prevent successful computational predictions, which can mislead the development and application of computational methods in discovering bioactive molecules.
Collapse
Affiliation(s)
- Shanshan Y C Bradford
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital Memphis TN 38105 USA
| | - Léa El Khoury
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Yunhui Ge
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Meghan Osato
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
- Department of Chemistry, University of California Irvine CA 92697 USA
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital Memphis TN 38105 USA
- Department of Structural Biology, St. Jude Children's Research Hospital Memphis TN 38105 USA
| |
Collapse
|
19
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
20
|
Abstract
X-ray crystallography enables detailed structural studies of proteins to understand and modulate their function. Conducting crystallographic experiments at cryogenic temperatures has practical benefits but potentially limits the identification of functionally important alternative protein conformations that can be revealed only at room temperature (RT). This review discusses practical aspects of preparing, acquiring, and analyzing X-ray crystallography data at RT to demystify preconceived impracticalities that freeze progress of routine RT data collection at synchrotron sources. Examples are presented as conceptual and experimental templates to enable the design of RT-inspired studies; they illustrate the diversity and utility of gaining novel insights into protein conformational landscapes. An integrative view of protein conformational dynamics enables opportunities to advance basic and biomedical research.
Collapse
|
21
|
Riley BT, Wankowicz SA, de Oliveira SHP, van Zundert GCP, Hogan DW, Fraser JS, Keedy DA, van den Bedem H. qFit 3: Protein and ligand multiconformer modeling for X-ray crystallographic and single-particle cryo-EM density maps. Protein Sci 2021; 30:270-285. [PMID: 33210433 PMCID: PMC7737783 DOI: 10.1002/pro.4001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023]
Abstract
New X-ray crystallography and cryo-electron microscopy (cryo-EM) approaches yield vast amounts of structural data from dynamic proteins and their complexes. Modeling the full conformational ensemble can provide important biological insights, but identifying and modeling an internally consistent set of alternate conformations remains a formidable challenge. qFit efficiently automates this process by generating a parsimonious multiconformer model. We refactored qFit from a distributed application into software that runs efficiently on a small server, desktop, or laptop. We describe the new qFit 3 software and provide some examples. qFit 3 is open-source under the MIT license, and is available at https://github.com/ExcitedStates/qfit-3.0.
Collapse
Affiliation(s)
- Blake T. Riley
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
| | - Stephanie A. Wankowicz
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Biophysics Graduate ProgramUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | | | - Daniel W. Hogan
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Daniel A. Keedy
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkNew YorkUSA
- Ph.D. Programs in Biochemistry, Biology, and ChemistryThe Graduate Center, City University of New YorkNew YorkUSA
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Atomwise, Inc.San FranciscoCaliforniaUSA
| |
Collapse
|
22
|
Assessment of enzyme active site positioning and tests of catalytic mechanisms through X-ray-derived conformational ensembles. Proc Natl Acad Sci U S A 2020; 117:33204-33215. [PMID: 33376217 DOI: 10.1073/pnas.2011350117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How enzymes achieve their enormous rate enhancements remains a central question in biology, and our understanding to date has impacted drug development, influenced enzyme design, and deepened our appreciation of evolutionary processes. While enzymes position catalytic and reactant groups in active sites, physics requires that atoms undergo constant motion. Numerous proposals have invoked positioning or motions as central for enzyme function, but a scarcity of experimental data has limited our understanding of positioning and motion, their relative importance, and their changes through the enzyme's reaction cycle. To examine positioning and motions and test catalytic proposals, we collected "room temperature" X-ray crystallography data for Pseudomonas putida ketosteroid isomerase (KSI), and we obtained conformational ensembles for this and a homologous KSI from multiple PDB crystal structures. Ensemble analyses indicated limited change through KSI's reaction cycle. Active site positioning was on the 1- to 1.5-Å scale, and was not exceptional compared to noncatalytic groups. The KSI ensembles provided evidence against catalytic proposals invoking oxyanion hole geometric discrimination between the ground state and transition state or highly precise general base positioning. Instead, increasing or decreasing positioning of KSI's general base reduced catalysis, suggesting optimized Ångstrom-scale conformational heterogeneity that allows KSI to efficiently catalyze multiple reaction steps. Ensemble analyses of surrounding groups for WT and mutant KSIs provided insights into the forces and interactions that allow and limit active-site motions. Most generally, this ensemble perspective extends traditional structure-function relationships, providing the basis for a new era of "ensemble-function" interrogation of enzymes.
