1
|
Hamdan SH, Maiangwa J, Nezhad NG, Ali MSM, Normi YM, Shariff FM, Rahman RNZRA, Leow TC. Knotting terminal ends of mutant T1 lipase with disulfide bond improved structure rigidity and stability. Appl Microbiol Biotechnol 2023; 107:1673-1686. [PMID: 36752811 DOI: 10.1007/s00253-023-12396-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023]
Abstract
Lipase biocatalysts offer unique properties which are often impaired by low thermal and methanol stability. In this study, the rational design was employed to engineer a disulfide bond in the protein structure of Geobacillus zalihae T1 lipase in order to improve its stability. The selection of targeted disulfide bond sites was based on analysis of protein spatial configuration and change of Gibbs free energy. Two mutation points (S2C and A384C) were generated to rigidify the N-terminal and C-terminal regions of T1 lipase. The results showed the mutant 2DC lipase improved methanol stability from 35 to 40% (v/v) after 30 min of pre-incubation. Enhancement in thermostability for the mutant 2DC lipase at 70 °C and 75 °C showed higher half-life at 70 °C and 75 °C for 30 min and 52 min, respectively. The mutant 2DC lipase maintained the same optimum temperature (70 °C) as T1 lipase, while thermally induced unfolding showed the mutant maintained higher rigidity. The kcat/Km values demonstrated a relatively small difference between the T1 lipase (WT) and 2DC lipase (mutant). The kcat/Km (s-1 mM-1) of the T1 and 2DC showed values of 13,043 ± 224 and 13,047 ± 312, respectively. X-ray diffraction of 2DC lipase crystal structure with a resolution of 2.04 Å revealed that the introduced single disulfide bond did not lower initial structural interactions within the residues. Enhanced methanol and thermal stability are suggested to be strongly related to the newly disulfide bridge formation and the enhanced compactness and rigidity of the mutant structure. KEY POINTS: • Protein engineering via rational design revealed relative improved enzymatic performance. • The presence of disulfide bond impacts on the rigidity and structural function of proteins. • X-ray crystallography reveals structural changes accompanying protein modification.
Collapse
Affiliation(s)
- Siti Hajar Hamdan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia
- Enzyme Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia
| | - Jonathan Maiangwa
- Department of Microbiology, Faculty of Science, Kaduna State University, PMB 2336, Kaduna, Nigeria
| | - Nima Ghahremani Nezhad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia
- Enzyme Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia
- Enzyme Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia.
- Enzyme Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia Serdang, UPM Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Henneberg F, Chari A. Chromatography-Free Purification Strategies for Large Biological Macromolecular Complexes Involving Fractionated PEG Precipitation and Density Gradients. Life (Basel) 2021; 11:1289. [PMID: 34947821 PMCID: PMC8707722 DOI: 10.3390/life11121289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
A complex interplay between several biological macromolecules maintains cellular homeostasis. Generally, the demanding chemical reactions which sustain life are not performed by individual macromolecules, but rather by several proteins that together form a macromolecular complex. Understanding the functional interactions amongst subunits of these macromolecular machines is fundamental to elucidate mechanisms by which they maintain homeostasis. As the faithful function of macromolecular complexes is essential for cell survival, their mis-function leads to the development of human diseases. Furthermore, detailed mechanistic interrogation of the function of macromolecular machines can be exploited to develop and optimize biotechnological processes. The purification of intact macromolecular complexes is an essential prerequisite for this; however, chromatographic purification schemes can induce the dissociation of subunits or the disintegration of the whole complex. Here, we discuss the development and application of chromatography-free purification strategies based on fractionated PEG precipitation and orthogonal density gradient centrifugation that overcomes existing limitations of established chromatographic purification protocols. The presented case studies illustrate the capabilities of these procedures for the purification of macromolecular complexes.
