1
|
Meilleur F, Munshi P, Robertson L, Stoica AD, Crow L, Kovalevsky A, Koritsanszky T, Chakoumakos BC, Blessing R, Myles DAA. The IMAGINE instrument: first neutron protein structure and new capabilities for neutron macromolecular crystallography. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2157-60. [DOI: 10.1107/s0907444913019604] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/15/2013] [Indexed: 11/11/2022]
Abstract
The first high-resolution neutron protein structure of perdeuterated rubredoxin fromPyrococcus furiosus(PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory is reported. Neutron diffraction data extending to 1.65 Å resolution were collected from a relatively small 0.7 mm3PfRd crystal using 2.5 d (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the D atoms of the protein and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolution (1.5 Å) from crystals with volume <1.0 mm3and with unit-cell edges <100 Å. Beamline features include novel elliptical focusing mirrors that deliver neutrons into a 2.0 × 3.2 mm focal spot at the sample position with full-width vertical and horizontal divergences of 0.5 and 0.6°, respectively. Variable short- and long-wavelength cutoff optics provide automated exchange between multiple-wavelength configurations (λmin= 2.0, 2.8, 3.3 Å to λmax= 3.0, 4.0, 4.5, ∼20 Å). These optics produce a more than 20-fold increase in the flux density at the sample and should help to enable more routine collection of high-resolution data from submillimetre-cubed crystals. Notably, the crystal used to collect thesePfRd data was 5–10 times smaller than those previously reported.
Collapse
|
2
|
Wymore T, Brooks CL. From Molecular Phylogenetics to Quantum Chemistry: Discovering Enzyme Design Principles through Computation. Comput Struct Biotechnol J 2012; 2:e201209018. [PMID: 24688659 PMCID: PMC3962182 DOI: 10.5936/csbj.201209018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
- Troy Wymore
- Pittsburgh Supercomputing Center, 300 South Craig Street, Pittsburgh, PA 15213 USA
| | - Charles L. Brooks
- University of Michigan, Department of Chemistry and Biophysics, 930 North University Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|