Collapse
|
23
|
Fenwick RB, Oyen D, van den Bedem H, Dyson HJ, Wright PE. Modeling of Hidden Structures Using Sparse Chemical Shift Data from NMR Relaxation Dispersion. Biophys J 2020; 120:296-305. [PMID: 33301748 DOI: 10.1016/j.bpj.2020.11.2267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
NMR relaxation dispersion measurements report on conformational changes occurring on the μs-ms timescale. Chemical shift information derived from relaxation dispersion can be used to generate structural models of weakly populated alternative conformational states. Current methods to obtain such models rely on determining the signs of chemical shift changes between the conformational states, which are difficult to obtain in many situations. Here, we use a "sample and select" method to generate relevant structural models of alternative conformations of the C-terminal-associated region of Escherichia coli dihydrofolate reductase (DHFR), using only unsigned chemical shift changes for backbone amides and carbonyls (1H, 15N, and 13C'). We find that CS-Rosetta sampling with unsigned chemical shift changes generates a diversity of structures that are sufficient to characterize a minor conformational state of the C-terminal region of DHFR. The excited state differs from the ground state by a change in secondary structure, consistent with previous predictions from chemical shift hypersurfaces and validated by the x-ray structure of a partially humanized mutant of E. coli DHFR (N23PP/G51PEKN). The results demonstrate that the combination of fragment modeling with sparse chemical shift data can determine the structure of an alternative conformation of DHFR sampled on the μs-ms timescale. Such methods will be useful for characterizing alternative states, which can potentially be used for in silico drug screening, as well as contributing to understanding the role of minor states in biology and molecular evolution.
Collapse
Affiliation(s)
- R Bryn Fenwick
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California.
| | - David Oyen
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Henry van den Bedem
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
24
|
Doukov T, Herschlag D, Yabukarski F. Instrumentation and experimental procedures for robust collection of X-ray diffraction data from protein crystals across physiological temperatures. J Appl Crystallogr 2020; 53:1493-1501. [PMID: 33312102 PMCID: PMC7710493 DOI: 10.1107/s1600576720013503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022] Open
Abstract
Traditional X-ray diffraction data collected at cryo-temperatures have delivered invaluable insights into the three-dimensional structures of proteins, providing the backbone of structure-function studies. While cryo-cooling mitigates radiation damage, cryo-temperatures can alter protein conformational ensembles and solvent structure. Furthermore, conformational ensembles underlie protein function and energetics, and recent advances in room-temperature X-ray crystallography have delivered conformational heterogeneity information that can be directly related to biological function. Given this capability, the next challenge is to develop a robust and broadly applicable method to collect single-crystal X-ray diffraction data at and above room temperature. This challenge is addressed herein. The approach described provides complete diffraction data sets with total collection times as short as ∼5 s from single protein crystals, dramatically increasing the quantity of data that can be collected within allocated synchrotron beam time. Its applicability was demonstrated by collecting 1.09-1.54 Å resolution data over a temperature range of 293-363 K for proteinase K, thaumatin and lysozyme crystals at BL14-1 at the Stanford Synchrotron Radiation Lightsource. The analyses presented here indicate that the diffraction data are of high quality and do not suffer from excessive dehydration or radiation damage.
Collapse
Affiliation(s)
- Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Thompson MC, Yeates TO, Rodriguez JA. Advances in methods for atomic resolution macromolecular structure determination. F1000Res 2020; 9:F1000 Faculty Rev-667. [PMID: 32676184 PMCID: PMC7333361 DOI: 10.12688/f1000research.25097.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances have dramatically increased the power and scope of structural biology. New developments in high-resolution cryo-electron microscopy, serial X-ray crystallography, and electron diffraction have been especially transformative. Here we highlight some of the latest advances and current challenges at the frontiers of atomic resolution methods for elucidating the structures and dynamical properties of macromolecules and their complexes.
Collapse
Affiliation(s)
- Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California, Merced, CA, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| |
Collapse
|
26
|
Mix-and-inject XFEL crystallography reveals gated conformational dynamics during enzyme catalysis. Proc Natl Acad Sci U S A 2019; 116:25634-25640. [PMID: 31801874 DOI: 10.1073/pnas.1901864116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How changes in enzyme structure and dynamics facilitate passage along the reaction coordinate is a fundamental unanswered question. Here, we use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL), ambient-temperature X-ray crystallography, computer simulations, and enzyme kinetics to characterize how covalent catalysis modulates isocyanide hydratase (ICH) conformational dynamics throughout its catalytic cycle. We visualize this previously hypothetical reaction mechanism, directly observing formation of a thioimidate covalent intermediate in ICH microcrystals during catalysis. ICH exhibits a concerted helical displacement upon active-site cysteine modification that is gated by changes in hydrogen bond strength between the cysteine thiolate and the backbone amide of the highly strained Ile152 residue. These catalysis-activated motions permit water entry into the ICH active site for intermediate hydrolysis. Mutations at a Gly residue (Gly150) that modulate helical mobility reduce ICH catalytic turnover and alter its pre-steady-state kinetic behavior, establishing that helical mobility is important for ICH catalytic efficiency. These results demonstrate that MISC can capture otherwise elusive aspects of enzyme mechanism and dynamics in microcrystalline samples, resolving long-standing questions about the connection between nonequilibrium protein motions and enzyme catalysis.