Collapse
Affiliation(s)
- Fabian Henneberg
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany;
| | - Ashwin Chari
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany;
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
3
|
Mehr A, Henneberg F, Chari A, Görlich D, Huyton T. The copper(II)-binding tripeptide GHK, a valuable crystallization and phasing tag for macromolecular crystallography. Acta Crystallogr D Struct Biol 2020; 76:1222-1232. [PMID: 33263328 PMCID: PMC7709198 DOI: 10.1107/s2059798320013741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
The growth of diffraction-quality crystals and experimental phasing remain two of the main bottlenecks in protein crystallography. Here, the high-affinity copper(II)-binding tripeptide GHK was fused to the N-terminus of a GFP variant and an MBP-FG peptide fusion. The GHK tag promoted crystallization, with various residues (His, Asp, His/Pro) from symmetry molecules completing the copper(II) square-pyramidal coordination sphere. Rapid structure determination by copper SAD phasing could be achieved, even at a very low Bijvoet ratio or after significant radiation damage. When collecting highly redundant data at a wavelength close to the copper absorption edge, residual S-atom positions could also be located in log-likelihood-gradient maps and used to improve the phases. The GHK copper SAD method provides a convenient way of both crystallizing and phasing macromolecular structures, and will complement the current trend towards native sulfur SAD and MR-SAD phasing.
Collapse
Affiliation(s)
- Alexander Mehr
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fabian Henneberg
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ashwin Chari
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
4
|
Schiefner A, Walser R, Gebauer M, Skerra A. Proline/alanine-rich sequence (PAS) polypeptides as an alternative to PEG precipitants for protein crystallization. Acta Crystallogr F Struct Biol Commun 2020; 76:320-325. [PMID: 32627748 PMCID: PMC7336357 DOI: 10.1107/s2053230x20008328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/22/2020] [Indexed: 11/11/2022] Open
Abstract
Proline/alanine-rich sequence (PAS) polypeptides represent a novel class of biosynthetic polymers comprising repetitive sequences of the small proteinogenic amino acids L-proline, L-alanine and/or L-serine. PAS polymers are strongly hydrophilic and highly soluble in water, where they exhibit a natively disordered conformation without any detectable secondary or tertiary structure, similar to polyethylene glycol (PEG), which constitutes the most widely applied precipitant for protein crystallization to date. To investigate the potential of PAS polymers for structural studies by X-ray crystallography, two proteins that were successfully crystallized using PEG in the past, hen egg-white lysozyme and the Fragaria × ananassa O-methyltransferase, were subjected to crystallization screens with a 200-residue PAS polypeptide. The PAS polymer was applied as a precipitant using a vapor-diffusion setup that allowed individual optimization of the precipitant concentration in the droplet in the reservoir. As a result, crystals of both proteins showing high diffraction quality were obtained using the PAS precipitant. The genetic definition and precise macromolecular composition of PAS polymers, both in sequence and in length, distinguish them from all natural and synthetic polymers that have been utilized for protein crystallization so far, including PEG, and facilitate their adaptation for future applications. Thus, PAS polymers offer potential as novel precipitants for biomolecular crystallography.
Collapse
Affiliation(s)
- André Schiefner
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany
| | - Rebecca Walser
- XL-protein GmbH, Lise-Meitner-Strasse 30, 85354 Freising, Germany
| | - Michaela Gebauer
- XL-protein GmbH, Lise-Meitner-Strasse 30, 85354 Freising, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
5
|
Giessen TW, Orlando BJ, Verdegaal AA, Chambers MG, Gardener J, Bell DC, Birrane G, Liao M, Silver PA. Large protein organelles form a new iron sequestration system with high storage capacity. eLife 2019; 8:46070. [PMID: 31282860 PMCID: PMC6668986 DOI: 10.7554/elife.46070] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/06/2019] [Indexed: 12/21/2022] Open
Abstract
Iron storage proteins are essential for cellular iron homeostasis and redox balance. Ferritin proteins are the major storage units for bioavailable forms of iron. Some organisms lack ferritins, and it is not known how they store iron. Encapsulins, a class of protein-based organelles, have recently been implicated in microbial iron and redox metabolism. Here, we report the structural and mechanistic characterization of a 42 nm two-component encapsulin-based iron storage compartment from Quasibacillus thermotolerans. Using cryo-electron microscopy and x-ray crystallography, we reveal the assembly principles of a thermostable T = 4 shell topology and its catalytic ferroxidase cargo and show interactions underlying cargo-shell co-assembly. This compartment has an exceptionally large iron storage capacity storing over 23,000 iron atoms. Our results reveal a new approach for survival in diverse habitats with limited or fluctuating iron availability via an iron storage system able to store 10 to 20 times more iron than ferritin. People often think of the cell as the basic unit of life. Despite this, individual cells are also subdivided into many compartments, called ‘organelles’ because they act like the internal organs of the cell. For example, organelles can break down nutrients, store information in the form of DNA, or help remove waste. Even bacterial cells, despite being smaller and simpler than most other cell types, contain organelle-like structures. These are tiny compartments, termed protein