Collapse
|
27
|
Holt GT, Jou JD, Gill NP, Lowegard AU, Martin JW, Madden DR, Donald BR. Computational Analysis of Energy Landscapes Reveals Dynamic Features That Contribute to Binding of Inhibitors to CFTR-Associated Ligand. J Phys Chem B 2019; 123:10441-10455. [PMID: 31697075 DOI: 10.1021/acs.jpcb.9b07278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The CFTR-associated ligand PDZ domain (CALP) binds to the cystic fibrosis transmembrane conductance regulator (CFTR) and mediates lysosomal degradation of mature CFTR. Inhibition of this interaction has been explored as a therapeutic avenue for cystic fibrosis. Previously, we reported the ensemble-based computational design of a novel peptide inhibitor of CALP, which resulted in the most binding-efficient inhibitor to date. This inhibitor, kCAL01, was designed using osprey and evinced significant biological activity in in vitro cell-based assays. Here, we report a crystal structure of kCAL01 bound to CALP and compare structural features against iCAL36, a previously developed inhibitor of CALP. We compute side-chain energy landscapes for each structure to not only enable approximation of binding thermodynamics but also reveal ensemble features that contribute to the comparatively efficient binding of kCAL01. Finally, we compare the previously reported design ensemble for kCAL01 vs the new crystal structure and show that, despite small differences between the design model and crystal structure, significant biophysical features that enhance inhibitor binding are captured in the design ensemble. This suggests not only that ensemble-based design captured thermodynamically significant features observed in vitro, but also that a design eschewing ensembles would miss the kCAL01 sequence entirely.
Collapse
Affiliation(s)
- Graham T Holt
- Department of Computer Science , Duke University , Durham , North Carolina 27708 , United States.,Program in Computational Biology and Bioinformatics , Duke University , Durham , North Carolina 27708 , United States
| | - Jonathan D Jou
- Department of Computer Science , Duke University , Durham , North Carolina 27708 , United States
| | - Nicholas P Gill
- Department of Biochemistry & Cell Biology , Geisel School of Medicine at Dartmouth , Hanover , New Hampshire 03755 , United States
| | - Anna U Lowegard
- Department of Computer Science , Duke University , Durham , North Carolina 27708 , United States.,Program in Computational Biology and Bioinformatics , Duke University , Durham , North Carolina 27708 , United States
| | - Jeffrey W Martin
- Department of Computer Science , Duke University , Durham , North Carolina 27708 , United States
| | - Dean R Madden
- Department of Biochemistry & Cell Biology , Geisel School of Medicine at Dartmouth , Hanover , New Hampshire 03755 , United States
| | - Bruce R Donald
- Department of Computer Science , Duke University , Durham , North Carolina 27708 , United States.,Department of Biochemistry , Duke University , Durham , North Carolina 27710 , United States.,Department of Chemistry , Duke University , Durham , North Carolina 27710 , United States
| |
Collapse
|
28
|
Santhosh R, Chandrasekaran P, Michael D, Rangachari K, Bankoti N, Jeyakanthan J, Sekar K. ACMS: a database of alternate conformations found in the atoms of main and side chains of protein structures. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719006447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Proteins are usually dynamic biological macromolecules, thereby exhibiting a large number of conformational ensembles which influence the association with their neighbours and interacting partners. Most of the side-chain atoms and a few main-chain atoms of the high-resolution crystal structures deposited in the Protein Data Bank adopt alternate conformations. This kind of conformational behaviour prompted the authors to explore the relationship, if any, between the alternate conformations and the function of the protein molecule. Thus, a knowledge base of the alternate conformations of the main- and side-chain atoms of protein structures has been developed. It provides a detailed description of the alternate conformations of various residues for more than 60 000 high-resolution crystal structures. The proposed knowledge base is very user friendly and has various flexible options. The knowledge base will be updated periodically and can be accessed at http://iris.physics.iisc.ac.in/acms.
Collapse
|
29
|
van den Bedem H, Wilson MA. Shining light on cysteine modification: connecting protein conformational dynamics to catalysis and regulation. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:958-966. [PMID: 31274417 PMCID: PMC6613112 DOI: 10.1107/s160057751900568x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Cysteine is a rare but functionally important amino acid that is often subject to covalent modification. Cysteine oxidation plays an important role in many human disease processes, and basal levels of cysteine oxidation are required for proper cellular function. Because reactive cysteine residues are typically ionized to the thiolate anion (Cys-S-), their formation of a covalent bond alters the electrostatic and steric environment of the active site. X-ray-induced photo-oxidation to sulfenic acids (Cys-SOH) can recapitulate some aspects of the changes that occur under physiological conditions. Here we propose how site-specific cysteine photo-oxidation can be used to interrogate ensuing changes in protein structure and dynamics at atomic resolution. Although this powerful approach can connect cysteine covalent modification to global protein conformational changes and function, careful biochemical validation must accompany all such studies to exclude misleading artifacts. New types of X-ray crystallography experiments and powerful computational methods are creating new opportunities to connect conformational dynamics to catalysis for the large class of systems that use covalently modified cysteine residues for catalysis or regulation.
Collapse
Affiliation(s)
- Henry van den Bedem
- Bioscience Division, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Mark A Wilson
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
30
|
Moreau DW, Atakisi H, Thorne RE. Ice formation and solvent nanoconfinement in protein crystals. IUCRJ 2019; 6:346-356. [PMID: 31098016 PMCID: PMC6503922 DOI: 10.1107/s2052252519001878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/31/2019] [Indexed: 05/06/2023]
Abstract
Ice formation within protein crystals is a major obstacle to the cryocrystallographic study of protein structure, and has limited studies of how the structural ensemble of a protein evolves with temperature in the biophysically interesting range from ∼260 K to the protein-solvent glass transition near 200 K. Using protein crystals with solvent cavities as large as ∼70 Å, time-resolved X-ray diffraction was used to study the response of protein and internal solvent during rapid cooling. Solvent nanoconfinement suppresses freezing temperatures and ice-nucleation rates so that ice-free, low-mosaicity diffraction data can be reliably collected down to 200 K without the use of cryoprotectants. Hexagonal ice (Ih) forms in external solvent, but internal crystal solvent forms stacking-disordered ice (Isd) with a near-random stacking of cubic and hexagonal planes. Analysis of powder diffraction from internal ice and single-crystal diffraction from the host protein structure shows that the maximum crystallizable solvent fraction decreases with decreasing crystal solvent-cavity size, and that an ∼6 Å thick layer of solvent adjacent to the protein surface cannot crystallize. These results establish protein crystals as excellent model systems for the study of nanoconfined solvent. By combining fast cooling, intense X-ray beams and fast X-ray detectors, complete structural data sets for high-value targets, including membrane proteins and large complexes, may be collected at ∼220-240 K that have much lower mosaicities and comparable B factors, and that may allow more confident identification of ligand binding than in current cryocrystallographic practice.
Collapse
Affiliation(s)
- David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
31
|
Holton JM. Challenge data set for macromolecular multi-microcrystallography. Acta Crystallogr D Struct Biol 2019; 75:113-122. [PMID: 30821701 PMCID: PMC6400260 DOI: 10.1107/s2059798319001426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/25/2019] [Indexed: 01/26/2023] Open
Abstract
A synthetic data set demonstrating a particularly challenging case of indexing ambiguity in the context of radiation damage was generated. This set shall serve as a standard benchmark and reference point for the ongoing development of new methods and new approaches to robust structure solution when single-crystal methods are insufficient. Of the 100 short wedges of data, only the first 36 are currently necessary to solve the structure by `cheating', or using the correct reference structure as a guide. The total wall-clock time and number of crystals required to solve the structure without cheating is proposed as a metric for the efficacy and efficiency of a given multi-crystal automation pipeline.
Collapse
Affiliation(s)
- James M. Holton
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2330, USA
- Divison of Molecular Biophysics and Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
32
|
Keedy DA. Journey to the center of the protein: allostery from multitemperature multiconformer X-ray crystallography. Acta Crystallogr D Struct Biol 2019; 75:123-137. [PMID: 30821702 PMCID: PMC6400254 DOI: 10.1107/s2059798318017941] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
Proteins inherently fluctuate between conformations to perform functions in the cell. For example, they sample product-binding, transition-state-stabilizing and product-release states during catalysis, and they integrate signals from remote regions of the structure for allosteric regulation. However, there is a lack of understanding of how these dynamic processes occur at the basic atomic level. This gap can be at least partially addressed by combining variable-temperature (instead of traditional cryogenic temperature) X-ray crystallography with algorithms for modeling alternative conformations based on electron-density maps, in an approach called multitemperature multiconformer X-ray crystallography (MMX). Here, the use of MMX to reveal alternative conformations at different sites in a protein structure and to estimate the degree of energetic coupling between them is discussed. These insights can suggest testable hypotheses about allosteric mechanisms. Temperature is an easily manipulated experimental parameter, so the MMX approach is widely applicable to any protein that yields well diffracting crystals. Moreover, the general principles of MMX are extensible to other perturbations such as pH, pressure, ligand concentration etc. Future work will explore strategies for leveraging X-ray data across such perturbation series to more quantitatively measure how different parts of a protein structure are coupled to each other, and the consequences thereof for allostery and other aspects of protein function.
Collapse
Affiliation(s)
- Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, USA
- PhD Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, USA
| |
Collapse
|
33
|
Hu S, Offenbacher AR, Thompson EM, Gee CL, Wilcoxen J, Carr CAM, Prigozhin DM, Yang V, Alber T, Britt RD, Fraser JS, Klinman J. Biophysical Characterization of a Disabled Double Mutant of Soybean Lipoxygenase: The "Undoing" of Precise Substrate Positioning Relative to Metal Cofactor and an Identified Dynamical Network. J Am Chem Soc 2019; 141:1555-1567. [PMID: 30645119 PMCID: PMC6353671 DOI: 10.1021/jacs.8b10992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Soybean lipoxygenase (SLO) has served as a prototype for understanding the molecular origin of enzymatic rate accelerations. The double mutant (DM) L546A/L754A is considered a dramatic outlier, due to the unprecedented size and near temperature-independence of its primary kinetic isotope effect, low catalytic efficiency, and elevated enthalpy of activation. To uncover the physical basis of these features, we herein apply three structural probes: hydrogen-deuterium exchange mass spectrometry, room-temperature X-ray crystallography and EPR spectroscopy on four SLO variants (wild-type (WT) enzyme, DM, and the two parental single mutants, L546A and L754A). DM is found to incorporate features of each parent, with the perturbation at position 546 predominantly influencing thermally activated motions that connect the active site to a protein-solvent interface, while mutation at position 754 disrupts the ligand field and solvation near the cofactor iron. However, the expanded active site in DM leads to more active site water molecules and their associated hydrogen bond network, and the individual features from L546A and L754A alone cannot explain the aggregate kinetic properties for DM. Using recently published QM/MM-derived ground-state SLO-substrate complexes for WT and DM, together with the thorough structural analyses presented herein, we propose that the impairment of DM is the combined result of a repositioning of the reactive carbon of linoleic acid substrate with regard to both the iron cofactor and a catalytically linked dynamic region of protein.