organelles, which are enclosed by ‘shells’ made from self-assembling proteins within the cell. Cells need iron to carry out the chemical reactions necessary for life. Iron is therefore an essential nutrient, but it can also be toxic if not stored properly inside the cell. Cells often solve this problem by locking iron away inside small, specialised protein cages called ferritins until it can be used. Most organisms, from humans to bacteria, have ferritins, but some do not, and the way these organisms store iron remains largely unknown. The bacterium Quasibacillus thermotolerans is an example of an organism that lacks ferritins. However, it does contain a recently discovered type of protein organelle, called an encapsulin. Giessen et al. wanted to find out more about the structure of this protein organelle, and to determine if it helped these bacteria store iron. Q. thermotolerans’ encapsulin turned out to be the largest of its kind discovered to date. Detailed imaging experiments, using a combination of electron microscopy and X-ray- based techniques, revealed that the protein shell of the encapsulin had an overall structure resembling chain mail and contained multiple pores. These pores were negatively charged, meaning that they could efficiently attract iron (which has a positive charge) and funnel it into the interior of the compartment. The compartment itself was able to store at least 20 times more iron than ferritins, making this encapsulin one of the most efficient methods of iron storage in any cell. These findings will help us better understand how bacteria that lack ferritins cope with the problem of iron storage. In the future, encapsulins could also be used as a target for new therapies to fight bacterial infections, or even as the building blocks for microscopic chemical reactors or ‘storage facilities’ in industrial applications.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Benjamin J Orlando
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Andrew A Verdegaal
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, United States
| | - Melissa G Chambers
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Jules Gardener
- Center for Nanoscale Systems, Harvard University, Cambridge, United States
| | - David C Bell
- Center for Nanoscale Systems, Harvard University, Cambridge, United States.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| | - Gabriel Birrane
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Maofu Liao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
6
|
Bleuler-Martinez S, Stutz K, Sieber R, Collot M, Mallet JM, Hengartner M, Schubert M, Varrot A, Künzler M. Dimerization of the fungal defense lectin CCL2 is essential for its toxicity against nematodes. Glycobiology 2017; 27:486-500. [PMID: 27980000 DOI: 10.1093/glycob/cww113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/09/2016] [Indexed: 11/12/2022] Open
Abstract
Lectins are used as defense effector proteins against predators, parasites and pathogens by animal, plant and fungal innate defense systems. These proteins bind to specific glycoepitopes on the cell surfaces and thereby interfere with the proper cellular functions of the various antagonists. The exact cellular toxicity mechanism is in many cases unclear. Lectin CCL2 of the mushroom Coprinopsis cinerea was previously shown to be toxic for Caenorhabditis elegans and Drosophila melanogaster. This toxicity is dependent on a single, high-affinity binding site for the trisaccharide GlcNAc(Fucα1,3)β1,4GlcNAc, which is a hallmark of nematode and insect N-glycan cores. The carbohydrate-binding site is located at an unusual position on the protein surface when compared to other β-trefoil lectins. Here, we show that CCL2 forms a compact dimer in solution and in crystals. Substitution of two amino acid residues at the dimer interface, R18A and F133A, interfered with dimerization of CCL2 and reduced toxicity but left carbohydrate-binding unaffected. These results, together with the positioning of the two carbohydrate-binding sites on the surface of the protein dimer, suggest that crosslinking of N-glycoproteins on the surface of intestinal cells of invertebrates is a crucial step in the mechanism of CCL2-mediated toxicity. Comparisons of the number and positioning of carbohydrate-binding sites among different dimerizing fungal β-trefoil lectins revealed a considerable variability in the carbohydrate-binding patterns of these proteins, which are likely to correlate with their respective functions.
Collapse
Affiliation(s)
| | - Katrin Stutz
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Ramon Sieber
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Mayeul Collot
- Laboratoire des Biomolécules, UPMC Université Paris 06, Ecole Normale Supérieure, Paris, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, UPMC Université Paris 06, Ecole Normale Supérieure, Paris, France
| | - Michael Hengartner
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mario Schubert
- Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmattstr. 20, 8093 Zürich, Switzerland.,Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Annabelle Varrot
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, 38041 Grenoble, France
| | - Markus Künzler
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Lambert C, Cadby IT, Till R, Bui NK, Lerner TR, Hughes WS, Lee DJ, Alderwick LJ, Vollmer W, Sockett ER, Lovering AL. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus. Nat Commun 2015; 6:8884. [PMID: 26626559 PMCID: PMC4686830 DOI: 10.1038/ncomms9884] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022] Open
Abstract
Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator's peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital - ΔBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morphology, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle.