Collapse
Affiliation(s)
- Shenshen Hu
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Adam R. Offenbacher
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Chemistry, East Carolina University, Greenville, NC 27858
| | - Erin M. Thompson
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Christine L. Gee
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Jarett Wilcoxen
- Department of Chemistry, University of California, Davis, California 95695, United States
| | - Cody A. M. Carr
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Daniil M. Prigozhin
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Vanessa Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tom Alber
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, California 95695, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Judith Klinman
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
34
|
van Zundert GCP, Hudson BM, de Oliveira SHP, Keedy DA, Fonseca R, Heliou A, Suresh P, Borrelli K, Day T, Fraser JS, van den Bedem H. qFit-ligand Reveals Widespread Conformational Heterogeneity of Drug-Like Molecules in X-Ray Electron Density Maps. J Med Chem 2018; 61:11183-11198. [PMID: 30457858 DOI: 10.1021/acs.jmedchem.8b01292] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteins and ligands sample a conformational ensemble that governs molecular recognition, activity, and dissociation. In structure-based drug design, access to this conformational ensemble is critical to understand the balance between entropy and enthalpy in lead optimization. However, ligand conformational heterogeneity is currently severely underreported in crystal structures in the Protein Data Bank, owing in part to a lack of automated and unbiased procedures to model an ensemble of protein-ligand states into X-ray data. Here, we designed a computational method, qFit-ligand, to automatically resolve conformationally averaged ligand heterogeneity in crystal structures, and applied it to a large set of protein receptor-ligand complexes. In an analysis of the cancer related BRD4 domain, we found that up to 29% of protein crystal structures bound with drug-like molecules present evidence of unmodeled, averaged, relatively isoenergetic conformations in ligand-receptor interactions. In many retrospective cases, these alternate conformations were adventitiously exploited to guide compound design, resulting in improved potency or selectivity. Combining qFit-ligand with high-throughput screening or multitemperature crystallography could therefore augment the structure-based drug design toolbox.
Collapse
Affiliation(s)
| | - Brandi M Hudson
- Department of Bioengineering and Therapeutic Sciences , UCSF , San Francisco , California 94158 , United States
| | - Saulo H P de Oliveira
- SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 United States
| | - Daniel A Keedy
- Department of Bioengineering and Therapeutic Sciences , UCSF , San Francisco , California 94158 , United States
| | - Rasmus Fonseca
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Amelie Heliou
- LIX, Ecole Polytechnique, CNRS, Inria , Université Paris-Saclay , 91128 Palaiseau , France
| | - Pooja Suresh
- Department of Bioengineering and Therapeutic Sciences , UCSF , San Francisco , California 94158 , United States
| | | | - Tyler Day
- Schrödinger , New York , New York 10036 , United States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences , UCSF , San Francisco , California 94158 , United States
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences , UCSF , San Francisco , California 94158 , United States.,SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 United States
| |
Collapse
|
35
|
Srivastava A, Nagai T, Srivastava A, Miyashita O, Tama F. Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics. Int J Mol Sci 2018; 19:E3401. [PMID: 30380757 PMCID: PMC6274748 DOI: 10.3390/ijms19113401] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Protein structural biology came a long way since the determination of the first three-dimensional structure of myoglobin about six decades ago. Across this period, X-ray crystallography was the most important experimental method for gaining atomic-resolution insight into protein structures. However, as the role of dynamics gained importance in the function of proteins, the limitations of X-ray crystallography in not being able to capture dynamics came to the forefront. Computational methods proved to be immensely successful in understanding protein dynamics in solution, and they continue to improve in terms of both the scale and the types of systems that can be studied. In this review, we briefly discuss the limitations of X-ray crystallography in studying protein dynamics, and then provide an overview of different computational methods that are instrumental in understanding the dynamics of proteins and biomacromolecular complexes.
Collapse
Affiliation(s)
- Ashutosh Srivastava
- Institute of Transformative Bio-Molecules (WPI), Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Tetsuro Nagai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Arpita Srivastava
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Osamu Miyashita
- RIKEN-Center for Computational Science, Kobe, Hyogo 650-0047, Japan.
| | - Florence Tama
- Institute of Transformative Bio-Molecules (WPI), Nagoya University, Nagoya, Aichi 464-8601, Japan.
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
- RIKEN-Center for Computational Science, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
36
|
Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, Brandão-Neto J, Pearce NM, von Delft F, Wells JA, Fraser JS. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. eLife 2018; 7:36307. [PMID: 29877794 PMCID: PMC6039181 DOI: 10.7554/elife.36307] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022] Open
Abstract
Allostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here, we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function. Proteins perform many important jobs in each of the cells in our bodies, such as transporting other molecules and helping chemical reactions to occur. The part of the protein directly involved in these tasks is called the active site. Other areas of the protein can communicate with the active site to switch the protein on or off. This method of control is known as allostery. Switching proteins on and off could help us to develop treatments for certain diseases. For example, a protein called PTP1B reduces how well cells can respond to insulin. Switching this protein off could therefore help to treat diabetes. However, much like it’s hard to guess how a light switch is wired to a light bulb without seeing behind the walls, it is hard to predict which remote areas of a protein are ‘wired’ to the active site. Keedy, Hill et al. have now used two complementary methods to examine the structure of PTP1B and find new allosteric sites. The first method captured a series of X-ray images from crystallized molecules of the protein held at different temperatures. This revealed areas of PTP1B that can move like windshield wipers to communicate with each other. The second method soaked PTP1B crystals in trays with hundreds of drug-sized molecules and assessed which sites on the protein the molecules bound to. The molecules generally bound to just a few sites of the protein. Further tests on one of these sites showed that it can communicate with the active site to turn the protein on or off. Further work will be needed to develop drugs that could treat diabetes by binding to the newly identified allosteric sites in PTP1B. More generally, the methods developed by Keedy, Hill et al. could be used to study allostery in other important proteins.
Collapse
Affiliation(s)
- Daniel A Keedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Zachary B Hill
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Justin T Biel
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Emily Kang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - T Justin Rettenmaier
- Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | | | - Nicholas M Pearce
- Crystal and Structural Chemistry Group, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Frank von Delft
- Diamond Light Source, Didcot, United Kingdom.,Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom.,Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
37
|
Thompson MC, Cascio D, Yeates TO. Microfocus diffraction from different regions of a protein crystal: structural variations and unit-cell polymorphism. Acta Crystallogr D Struct Biol 2018; 74:411-421. [PMID: 29717712 PMCID: PMC5930349 DOI: 10.1107/s2059798318003479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/28/2018] [Indexed: 11/10/2022] Open
Abstract
Real macromolecular crystals can be non-ideal in a myriad of ways. This often creates challenges for structure determination, while also offering opportunities for greater insight into the crystalline state and the dynamic behavior of macromolecules. To evaluate whether different parts of a single crystal of a dynamic protein, EutL, might be informative about crystal and protein polymorphism, a microfocus X-ray synchrotron beam was used to collect a series of 18 separate data sets from non-overlapping regions of the same crystal specimen. A principal component analysis (PCA) approach was employed to compare the structure factors and unit cells across the data sets, and it was found that the 18 data sets separated into two distinct groups, with large R values (in the 40% range) and significant unit-cell variations between the members of the two groups. This categorization mapped the different data-set types to distinct regions of the crystal specimen. Atomic models of EutL were then refined against two different data sets obtained by separately merging data from the two distinct groups. A comparison of the two resulting models revealed minor but discernable differences in certain segments of the protein structure, and regions of higher deviation were found to correlate with regions where larger dynamic motions were predicted to occur by normal-mode molecular-dynamics simulations. The findings emphasize that large spatially dependent variations may be present across individual macromolecular crystals. This information can be uncovered by simultaneous analysis of multiple partial data sets and can be exploited to reveal new insights about protein dynamics, while also improving the accuracy of the structure-factor data ultimately obtained in X-ray diffraction experiments.
Collapse
Affiliation(s)
- Michael C. Thompson
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Duilio Cascio
- UCLA–DOE Institute for Genomics and Proteomics, Los Angeles, California, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
- UCLA–DOE Institute for Genomics and Proteomics, Los Angeles, California, USA
| |
Collapse
|
38
|
Kaltenbach M, Burke JR, Dindo M, Pabis A, Munsberg FS, Rabin A, Kamerlin SCL, Noel JP, Tawfik DS. Evolution of chalcone isomerase from a noncatalytic ancestor. Nat Chem Biol 2018; 14:548-555. [PMID: 29686356 DOI: 10.1038/s41589-018-0042-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022]
Abstract
The emergence of catalysis in a noncatalytic protein scaffold is a rare, unexplored event. Chalcone isomerase (CHI), a key enzyme in plant flavonoid biosynthesis, is presumed to have evolved from a nonenzymatic ancestor related to the widely distributed fatty-acid binding proteins (FAPs) and a plant protein family with no isomerase activity (CHILs). Ancestral inference supported the evolution of CHI from a protein lacking isomerase activity. Further, we identified four alternative founder mutations, i.e., mutations that individually instated activity, including a mutation that is not phylogenetically traceable. Despite strong epistasis in other cases of protein evolution, CHI's laboratory reconstructed mutational trajectory shows weak epistasis. Thus, enantioselective CHI activity could readily emerge despite a catalytically inactive starting point. Accordingly, X-ray crystallography, NMR, and molecular dynamics simulations reveal reshaping of the active site toward a productive substrate-binding mode and repositioning of the catalytic arginine that was inherited from the ancestral fatty-acid binding proteins.