Collapse
Affiliation(s)
- Carey Lambert
- Centre for Genetics and Genomics, School of Biology, Nottingham University, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ian T. Cadby
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rob Till
- Centre for Genetics and Genomics, School of Biology, Nottingham University, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nhat Khai Bui
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Thomas R. Lerner
- Centre for Genetics and Genomics, School of Biology, Nottingham University, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - William S. Hughes
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David J. Lee
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Luke J. Alderwick
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Elizabeth R. Sockett
- Centre for Genetics and Genomics, School of Biology, Nottingham University, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Andrew L. Lovering
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Michalska K, Tan K, Chang C, Li H, Hatzos-Skintges C, Molitsky M, Alkire R, Joachimiak A. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1386-95. [PMID: 26524303 PMCID: PMC4629866 DOI: 10.1107/s1600577515016598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/05/2015] [Indexed: 05/22/2023]
Abstract
A prototype of a 96-well plate scanner for in situ data collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection at T = 100 K, crystals in a crystallization buffer show remarkably low mosaicity (<0.1°) until deterioration by radiation damage occurs. Data presented here show that cryo-cooling can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software, in situ data collection will become available for the SBC user program including remote access.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Kemin Tan
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Changsoo Chang
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Hui Li
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
| | | | - Michael Molitsky
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Randy Alkire
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, USA
| |
Collapse
|
9
|
Pelz JP, Schindelin H, van Pee K, Kuper J, Kisker C, Diederichs K, Fischer U, Grimm C. Crystallizing the 6S and 8S spliceosomal assembly intermediates: a complex project. ACTA ACUST UNITED AC 2015; 71:2040-53. [PMID: 26457428 DOI: 10.1107/s1399004715014832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022]
Abstract
The small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/6 and U5 are major constituents of the pre-mRNA processing spliceosome. They contain a common RNP core that is formed by the ordered binding of Sm proteins onto the single-stranded Sm site of the snRNA. Although spontaneous in vitro, assembly of the Sm core requires assistance from the PRMT5 and SMN complexes in vivo. To gain insight into the key steps of the assembly process, the crystal structures of two assembly intermediates of U snRNPs termed the 6S and 8S complexes have recently been reported. These multimeric protein complexes could only be crystallized after the application of various rescue strategies. The developed strategy leading to the crystallization and solution of the 8S crystal structure was subsequently used to guide a combination of rational crystal-contact optimization with surface-entropy reduction of crystals of the related 6S complex. Conversely, the resulting high-resolution 6S crystal structure was used during the restrained refinement of the 8S crystal structure.
Collapse
Affiliation(s)
- Jann Patrick Pelz
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hermann Schindelin
- Rudolf-Virchow-Zentrum, DFG Research Centre for Experimental Medicine, University of Würzburg, Josef-Schneider-Strasse 2/Haus D15, 97080 Würzburg, Germany
| | - Katharina van Pee
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Kuper
- Rudolf-Virchow-Zentrum, DFG Research Centre for Experimental Medicine, University of Würzburg, Josef-Schneider-Strasse 2/Haus D15, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf-Virchow-Zentrum, DFG Research Centre for Experimental Medicine, University of Würzburg, Josef-Schneider-Strasse 2/Haus D15, 97080 Würzburg, Germany
| | - Kay Diederichs
- Protein Crystallography and Molecular Bioinformatics, University of Konstanz, 78457 Konstanz, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Quay DHX, Cole AR, Cryar A, Thalassinos K, Williams MA, Bhakta S, Keep NH. Structure of the stationary phase survival protein YuiC from B.subtilis. BMC STRUCTURAL BIOLOGY 2015; 15:12. [PMID: 26163297 PMCID: PMC4499186 DOI: 10.1186/s12900-015-0039-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/02/2015] [Indexed: 11/23/2022]
Abstract
Background Stationary phase survival proteins (Sps) were found in Firmicutes as having analogous domain compositions, and in some cases genome context, as the resuscitation promoting factors of Actinobacteria, but with a different putative peptidoglycan cleaving domain. Results The first structure of a Firmicute Sps protein YuiC from B. subtilis, is found to be a stripped down version of the cell-wall peptidoglycan hydrolase MltA. The YuiC structures are of a domain swapped dimer, although some monomer is also found in solution. The protein crystallised in the presence of pentasaccharide shows a 1,6-anhydrodisaccharide sugar product, indicating that YuiC cleaves the sugar backbone to form an anhydro product at least on lengthy incubation during crystallisation. Conclusions The structural simplification of MltA in Sps proteins is analogous to that of the resuscitation promoting factor domains of Actinobacteria, which are stripped down versions of lysozyme and soluble lytic transglycosylase proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12900-015-0039-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Doris H X Quay
- Institute for Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK.