Collapse
Affiliation(s)
- Miriam Kaltenbach
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Jason R Burke
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mirco Dindo
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.,Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Anna Pabis
- Uppsala Biomedicinsk Centrum, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Fabian S Munsberg
- Uppsala Biomedicinsk Centrum, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Avigayel Rabin
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Shina C L Kamerlin
- Uppsala Biomedicinsk Centrum, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Joseph P Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Dan S Tawfik
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
39
|
Atakisi H, Moreau DW, Thorne RE. Effects of protein-crystal hydration and temperature on side-chain conformational heterogeneity in monoclinic lysozyme crystals. Acta Crystallogr D Struct Biol 2018; 74:264-278. [PMID: 29652254 PMCID: PMC5892876 DOI: 10.1107/s2059798318000207] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 01/12/2023] Open
Abstract
The modulation of main-chain and side-chain conformational heterogeneity and solvent structure in monoclinic lysozyme crystals by dehydration (related to water activity) and temperature is examined. Decreasing the relative humidity (from 99 to 11%) and decreasing the temperature both lead to contraction of the unit cell, to an increased area of crystal contacts and to remodeling of primarily contact and solvent-exposed residues. Both lead to the depopulation of some minor side-chain conformers and to the generation of new conformations. Side-chain modifications and main-chain r.m.s.d.s associated with cooling from 298 to 100 K depend on relative humidity and are minimized at 85% relative humidity (r.h.). Dehydration from 99 to 93% r.h. and cooling from 298 to 100 K result in a comparable number of remodeled residues, with dehydration-induced remodeling somewhat more likely to arise from contact interactions. When scaled to equivalent temperatures based on unit-cell contraction, the evolution of side-chain order parameters with dehydration shows generally similar features to those observed on cooling to T = 100 K. These results illuminate the qualitative and quantitative similarities between structural perturbations induced by modest dehydration, which routinely occurs in samples prepared for 298 and 100 K data collection, and cryocooling. Differences between these perturbations in terms of energy landscapes and occupancies, and implications for variable-temperature crystallography between 180 and 298 K, are discussed. It is also noted that remodeling of a key lysozyme active-site residue by dehydration, which is associated with a radical decrease in the enzymatic activity of lysozyme powder, arises due to a steric clash with the residue of a symmetry mate.
Collapse
Affiliation(s)
- Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
40
|
Peck A, Poitevin F, Lane TJ. Intermolecular correlations are necessary to explain diffuse scattering from protein crystals. IUCRJ 2018; 5:211-222. [PMID: 29765611 PMCID: PMC5947726 DOI: 10.1107/s2052252518001124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 05/22/2023]
Abstract
Conformational changes drive protein function, including catalysis, allostery and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work has challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid-body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signal reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid-body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.
Collapse
Affiliation(s)
- Ariana Peck
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Frédéric Poitevin
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas J. Lane
- Bioscience Division and Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
41
|
Abstract
Diffuse scattering provides evidence that variations are correlated across molecular boundaries in macromolecular crystals.
Collapse
Affiliation(s)
- Michael E. Wall
- Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Correspondence e-mail:
| |
Collapse
|
42
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
43
|
Warkentin MA, Atakisi H, Hopkins JB, Walko D, Thorne RE. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams. IUCRJ 2017; 4:785-794. [PMID: 29123681 PMCID: PMC5668864 DOI: 10.1107/s2052252517013495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/20/2017] [Indexed: 05/22/2023]
Abstract
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s-1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity-dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5-2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.
Collapse
Affiliation(s)
- Matthew A. Warkentin
- Physics Department, Cornell University, Clark Hall, Ithaca, NY 14853, USA
- Rubota Corporation, 1260 NW Naito Parkway #609, Portland, OR 97209, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | | - Donald Walko
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | | |
Collapse
|
44
|
A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density. Nat Commun 2017; 8:15123. [PMID: 28436492 PMCID: PMC5413968 DOI: 10.1038/ncomms15123] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/03/2017] [Indexed: 12/02/2022] Open
Abstract
In macromolecular crystallography, the rigorous detection of changed states (for example, ligand binding) is difficult unless signal is strong. Ambiguous (‘weak' or ‘noisy') density is experimentally common, since molecular states are generally only fractionally present in the crystal. Existing methodologies focus on generating maximally accurate maps whereby minor states become discernible; in practice, such map interpretation is disappointingly subjective, time-consuming and methodologically unsound. Here we report the PanDDA method, which automatically reveals clear electron density for the changed state—even from inaccurate maps—by subtracting a proportion of the confounding ‘ground state'; changed states are objectively identified from statistical analysis of density distributions. The method is completely general, implying new best practice for all changed-state studies, including the routine collection of multiple ground-state crystals. More generally, these results demonstrate: the incompleteness of atomic models; that single data sets contain insufficient information to model them fully; and that accuracy requires further map-deconvolution approaches. Building a ligand into a weak region of an electron density map of a protein is a subjective process. Here, the authors present a new method to obtain a clear electron density for a bound ligand based on multi-crystal experiments and 3D background correction.
Collapse
|
45
|
Flexibility and Design: Conformational Heterogeneity along the Evolutionary Trajectory of a Redesigned Ubiquitin. Structure 2017; 25:739-749.e3. [PMID: 28416112 DOI: 10.1016/j.str.2017.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/20/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022]
Abstract
Although protein design has been used to introduce new functions, designed variants generally only function as well as natural proteins after rounds of laboratory evolution. One possibility for this pattern is that designed mutants frequently sample nonfunctional conformations. To test this idea, we exploited advances in multiconformer modeling of room-temperature X-ray data collection on redesigned ubiquitin variants selected for increasing binding affinity to the deubiquitinase USP7. Initial core mutations disrupt natural packing and lead to increased flexibility. Additional, experimentally selected mutations quenched conformational heterogeneity through new stabilizing interactions. Stabilizing interactions, such as cation-pi stacking and ordered waters, which are not included in standard protein design energy functions, can create specific interactions that have long-range effects on flexibility across the protein. Our results suggest that increasing flexibility may be a useful strategy to escape local minima during initial directed evolution and protein design steps when creating new functions.
Collapse
|
46
|
Crystal structures of an archaeal thymidylate kinase from Sulfolobus tokodaii provide insights into the role of a conserved active site Arginine residue. J Struct Biol 2017; 197:236-249. [DOI: 10.1016/j.jsb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022]
|
47
|
Russi S, González A, Kenner LR, Keedy DA, Fraser JS, van den Bedem H. Conformational variation of proteins at room temperature is not dominated by radiation damage. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:73-82. [PMID: 28009548 PMCID: PMC5182021 DOI: 10.1107/s1600577516017343] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/28/2016] [Indexed: 05/09/2023]
Abstract
Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 107 Gy at 100 K and 105 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. This analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.
Collapse
Affiliation(s)
- Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ana González
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Lillian R. Kenner
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
| | - Daniel A. Keedy
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
| | - Henry van den Bedem
- Bioscience Department, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
48
|
Campbell E, Kaltenbach M, Correy GJ, Carr PD, Porebski BT, Livingstone EK, Afriat-Jurnou L, Buckle AM, Weik M, Hollfelder F, Tokuriki N, Jackson CJ. The role of protein dynamics in the evolution of new enzyme function. Nat Chem Biol 2016; 12:944-950. [PMID: 27618189 DOI: 10.1038/nchembio.2175] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/17/2016] [Indexed: 11/09/2022]
Abstract
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.
Collapse
Affiliation(s)
- Eleanor Campbell
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Miriam Kaltenbach
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Galen J Correy
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Paul D Carr
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Benjamin T Porebski
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Emma K Livingstone
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Livnat Afriat-Jurnou
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Martin Weik
- Institut de Biologie Structurale, University Grenoble Alpes, Commissariat à l'Energie Atomique and Centre National de la Recherche Scientifique, Grenoble, France
| | | | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|
49
|
Palamini M, Canciani A, Forneris F. Identifying and Visualizing Macromolecular Flexibility in Structural Biology. Front Mol Biosci 2016; 3:47. [PMID: 27668215 PMCID: PMC5016524 DOI: 10.3389/fmolb.2016.00047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/22/2016] [Indexed: 12/29/2022] Open
Abstract
Structural biology comprises a variety of tools to obtain atomic resolution data for the investigation of macromolecules. Conventional structural methodologies including crystallography, NMR and electron microscopy often do not provide sufficient details concerning flexibility and dynamics, even though these aspects are critical for the physiological functions of the systems under investigation. However, the increasing complexity of the molecules studied by structural biology (including large macromolecular assemblies, integral membrane proteins, intrinsically disordered systems, and folding intermediates) continuously demands in-depth analyses of the roles of flexibility and conformational specificity involved in interactions with ligands and inhibitors. The intrinsic difficulties in capturing often subtle but critical molecular motions in biological systems have restrained the investigation of flexible molecules into a small niche of structural biology. Introduction of massive technological developments over the recent years, which include time-resolved studies, solution X-ray scattering, and new detectors for cryo-electron microscopy, have pushed the limits of structural investigation of flexible systems far beyond traditional approaches of NMR analysis. By integrating these modern methods with powerful biophysical and computational approaches such as generation of ensembles of molecular models and selective particle picking in electron microscopy, more feasible investigations of dynamic systems are now possible. Using some prominent examples from recent literature, we review how current structural biology methods can contribute useful data to accurately visualize flexibility in macromolecular structures and understand its important roles in regulation of biological processes.
Collapse
Affiliation(s)
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of PaviaPavia, Italy
| |
Collapse
|
50
|
Godsey MH, Davulcu O, Nix JC, Skalicky JJ, Brüschweiler RP, Chapman MS. The Sampling of Conformational Dynamics in Ambient-Temperature Crystal Structures of Arginine Kinase. Structure 2016; 24:1658-1667. [PMID: 27594681 DOI: 10.1016/j.str.2016.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 01/26/2023]
Abstract
Arginine kinase provides a model for functional dynamics, studied through crystallography, enzymology, and nuclear magnetic resonance. Structures are now solved, at ambient temperature, for the transition state analog (TSA) complex. Analysis of quasi-rigid sub-domain displacements show that differences between the two TSA structures average about 5% of changes between substrate-free and TSA forms, and they are nearly co-linear. Small backbone hinge rotations map to sites that also flex on substrate binding. Anisotropic atomic displacement parameters (ADPs) are refined using rigid-body TLS constraints. Consistency between crystal forms shows that they reflect intrinsic molecular properties more than crystal lattice effects. In many regions, the favored directions of thermal/static displacement are appreciably correlated with movements on substrate binding. Correlation between ADPs and larger substrate-associated movements implies that the latter approximately follow paths of low-energy intrinsic motions.
Collapse
Affiliation(s)
- Michael H Godsey
- Department of Math/Science, Concordia University, Portland, OR 97211, USA
| | - Omar Davulcu
- Department Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jay C Nix
- Molecular Biology Consortium, Lawrence Berkeley Natl. Lab., Berkeley, CA 94720, USA
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 8412, USA
| | - Rafael P Brüschweiler
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Michael S Chapman
- Department Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|