| | - Ambrose R Cole
- Institute for Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK.
| | - Adam Cryar
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Konstantinos Thalassinos
- Institute for Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK. .,Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Mark A Williams
- Institute for Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK.
| | - Sanjib Bhakta
- Institute for Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK.
| | - Nicholas H Keep
- Institute for Structural and Molecular Biology, Crystallography, Department of Biological Sciences, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
11
|
Hildebrandt C, Joos L, Saedler R, Winter G. The "New Polyethylene Glycol Dilemma": Polyethylene Glycol Impurities and Their Paradox Role in mAb Crystallization. J Pharm Sci 2015; 104:1938-1945. [PMID: 25808186 DOI: 10.1002/jps.24424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/31/2015] [Accepted: 02/23/2015] [Indexed: 02/04/2023]
Abstract
Polyethylene glycols (PEG) represent the most successful and frequently applied class of excipients used for protein crystallization. PEG auto-oxidation and formation of impurities such as peroxides and formaldehydes that foster protein drug degradation is known. However, their effect on mAb crystallization has not been studied in detail before. During the present study, a model IgG1 antibody (mAb1) was crystallized in PEG solutions. Aggregate formation was observed during crystallization and storage that was ascribed to PEG degradation products. Reduction of peroxide and formaldehyde levels prior to crystallization by vacuum and freeze-drying was investigated for its effect on protein degradation. Vacuum drying was superior in removal of peroxides but inferior in reducing formaldehyde residues. Consequently, double purification allowed extensive removal of both impurities. Applying of purified PEG led to 50% lower aggregate fractions. Surprisingly, PEG double purification or addition of methionine prior to crystallization prevented crystal formation. With increased PEG concentration or spiking with peroxides and formaldehydes, crystal formation could be recovered again. With these results, we demonstrate that minimum amounts of oxidizing impurities and thus in consequence chemically altered proteins are vital to initiate mAb1 crystallization. The present study calls PEG as good precipitant for therapeutic biopharmaceuticals into question.
Collapse
Affiliation(s)
- Christian Hildebrandt
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximillians-University Munich, Munich D-81377, Germany.
| | - Lea Joos
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximillians-University Munich, Munich D-81377, Germany
| | - Rainer Saedler
- NBE Formulation and Process Sciences, Drug Product Development, AbbVie GmbH and Company KG, Ludwigshafen D-67061, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximillians-University Munich, Munich D-81377, Germany
| |
Collapse
|
12
|
Abstract
Protein structure determination by X-ray crystallography is dependent on obtaining a single protein crystal suitable for diffraction data collection. Due to this requirement, protein crystallization represents a key step in protein structure determination. The conditions for protein crystallization have to be determined empirically for each protein, making this step also a bottleneck in the structure determination process. Typical protein crystallization practice involves parallel setup and monitoring of a considerable number of individual protein crystallization experiments (also called crystallization trials). In these trials the aliquots of purified protein are mixed with a range of solutions composed of a precipitating agent, buffer, and sometimes an additive that have been previously successful in prompting protein crystallization. The individual chemical conditions in which a particular protein shows signs of crystallization are used as a starting point for further crystallization experiments. The goal is optimizing the formation of individual protein crystals of sufficient size and quality to make them suitable for diffraction data collection. Thus the composition of the primary crystallization screen is critical for successful crystallization.Systematic analysis of crystallization experiments carried out on several hundred proteins as part of large-scale structural genomics efforts allowed the optimization of the protein crystallization protocol and identification of a minimal set of 96 crystallization solutions (the "TRAP" screen) that, in our experience, led to crystallization of the maximum number of proteins.
Collapse
Affiliation(s)
- Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, Canada
| | | | | | | |
Collapse
|
13
|
Giegé R. A historical perspective on protein crystallization from 1840 to the present day. FEBS J 2013; 280:6456-97. [DOI: 10.1111/febs.12580] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire; Université de Strasourg et CNRS; France
| |
Collapse
|